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Abstract

In the context of image analysis, the Binary Partition Tree (BPT) is a clas-
sical data structure for the hierarchical modeling of images at different scales.
BPTs belong both to the families of graph-based models and morphological
hierarchies. They constitute an efficient way to define sets of nested parti-
tions of image support, that further provide knowledge-guided reduced research
spaces for optimization-based segmentation procedures. Basically, a BPT is
built in a mono-feature way, i.e. for one given image, and one given metric,
by merging pairs of connected image regions that are similar in the induced
feature space. Our goal is to design a new family of BPTs, dealing with the
need to directly manage multiple features within its building process. Then, we
propose a generalization of the BPT construction framework, allowing one to
embed multiple features. The cornerstone of our approach relies on a collab-
orative strategy used to establish a consensus between different metrics, thus
enabling to obtain a unified hierarchical segmentation space. In particular, this
provides alternatives to the complex issue of metric construction from several
—possibly non-comparable— features. To reach that goal, we first revisit the
BPT construction algorithm to describe it in a graph-based formalism. Then,
we present the structural and algorithmic evolutions and impacts when embed-
ding multiple features in BPT construction. Final experiments illustrate how
this multi-feature framework can be used to build BPTs from multiple metrics
computed through the (potentially multiple) image content(s).

Keywords: binary partition tree, morphological hierarchies, multiple features,
graph-based image processing, image segmentation

1. Introduction

1.1. Context

In image processing and analysis, segmentation is a crucial task. The concept
of segmentation is also quite generic from various points of views: in terms of
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semantics (from low-level definition of homogeneous areas to high-level extrac-
tion of specific objects), in terms of definition (object vs. background or total
partition of the image support), and in terms of algorithmics (region-based or
contour-based approaches).

In this context, morphological hierarchies propose a wide range of data struc-
tures for modeling images at various scales, allowing for the definition of con-
nected operators [I]. Mainly based on the theoretical frameworks of graphs
and mathematical morphology [2] [3l Chapters 3, 7, 9], these approaches have
already proved their efficiency in many imaging applications. (The algorithms
to build and handle them are generally of linear or quasi-linear time and space
complexity.) Their very principle is to embed images in a dual spatial / spec-
tral representation space, composed of shapes (i.e. spectrally homogeneous and
spatially coherent regions) together with their spatial (neighbouring) and hier-
archical (inclusion) relations. These representations offer a structured space to
find the best regions / scales according to the applicative objective using, e.g.
high-level features to describe the image regions and their content.

Among these representations, the Binary Partition Tree (BPT) [4] is a hi-
erarchical representation of an image modeled as a tree structure, where each
node is a connected region. Each of these nodes is either a leaf —an elementary
region— or models the union of the regions of its two children nodes. The root
is the node corresponding to the entire support of the image. Practically, a
BPT is built from its leaves, provided by an initial partition of the image sup-
port, to its root, in a bottom-up fashion. This is done by iteratively choosing
and merging two adjacent regions which minimize a merging criterion, based
on a given metric, computed between them. The BPT structure allows users to
explore the image at different scales. It can be used for various tasks such as
segmentation, image retrieval, object recognition and visual browsing.

As other hierarchical structures, the BPT was mainly designed to process one
image at a time. Furthermore, in contrast with most of them (e.g. component-
trees, trees of shapes) that are intrinsically defined from the image content, the
BPT is also designed to embed an extrinsic metric that is used, together with
the image, to build a mixed image / knowledge model. In other words, a BPT
is generally built for one image and one metric.

1.2. Motivations and Contributions

The BPT is already known as a relevant data structure for the design of
image processing and analysis tools, e.g. for video analysis, remote sensing or
medical imaging. Until now, the way to build this data structure has remained
mostly limited to a one image, one metric paradigm.

