K-Nearest Neighbour Classification for Interval-Valued Data - Décision, Image
Communication Dans Un Congrès Année : 2017

K-Nearest Neighbour Classification for Interval-Valued Data

Résumé

This paper studies the problem of providing predictions with a K-nn approach when data have partial features given in the form of intervals. To do so, we adopt an optimistic approach to replace the ill-known values, that requires to compute sets of possible and necessary neighbours of an instance. We provide an easy way to compute such sets, as well as the decision rule that follows from them. Our approach is then compared to a simple imputation method in different scenarios, in order to identify those ones where it is advantageous.
Fichier principal
Vignette du fichier
apaper.pdf (327.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01680870 , version 1 (21-06-2021)

Identifiants

  • HAL Id : hal-01680870 , version 1

Citer

Vu-Linh Nguyen, Sébastien Destercke, Marie-Hélène Masson. K-Nearest Neighbour Classification for Interval-Valued Data. 11th International Conference on Scalable Uncertainty Management (SUM 2017), Oct 2017, Granada, Spain. pp.93-106. ⟨hal-01680870⟩
124 Consultations
175 Téléchargements

Partager

More