Binary Partition Tree Construction from Multiple Features for Image Segmentation

Abstract : —In the context of digital image processing and analysis, the Binary Partition Tree (BPT) is a classical data-structure for the hierarchical modeling of images at different scales. BPTs belong both to the families of graph-based models and morphological hierarchies. They constitute an efficient way to define sets of nested partitions of image support, that further provide knowledge-guided reduced research spaces for optimization-based segmentation procedures. Basically, a BPT is built in a mono-feature way, i.e., for one given image, and one given metric, by merging pairs of connected image regions that are similar in the induced feature space. We propose in this work a generalization of the BPT construction framework, allowing to consider versatile multi-feature paradigms. The cornerstone of our approach relies on a collaborative strategy enabling to establish a consensus between different metrics, thus allowing to obtain a unified hierarchical segmentation space. To reach that goal, we first revisit the BPT construction algorithm to describe it in a fully graph-based formalism. Then, we present the structural and algorithmic evolutions and impacts when embedding multiple features in BPT construction. We also discuss the different ways to tackle the induced memory and time complexity issues raised by this generalized framework. Final experiments illustrate how this multi-feature framework can be used to build BPTs from multiple images and / or multiple metrics computed through the image content.
Document type :
Preprints, Working Papers, ...
Complete list of metadatas
Contributor : Tianatahina Jimmy Francky Randrianasoa <>
Submitted on : Wednesday, December 23, 2015 - 2:19:55 PM
Last modification on : Tuesday, April 23, 2019 - 2:42:01 PM
Long-term archiving on: Thursday, March 24, 2016 - 12:41:16 PM


article - version for HAL.pdf
Files produced by the author(s)


  • HAL Id : hal-01248042, version 1


Jimmy Francky Randrianasoa, Camille Kurtz, Eric Desjardin, Nicolas Passat. Binary Partition Tree Construction from Multiple Features for Image Segmentation. 2015. ⟨hal-01248042v1⟩



Record views


Files downloads