Indeed, on the one hand, the metric —i.e. the merging criterion for successive
node merging— is a scalar function. When several kinds of information (e.g.
colorimetric and geometric heterogeneity) are relevant, it is then required to
find a way of fusing them as a unique metric. This complex task has a strong
influence on the data structure construction. Thus, it has to be carefully carried
out by the expert-user before the very construction process.

On the other hand, the BPT construction deals with one input image. This
means that the handling of several images generally has to be dealt with by arti-
ficially creating a “super-image”, or by fusing beforehand multiple information
from various spectral bands into a single metric.



Our purpose is to provide an algorithmic process for BPT construction that
goes beyond these current —image and metric— limitations, leading to a notion
of multi-feature BPT (MBPT, for brief).

The main idea of our approach is to consider that & images, coupled with
I metrics, lead to n = k.l features. The cornerstone of the construction of a
multi-feature BPT then consists of providing a way to involve all these features
into the construction process, i.e. to make them interact for the definition of
a relevant node merging order, and to obtain as output a unified hierarchical
segmentation space.

In other words, our main contribution is the proposal of a generalized al-
gorithmic framework for (M)BPT construction, for handling many metrics and
/ or many images. This algorithmic contribution extends the standard BPT
construction (retrieved by setting k = 1 and [ = 1). It also encompasses a
wide range of cases, e.g. various metrics on one image (k =1 and [ > 1), one
metric on many images (k > 1 and [ = 1), or any combination of metrics on
many images. Although being algorithmic, it is important to notice that our
contribution is not directly related to image processing. We aim at providing
an extended way to build a data structure that describes a hierarchy of parti-
tions of an image. In other words, this provides a reduced, knowledge-guided
research space, that can be further involved in various kinds of image analy-
sis procedures: segmentation, classification, simplification, browsing... Such
procedures fall, however, out of the scope of this article, and indeed constitute
application cases of our proposal.

To reach our goal, some secondary contributions are proposed:

e First, we revisit the standard algorithmic process of BPT construction.
In particular, we split its fundamental graph-based expression (namely a
graph-collapsing procedure) from its knowledge-based layers (image topol-
ogy, metric definition, merging policies, etc.) This preliminary analysis is
developed in Section

e Second, we describe how the basic BPT construction framework can be
generalized to handle multiple features. To this end, we identify the data
structure requirements (Section , and their algorithmic side effects
(Section . This leads to a theoretical algorithmic framework.

e Third, we propose a practical description of this algorithmic framework.
Some technical implementation details are provided in Section |5} For the
sake of reproducibility, we also provide an open-source librar% for the
creation of MBPTSs, which constitutes a technological contribution of this
work. A complexity analysis (Section describes the induced space and
time cost increases of MBPT vs. BPT construction.

This work is concluded by application examples in the domain of satellite im-
age analysis, in Section[6] In particular, we compare the behaviour of standard
BPTs to MBPTs handling several images or several metrics.

The remainder of this article —which is an extended and improved version
of the conference paper [5]— is composed of a synthetic state of the art of
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graph-based, hierarchical and multi-image segmentation, in Section and a
conclusion that emphasizes the perspectives of this work, in Section

2. Related works

2.1. Graph-based and Hierarchical Image Segmentation

Image analysis problems, and in particular segmentation, are often consid-
ered in a discrete way via some concepts of graph theory. Practically, image
points (i.e. pixels, voxels) are considered as the vertices of a graph, whereas the
spatial / neighbouring relations between them are modeled by graph edges. This
paradigm, democratized since the early 1970’s [6], led to the development of a
wide range of segmentation approaches, based on basic graph manipulations.

In this context, image segmentation could be viewed as a partial (e.g. region
growing [7]), or total partitioning problem with monotonic (e.g. watersheds
[8]) or non-monotonic transformations (e.g. split and merge [9]). Some of these
approaches led to the development of optimization schemes (e.g. graph-cuts [10],
random walks [11], power watersheds [12]). In the framework of mathematical
morphology, these graph-based approaches gave rise to the notion of connected
operators [13].

