Communication Dans Un Congrès Année : 2025

Approximate Hypothesis Testing

Résumé

We establish the sample complexity of Approximate Hypothesis Testing (AHT) where—unlike in classical hypothesis testing—we need only approximate the hypothesis governing the observed samples rather than recover it exactly. We show that the AHT sample complexity scales inversely with the multivariate Bhatthacharyya distance evaluated on a “maximally confusable” subset of hypotheses that is characterized by the chosen distance measure and approximation accuracy. Index terms—hypothesis testing, sample complexity, learning, Bhattacharyya distance, Hellinger distance.
Fichier principal
Vignette du fichier
approximate_sample_complexity.pdf (366) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04929142 , version 1 (04-02-2025)

Licence

Identifiants

  • HAL Id : hal-04929142 , version 1

Citer

Nicolas Le Gouic, Robert Graczyk, Stefan M Moser. Approximate Hypothesis Testing. ISIT 2025 : IEEE International Symposium on Information Theory, Jun 2025, Ann Arbor (Michigan), United States. ⟨hal-04929142⟩
0 Consultations
0 Téléchargements

Partager

More