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Abstract. Curvature is a continuous and infinitesimal notion. These properties induce geomet-

rical difficulties in digital frameworks, and the following question is naturally asked: “How to

define and compute curvatures of digital shapes?” In fact, not only geometrical but also topolog-
ical difficulties are also induced in digital frameworks. The – deeper – question thus arises: “Can

we still define and compute curvatures?” This latter question, that is relevant in the context of

digitization, i.e., when passing from Rn to Zn, can also be stated in Zn itself, when applying
geometric transformations on digital shapes. This paper proposes a preliminary discussion on

this topic.

1. Introduction

In the continuous domain, the computation of curvature requires that the considered shapes – and
more precisely their boundaries – present certain good properties, mostly in terms of differentia-
bility. When passing from the continuous universe (Rn) to the discrete one (Zn), the handling of
curvature becomes much more complex. It is easy to guess that the induced difficulties derive from
the necessity to model infinitesimal properties – namely the differentiability of boundaries – into
a finite framework.

However, even before considering such geometrical concerns, it is crucial to keep in mind that
there also exist topological concerns. Indeed, beyond its putative differentiability, the notion of
boundary itself often becomes ill-defined in Zn. In other words, while the boundary of a continuous
shape in Rn is an object of dimension n− 1, and most often a (n− 1)-manifold, it is unfortunately
infrequent that the boundary of a digital shape in Zn be a discrete hypersurface, and a fortiori a
discrete (n− 1)-manifold.

During the last decades, some efforts were devoted to tackle this issue in the context of dig-
itization. More precisely, some conditions were provided to guarantee the preservation of good
geometrical and topological properties of shape boundaries, when passing from Rn to Zn. How-
ever, if we now know how to correctly handle curvature during this digitization step, it remains
challenging to also define adequate conditions for curvature definition and analysis when processing
digital shapes. In particular, it is difficult to preserve correct topological – and thus geometrical
– properties of digital shape boundaries when applying geometric transformations, even the most
simple one such as rigid transformations.

In this paper – that is mainly related to the works published in [?, ?] – we expose some
preliminary results devoted to this question. More precisely, we focus on the specific case of digital
shapes defined on Z2, and on their behaviour under rigid transformations. Considering such a low
dimension and such simple transformations may seem meaningless and irrelevant at a time when
the hot topics are related to high-dimension objects under arbitrary deformations. Nevertheless,
beyond this apparent triviality, we show that the induced issues are not straightforward, and we

Keywords: topology, digitization, geometric transformations.

Math. classification: 00X99.

1



Yukiko Kenmochi, Phuc Ngo, Nicolas Passat, & Hugues Talbot

(a) S1 ⊂ R2 (b) S2 ⊂ R2

(c) D(S1) ⊂ Z2 (d) D(S2) ⊂ Z2

Figure 1. (a,b) Continuous shapes S1 and S2 in R2 (in cyan) and their bound-
aries (in blue). (c,d) The associated digital shapes D(S1) and D(S2) in Z2 (in
cyan), and their digital boundaries (in blue). (c) The digital boundary of D(S1) is
a 1-manifold. (d) The digital boundary of D(S2) is not a 1-manifold, by contrast
with that of S2.

intend to develop sound foundations for further developments at higher dimensions and for more
general transformations.

2. Digital shapes and their boundaries

Let us consider a finite closed set S in R2 whose boundary is a (set of) 1-manifold(s) as an original
shape. Since computers handle only finite structures, such a continuous shape S is represented as
a digital image, i.e., a finite set of pixels associated to points of Z2. The induced digital shape is
denoted by D(S), referring to the digitization procedure D that allows us to pass from R2 to Z2.

There exist several models for D [?]. For instance, if we consider the Gaussian model, we obtain
D(S) = S ∩ Z2; in other words, the digital shape D(S) of S is simply obtained by “sampling” S

with respect to the regular structure of Z2. We will note D(S) the complement of D(S) in Z2.
It is mandatory to provide an explicit and sound definition for the notion of boundary of a

digital shape D(S). To this end, let us first consider the links that exist between the points of Z2

and the pixels of a digital image. A pixel P , associated to a point x of Z2, can be seen as a unit
square of R2 centered on x. In other words, we have P = x + [−1/2, 1/2]2 ⊂ R2. From a structural
point of view, the pixels of a digital image are nothing but the Voronoi cells of R2 induced by the
points of Z2. In particular, some couples of pixels share a part of their (continuous) boundaries.
More precisely, two pixels P1 and P2 associated to x1 and x2, respectively, satisfy this assertion
iff their exists an edge between x1 and x2 in the (dual) Delaunay diagram associated to the above
Voronoi diagram.

Based on these considerations, the boundary ∂D(S) of the digital shape D(S), also called the
digital boundary for short, is straightforwardly associated to the continuous boundary induced by
the pixels of D(S). Indeed, ∂D(S) can be modeled by a set of couples of points (x,x) ∈ D(S)×D(S),
that share an edge in the Delaunay diagram of Z2.
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(a) (b)

Figure 2. (a) An r-regular shape (in cyan). Some inner and outer r-radius open
balls are depicted in magenta, with r higher that the pixel size of the “topology-
preserving” digitization grid. (b) A shape that is not r-regular (in cyan). An
example of r-radius open balls couple is depicted, where the “inner” ball (in red)
does not entirely lie into the shape.