Graph-based segmentation allows us to obtain one segmentation result from
a given image. In order to tackle the ill-posed problem of segmentation, hi-
erarchical approaches were developed to compute families of nested partitions,
providing adapted solutions at different scales. These notions of hierarchies take
their origin in image models initially dedicated to optimize the access and space
cost of the carried information (e.g. octrees [14]). These regular models were
progressively shifted toward image / content-guided, irregular hierarchies [15].

From this point on, several hierarchical image models were developed,
mainly in the framework of mathematical morphology. The most popular
are component-trees [16], trees of shapes [I7], [I8], hierarchical watersheds [19],
hyperconnected component-trees [20], and binary partition trees [4] (see Sec-
tion . Since they provide a space of potential segmentations, instead of a
single result, these hierarchical models were progressively involved in attribute-
based [21] or optimization schemes [22] 23] for segmentation purpose.

Based on these image models, generally designed as trees, further develop-
ments were proposed to allow for a better flexibility in image and parameter
handling. The case of multiband images was considered, leading to data struc-
tures such as component-graphs [24], multivalued component-trees [25] or mul-
tivariate trees of shapes [26]. Topological handling was also investigated, by
allowing connectivity hierarchies in component-hypertrees [27], or dealing with
asymmetric hierarchies [28] allowing for non-directed graphs as image models.
The way to embed semantic information as image values was also pioneered via
the notion of shaping [29].

2.2. Binary Partition Trees

Most of the hierarchical structures proposed in the literature are models
intrinsically deriving from the image signal. For instance, component-trees rep-
resent the inclusion of the successive level-sets; trees of shapes represent the
image level-lines; and hierarchical watersheds rely on saliency measures similar
to gradients. These models strongly rely on a functional, often derived from



the image intensity. Such regions may not correspond to objects of interest in
image content, in particular when dealing with complex images.

The binary partition tree (BPT) [4] relies on a mixed image / knowledge
model. It can then easily embed expert-defined knowledge, in addition to image-
based information. From a structural point of view, BPTs present similar prop-
erties with binary space partition trees [30], designed to efficiently model an
image space, mainly in computer graphics. Indeed, BPT's provide hierarchies of
nested total partitions of an image.

From an algorithmic point of view, a BPT is built by progressively merging
elementary image segments (e.g. flat zones or superpixels), based on a given
metric. In particular, the choice of this metric is crucial, as it has a direct impact
on the adequacy of the built BPT with the targeted application. This gave rise
to several works, ranging from theoretical contributions [3I] to experimental
assessments [32]. The basic criteria used in most of segmentation approaches
are generally radiometric or geometric region similarities (or their fusion into a
single metric).

Except for a few contributions in the field of object recognition [33] [34] [35],
BPTs were mainly used for segmentation / classification tasks, where such total
partitions make sense from a semantic point of view. More precisely, the wider
application field of BPTs is remote sensing [36]. In this context, BPTs were
involved in multiresolution / multiscale image segmentation and classification
[37, B8]; for coupled optical / LIDAR data analysis [39]; hyperspectral images
[40] 41]; polarimetric SAR [42] [43]; mixed SAR / hyperspectral images [44]; or
multi-temporal SAR image analysis [45].

2.3. Discussion — Contributions

Binary partition trees are built from one given metric. This paradigm is
particularly well-fitted when the prior semantic information required for the
construction of a mixed image / knowledge image model is indeed unique. (This
is for instance the case when we are interested by patterns in satellite images
that present a specific colorimetric property, such as agricultural crops with the
vegetation index like the NDVI.)

By contrast, when several kinds of prior semantic information are potentially
useful for the construction of the BPT, one has to find a way to relevantly
embed them into a unique metric. This may be a complex task, in particular
when such information are not easily comparable. Until now, the most popular
solution for dealing with that case consisted of defining a linear combination of
various metrics, leading to a unified one. (This was, for instance, the case in
[37] where a linear combination was proposed for mixing spectral homogeneity
and compactness criteria, via an evolving trade-off parameter.)

