Discrepancies of Measured SAR between Traditional and Fast Measuring Systems - Archive ouverte HAL Access content directly
Journal Articles International Journal of Environmental Research and Public Health Year : 2020

Discrepancies of Measured SAR between Traditional and Fast Measuring Systems

(1) , , (2) , (3, 1, 4, 5)
1
2
3
4
5

Abstract

Human exposure to mobile devices is traditionally measured by a system in which the human body (or head) is modelled by a phantom and the energy absorbed from the device is estimated based on the electric fields measured with a single probe. Such a system suffers from low efficiency due to repeated volumetric scanning within the phantom needed to capture the absorbed energy throughout the volume. To speed up the measurement, fast SAR (specific absorption rate) measuring systems have been developed. However, discrepancies of measured results are observed between traditional and fast measuring systems. In this paper, the discrepancies in terms of post-processing procedures after the measurement of electric field (or its amplitude) are investigated. Here, the concerned fast measuring system estimates SAR based on the reconstructed field of the region of interest while the amplitude and phase of the electric field are measured on a single plane with a probe array. The numerical results presented indicate that the fast SAR measuring system has the potential to yield more accurate estimations than the traditional system, but no conclusion can be made on which kind of system is superior without knowledge of the field-reconstruction algorithms and the emitting source.
Fichier principal
Vignette du fichier
ijerph-17-02111.pdf (628.51 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-02887135 , version 1 (02-07-2020)

Identifiers

Cite

Zicheng Liu, Djamel Allal, Maurice Cox, Joe Wiart. Discrepancies of Measured SAR between Traditional and Fast Measuring Systems. International Journal of Environmental Research and Public Health, 2020, ⟨10.3390/ijerph17062111⟩. ⟨hal-02887135⟩
57 View
45 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More