The handling of digital boundaries can be considered from a topological point of view. To
this end, we can use the standard notion of neighbourhood stated in digital topology [?]. The
k-neighbourhood of a point x ∈ Z2 is defined by Nk(x) = {y ∈ Z2 | ‖x − y‖p = 1}, for k = 4, 8
where p = 1,∞, respectively. Then, the boundary of D(S) is defined by ∂D(S) = {(x,y) | x ∈
D(S),y ∈ D(S),y ∈ N4(x)}.

Figure 1 illustrates two examples of digitization procedure, where it is easily seen that the
topology of a digital shape is not always the same as that of the initial continuous shape. More
precisely, we observe that digital shape boundaries are not always guaranteed to be 1-manifolds,
even though the original shape boundaries are.

3. Digitization and topology preservation

The issue of topological alteration of shape boundaries during the digitization process has been
considered in the literature. In particular, Latecki et al. defined some conditions for guaranteeing
boundary integrity, based on two key notions, namely r-regularity and well-composedness.

Definition 1 (r-regularity [?]). A closed set S ⊂ R2 is r-regular if for each boundary point
of S, there exist two tangent open balls of radius r, lying entirely in S and its complement S,
respectively.

This definition derives from classical concepts of differential geometry, namely osculating balls
and normal vectors. By considering the class of r-regular shapes in R2, the condition for preserving
topological properties – especially in terms of boundaries – between a continuous shape and its
digital counterpart is the following.

Proposition 2 ([?]). An r-regular set S ⊂ R2 has the same topological structure as its digitized
version D(S), for pixels of size d < r.

This result is indeed an extension of the compatibility property between S and D(S), presented
by Pavlidis in [?]. In particular, Latecki et al. were driven by more pragmatic motivations, related
to some sampling devices for image acquisition, like CCD cameras. Figure 2 provides an example
and a counterexample of r-regular shapes.

In [?], it was also shown that the (topology-preserving) digitization process of an r-regular
shape must yield a well-composed shape [?], whose definition relies on the following concepts of
adjacency, connectedness and connected components, in digital topology [?]. Let X be a digital
shape in Z2. We say that two distinct points x,y of X are k-adjacent (for k = 4, 8) if x ∈ Nk(y)
(and – equivalently – y ∈ Nk(x)). From the induced (symmetric) k-adjacency relation on X, we
obtain, by reflexive-transitive closure, the (equivalence) k-connectedness relation. The k-connected
components of X are the equivalence classes for this relation. From these notions, we can define
the notion of well-composedness.
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(a) (b)

Figure 3. (a) A well-composed shape X1 of Z2 (in black). Its boundary ∂X1 (in
green) is a 1-manifold. (b) A shape X2 of Z2 (in black) that is not well-composed.
Its boundary ∂X2 (in green) is not a 1-manifold (see the red dots).

Definition 3 (Well-composedness [?]). A digital shape X in Z2 is well-composed if each 8-
connected component of X and of its complement X is also a 4-connected component.

Based on this definition, it is plain that the boundary ∂X of a digital shape X is a 1-manifold
whenever X is well-composed. Some examples and counter-examples of well-composed shapes are
provided in Figure 3.

As stated above, there actually exists a strong link between r-regularity and well-composedness.

Theorem 4 ([?]). If S is r-regular, then D(S) is well-composed.

Consequently, a continuous shape S of R2 that is r-regular – and whose boundary is a continuous
1-manifold that authorises curvature analysis – still presents good properties after digitization,
since its digital counterpart D(S) is well-composed and then also presents as border ∂D(S) a
1-manifold.

4. Rigid transformations of digital shapes

As stated above, in the digital framework, curvature analysis makes sense when considering shapes
that are well-composed. In the continuity of this result, the question that we consider now is the
following: “What are the conditions for allowing curvature analysis not only on a digital shape X
but also on its image by a geometric transformation?”. In particular, we focus on the most simple
– yet non-trivial – case of rigid transformations.

In R2, a rigid transformation is a function∣∣∣∣ T : R2 → R2

x 7→ R.x + t
(4.1)

where R is a rotation matrix, i.e., an element of the group SO(2), and t ∈ R2 is a translation
vector. The rigid transformation T is a bijection, and its inverse function T −1 is also a rigid
transformation.

Based on these definitions, the digital rigid transformations consist of composing the continuous
rigid transformations with the standard rounding operator. We note RIGZ2 the set of all the digital
rigid transformations.