In order to propose an alternative solution to the issue of handling simulta-
neously many metrics, we consider a new way of building BPTs. Our approach
is built on the standard “mono-metric” BPT construction; in particular, it gen-
eralizes it.

We do not intend to regroup different criteria into a unique metric. By
contrast, we consider each metric individually. Our purpose is then to involve
consensual strategies (classically used in machine learning applications) dedi-
cated to manage the different and possibly antagonistic information carried by
each metric. By side effect, this consensual paradigm also allows us to encom-



pass the case of processing several images / modalities of a same scene, with
similar or specific metrics in each.

In this generalized framework, for a given set of chosen metrics and images,
the user’s task does no longer consist of defining a complex combination of
metrics but, more generally, of choosing a consensus policy, that is the way the
different features will define a common result. This paradigm provides a wide
range of possibilities —including those previously offered by standard BPTs—
and may then improve the adequacy of the constructed BPTs with the user’s
needs for a particular application.

However, the construction process of such multi-feature BPTs is more com-
plex than for standard BPTs. In particular, the intermediate data structures
involved in the construction algorithmics must now allow for the representation
and interactions of various features. This leads to more complex data structures,
and a higher computational cost.

In the sequel, we first analyze the intrinsic properties of the standard BPT
construction algorithm, in order to emphasize the parts impacted by the gener-
alization to the multi-feature case. Then, we propose a theoretical algorithmic
framework for MBPT construction, that generalizes the standard BPT algo-
rithm. Finally, we propose a practical description and an implementation of
this MBPT construction algorithm.

3. Structural Description of the BPT Construction

3.1. Definitions and Notations

This section provides formal definitions and notations mandatory to make
this work self-contained.

An image is a function I : Q — V that associates to each point = of the
finite set Q a value I(z) of the set V.

To model the fact that two points x and y of €2 are neighbours, let A be
an adjacency (i.e. irreflexive, symmetric) binary relation on . In other words,
B = (Q, Ag) is a graph that models the structure of the image space.

For any partition P of €0, we define an adjacency inherited from that of .
We say that two distinct sets N1, Ny € P are adjacent if there exist 1 € Ny
and zo € Na such that (z1,z2) is an edge of Ag, i.e. 1 and z2 are adjacent in
(Q, Aq). This new adjacency relation Ap is also irreflexive and symmetric.

3.2. The Standard BPT Construction

A BPT is a hierarchical representation of an image. More precisely, it is a
binary tree whose each node is a connected region. A node can be either a leaf
representing an “elementary” region, or the union of two neighbouring regions.
The root node corresponds to the whole image support.

We recall the classical way of building a standard BPT, as proposed in
the pioneering article [4]. The BPT construction is a bottom-up process. It
proceeds from the determination of the leaves —provided by an initial partition
of the image— to the root. This is done by choosing and merging iteratively two
adjacent regions that minimize a criterion reflecting their likeness. This merging
sequence is stored in a hierarchical structure, namely the BPT, that models the
image at different scales. This is illustrated in the right part of Figure
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Figure 1: Illustration of the construction of a BPT from one image. Left (input): (1) a
graph 6, = (£, Az) models the initial partition of the image; (2) a valuation function W :
(29)2x V? — R allows us to iteratively choose the pair of nodes to be merged (see Section.
Right: progressive, bottom-up, creation of the tree from ¥, to T by iterative fusions of two
neighbouring regions.

A huge number of distinct BPT's may be obtained for a given initial partition
of Q. In order to determine a relevant BPT, it is then necessary to decide of
the priority of the fusions between nodes. Let N;,N; € P be two distinct
and adjacent regions / nodes. A BPT generation relies on two main notions:
a region model M,(N;) which specifies how a region N; is characterized (e.g.
colour, shape); and a merging criterion O,(N;, N;) which defines the similarity
of neighbouring regions N;, N; and thus the merging order.

A strategy commonly adopted for representing each region is to consider
their average colour in a given space (e.g. RGB, HSV), and to merge pairs of
adjacent regions either similar one to each other, or similar to the region model
of the novel region built from their union. Another strategy [37] considers as
region model a linear combination of radiometric and geometric features, with a
merging criterion where the trade-off between these features evolves during the
construction of the BPT. In any case, the merging criterion is a scalar function,
which requires fusing various elements of expert knowledge in a single metric.

3.8. Structural Description: A Graph-based Point of View

In this section, we now revisit the BPT construction process. In particular,
we focus on its algorithmic core, that essentially consists of a graph collapsing
approach. We then rewrite the BPT construction process in a graph-based
formalism, thus emphasizing the involved data structures mandatory to carry
out the collapsing process, modeled by the output tree.

3.3.1. Graph and valuation function

The way to describe the construction of a BPT is generally considered from
spatial (the way regions are built) and descriptive (the way regions are char-
acterized and how they can be considered similar) points of view. Indeed, the
classical description of the BPT construction considers as input: the image [
(i.e. the geometrical embedding of 2, and the value associated to each point
of Q); a region model, that “describes” the nodes; and a merging criterion,
that quantifies the homogeneousness of nodes before and after fusion. These
information are important from the point of view of a considered application.
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Figure 2: One step of the BPT construction from one image. From the left to the right: First:
the partition of 2 before and after the fusion of two nodes. Second: the associated graph &,
before and after the fusion of N3 and N4, forming the new node Ng. The red edge is removed.
The blue and orange edges are updated, e.g. (N1, N3) becomes (N1, Ng). The orange edges
are merged by pairs, e.g. (N7, N3) and (N7, N4) become (N7, Ng). The green edges are not
affected. Third: the sorted list that gathers the scalar valuations of each remaining edge of &.
The red cells are removed, as the edge (N3, N4) is suppressed (this edge had been chosen due
to its highest position in the list). The scores of blue and orange cells are updated with respect
to Ng. The orange cells are merged by pairs. The positions of the blue and orange cells are
updated with respect to their new scores. The scores of the green cells are not affected. Last:
a new part of the BPT ¥ is created by adding the new node Ng, and linking it to its two
children nodes N3 and N4.

However, beneath these image and knowledge-based notions, the construc-
tion of a BPT is intrinsically a graph collapsing process. From an algorithmic
point of view, the region models and merging criteria define a valuation on the
edges that allows us to choose which nodes to fuse at any given step. In the
sequel, we will then consider, without loss of generality, that a BPT is fully
defined by only two input information (see left part of Figure|1)):

1. a graph &, = (£, Az) that models the initial partition of the image;
2. a valuation function W : (2)2 x V¢ — R for choosing the pair of nodes
to be merged.

3.8.2. Structural description of the algorithm

We now consider an initial partition £ of 2. Each node L C Q of L is
assumed to be connected with respect to Aqn. This partition £ defines the set
of the BPT leaves we are going to build. For instance, £ can be the set of the
image flat zones. It is equipped by the adjacency A, inherited from Ag. This
leads to a graph &, = (£, Az) modeling the structure of the partition of I.

The BPT is the data structure that describes the progressive collapse of
&, onto the trivial graph (Q,0). This process consists of defining a sequence
(&; = (N, An,)) (with n = |£]—1) as follows. First, we set &y = &,. Then,
for each ¢ from 1 to n, we choose the two nodes N;_; and N’;_; of &;_; linked
by the edge (N;_1,N’;_1) € Anr,_, that minimizes the valuation function W.
We define &; such that AV; = N1 \ {N;—1,N';_1} U{N;_1 UN’;_1}; in other
words, we replace these two nodes by their union. The adjacency Ay, is defined



accordingly from Au,_,. We remove the edge (N;_1, N’;_1), and we replace each
edge (N;—1,N"”;_1) and / or (N';_1,N”;_1) by an edge (N;_1 UN’;_1, N";_1).
In particular, two former edges may be fused into a single one.