Two transformation models can be considered for a digital rigid transformation T associated to a
transformation T . The Lagrangian (forwards) model consists of computing the direct image of the
digital shape X by the transformation. However, as T is often neither injective nor surjective, this
leads to topological defects. The Eulerian (backwards) model consists of computing the transformed
image XT as the shape whose image by the digital analogue T−1 of the inverse function T −1 of
T , lies into X. This is more satisfactory, since T −1 is defined on the whole transformed space Z2.
In this model, that we consider hereafter, we have

XT = D(T (X ⊕�)) (4.2)

where ⊕ is the classical dilation operator defined in mathematical morphology [?, Ch. 1], and �
is the unit square of R2, centered on the origin. These relationships with well-known concepts of
mathematical morphology are actually not a coincidence, as it will be discussed later.
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Figure 4. An original digital circle (left) and its rigid transformations (center
and right). The original digital shape is well-composed while the transformed ones
are not well-composed.

(a) (b) (c)

Figure 5. Forbidden patterns in regular shapes (up to π/2 rotations, symmetries
and value inversion).

Unfortunately, the Eulerian model is not exempt from topological difficulties. In particular, the
family of well-composed shapes is not stable with respect to RIGZ2 . In other words, the transformed
shape XT obtained from a well-composed shape X with respect to a digital rigid transformation
T is not necessarily well-composed itself. In that case, its topological properties are, of course,
altered, and in particular, its boundary is no longer a (set of) 1-manifold(s). See Figure 4 for an
example.

5. Rigid transformations and topology preservation

In this section, we summarise the main contribution of this work, that consists of defining a
subfamily of well-composed shapes that remain stable – and topologically invariant – under any
digital rigid transformations. The digital shapes forming this family are called regular, in reference
to the above notion of r-regularity for continuous shapes in R2. The set of regular digital shapes
can be defined in Z2 as follows.

Definition 5 ((Non-)singular shapes). Let X ⊂ Z2 be a digital shape. We say that X is singular
if at least one point x of X (resp. X) has its whole 4-adjacent set included in X (resp. X).

Definition 6 (Regularity [?, ?]). Let X ⊂ Z2 be a non-singular, well-composed shape. We say
that X is regular if for any 4-adjacent points x,y ∈ X (resp. X), there exists a 2 × 2 set � =
{z, z + 1} × {t, t+ 1} ⊂ Z2 such that x,y ∈ � ⊆ X (resp. X).

The regularity of a digital shape can be characterised as follows, and thus leads to a linear-time
complexity pattern-based regularity analysis.

Proposition 7 ([?, ?]). A digital shape X ⊂ Z2 is regular iff none of the configurations depicted
in Figure 5 appears in X and X.

Note that the first configuration (Figure 5(a)) characterises the non-well-composed shapes [?].
The main interest of regularity is to guarantee the stability of well-composed shapes – and their

topological invariance – under any rigid transformation. In particular, we have the following result.

Theorem 8 ([?]). Let X ⊂ Z2 be a well-composed shape. If X is regular, then, for any digital
rigid transformation T , the transformed digital shape XT is still well-composed, and has the same
topological structure as X.

Remark 9. This result establishes regularity as a sufficient condition for the stability of well-
composedness, together with topological invariance. Our conjecture is however that this condition
is also necessary.
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(a) (b)

Figure 6. (a) A regular shape (in black). (b) A non-regular shape (in black) that
is however opened and closed by a structuring element �.

Following mathematical morphology terminology [?, Ch. 1], if X is regular, then X is opened
and closed by any structuring element �, i.e.

γ�(X) = X 	�⊕� = X (5.1)

φ�(X) = X ⊕�	� = X (5.2)

However, the converse is not true, as illustrated in Figure 6. Nevertheless, it is plain that there exist
strong links between these morphological operations and the notions of regularity and topological
invariance. Our conjecture is that the regular shapes X are exactly those whose both the dilated
X⊕� and the eroded X	� have the same topological structure as X. This intuition derives from
the continuous analogue of this assertion for r-regular shape S of R2, where the discs of radius r
play the role of � [?].

6. Conclusion

This work constitutes a preliminary attempt to provide solutions for curvature definition and
analysis of digital shapes, not only in their initial space but also in the spaces obtained under rigid
transformations.

Some results have been proposed in the specific case of shapes in Z2 under rigid transformations.
It has been proved in [?] that these results can, of course, be interpreted in the framework of
binary digital images, but also extended to grey-level and label images, thus providing efficient
image processing and analysis strategies.

Nevertheless, many efforts remain to do towards solutions in more general cases. In particular,
the handling of (i) higher dimensions, i.e., Z3 and more generally Zn for n ≥ 3, and (ii) arbitrary
geometric transformations, still remain open issues. Moreover, it may be important to derive not
only sufficient, but also necessary conditions, for curvature analysis. It may additionally be useful
to deal with both Eulerian and Lagrangian models.

Even though this preliminary study allows us to understand and solve some topological problems
of digital shapes under their rigid transformations, geometrical problems still remain: geometries
of digital shapes are not preserved under rigid transformations in general. For example, see Figure
7. It is expected to investigate geometry-preserving conditions of digital shapes during their rigid
transformations as well.
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(a) (b)

Figure 7. (a) A digital half plane, which is regular, and (b) its transformed shape,
which is still well-composed (i.e., the topology is preserved) but not a digital half
plane any more (i.e., the geometry is not preserved).
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