From a structural side, the BPT ¥ is the Hasse diagram of the partially
ordered set (|J!_,AN;,C). From an algorithmic side, ¥ is built in parallel to
the progressive collapse from &g to &,,. In particular, ¥ stores the node fusion
history. More precisely, we define a sequence (%;)7, as follows. We set Ty =
(No,0®) = (£,0). Then, for each i from 1 to n, we build T; from T;_; by
adding the new node N;_; UN’;_1, and the two edges (N;—1 UN’;_1, N;_1) and
(Ni—1 UN';_1,N’;_1). The BPT ¥ is then defined as ¥,,.

Remark. In [46], a graph-based definition of BPT construction is also proposed,
that relies on a minimum spanning tree paradigm. However, this formalization
is valid only if the merging order is associated to a valuation of the edges that
is fixed a priori on the initial partition. This is not the case, in general.

3.3.3. Data structures
The above description of the BPT construction algorithm implies to define
and update the following data structures:

e the graph & which stores nodes that remain to be merged, and their
adjacency links; and

e the tree T that is progressively built.

In order to efficiently compute the valuation W, it is also important to associate
each node of & to the corresponding part of the image I, e.g. via a mapping
between & and €.

The last required data structure is a sorted list W that gathers the scalar
valuations of each remaining edge of &. This list contains the information for
choosing the couple of nodes to be merged relatively to a given metric. One
iteration of this algorithm is illustrated in Figure 2]

This choice is made in constant time O(1), since W is sorted. After the
merging operation, W has to be updated: (1) to remove the edge between the
two nodes; (2) to update the edges affected by the merging operation; and
(3) to re-order these updated edges. Operation (1) is carried out in constant
time O(1). Operation (2) is carried out in O(a.Tyw ), where Ty is the cost of
the computation of W for an edge, and « is the number of neighbours of the
merged nodes (« is generally bounded by a low constant value). Operation (3)
is carried out in O(a.log, [WV)).

4. Multi-feature Generalization of the BPT Construction

In this section, we now describe our multi-feature generalization of the BPT
construction algorithm. We propose a description of the algorithm and associ-
ated data structures in the same graph-based formalism used in the previous
section for describing the standard BPT construction. In particular, we still
consider that this construction —viewed as a graph collapsing problem— takes
as input the graph &, = (£, Az). However, we now have to use several val-
uation functions W, : (29)? x V¥ — R. We then discuss the structural and



algorithmic side effects of using several such valuation functions “at the same
time”, instead of only one.

Our purpose is still to build one BPT from these input information. In-
troducing several valuation functions allows us to embed several features in a
more independent way in the construction process. These features can represent
several metrics associated to a same image; a same metric associated to several
images of a same scene; or various metrics on various images of a same scene.

4.1. Structural Evolutions

4.1.1. What does not change. ..

The proposed generalization deals with the “feature” part of the construc-
tion. As stated in Section [3.3.1] we need a graph that models the initial par-
tition £ of the image(s). Our purpose remains to collapse this unique graph
associated to a unique spatial scene. Practically, it implies that the (potentially
multiple) images involved in the BPT construction are defined in the same spa-
tial reference, i.e. the same support 2. This spatial coherence assumption is
generally a standard requirement in image processing (e.g. in medical imaging,
via registration; in remote sensing via georeferencing; etc.). A graph & ., which
is isomorphic to (£2, Ag), can be obtained easily, either by subdividing € into
one-point singleton sets or by considering flat zones or superpixels.

Then, the “graph” part of the BPT construction process remains unchanged.
In terms of data structures, the generalized BPT construction will still handle
one graph &, that will be progressively collapsed; and one tree ¥ that will be
built to provide the BPT. A unique mapping between N and Q will still allow
us to access to the values of a node for the different images.

4.1.2. ...and what does

Let us now consider the “feature” part of the data structure. In the initial
BPT construction approach, the valuation function W : (2%)2 x V¥ — R was
explicitly modeled by a sorted list WW of the values of all graph edges. This list
was updated during the progressive collapsing of &, by removing elements from
the list; updating the values of some edges; and re-sorting edges with respect to
their updated values.

We now consider n > 1 valuation functions W, : (29)2 x V& — R, which
means that each edge is associated to n values, one for each function. By
considering k distinct images and [ distinct metrics, we may have up ton = k.l
such valuation functions. This leads to define no longer one, but n sorted lists
W; (1 < i < n). Each list W; is associated with a specific valuation function
W; @ (292 x VJQ — R, defined with respect to a value set V; (see Figure .
The handling of these sorted lists remains the same in terms of removal, value
updating / resorting, as for one list.

4.2. Algorithmic Evolutions

Our purpose is now to build a BPT from these n lists by generalizing the
algorithm described in Section [3.2] which initially depended on a unique list W.

From an algorithmic point of view, each iteration of the construction pre-
serves the same organization. An edge is chosen and the two incident nodes of
the graph are merged. This operation updates the nodes and edges of &, and
adds a new node plus two edges in ¥. The main differences are now that:
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carried by these n lists (see Section [4.2)).

1. n > 1 sorted lists are updated; and
2. the choice of the optimal edge is made with respect to the information
carried by these n sorted lists instead of only one.

At each iteration of the algorithm (see Figure , the choice of the optimal
edge to remove, leading to the node fusion, depends on a decision. This decision
is a consensus, made with respect to the information provided by these n lists.
On the one hand, information are carried by the lists W;, that give relative in-
formation on edges, induced by their ordering with respect to W;. On the other
hand, information are carried by the valuation functions W; : (2%)% x V]Q —+ R
that give an absolute value to each edge. These information are of distinct na-
tures. We study their relevance according to various kinds of consensus policies.
In particular, we identify three families of consensus strategies.

4.2.1. Absolute information consensus

Let us consider, for instance, that the consensus policy consists of choos-
ing the edge of lowest mean valuation among the n lists W;, or the edge
of minimal valuation among all lists. The first consensus (namely min of
mean) is defined by a linear formulation: arg y n/)ea min Y ity Wi((N, N')).
The second (namely min of min) is defined by a non-linear formulation:
arg(y, nyen minmini, W;i((N, N)). However, in both cases, the decision is
made by considering absolute information carried by the edges. More generally,
when the information carried by the values of each edge is a sufficient knowl-
edge, n sorted lists W, are not necessary. In such a case, a single sorted list
W that contains the information of these, linear or non-linear, formulations is
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W[ Wg (Wk
(Ns.Ny) = 02| [(Ns,Ng) = 0.1 (N3, NJ) = 0.2
(Ns,Ng) = 0.5 |(N1,Ng) = 0.2 (Ns,N4) = 0.3
(N1, Ng) = 0.6 (N3,N4) = 0.3 (N1,N3) =04
(N7,N3) = 0.8 (N7,N3) =0.7 - - - |(Ny,Ng) = 0.5
(N1,N3) =09 |(Ns5,N7) = 0.8 (N7,Ny) = 0.8
(N7,N4) = 2.3 (N6, N3) = 2.5 (N2, Ns5) =22

W, W, Wy
®) (Ns,Ng) =03 |(Ns5,Ng) = 0.1 Ng, Ng) = 0.2
@v (N1, Ng) = 0.6 (Ny,Ng) = 0.2 (N1, Ng) = 0.5
’g‘ (Ni,Ng) = 0.8 |[(N5,Np) = 0.8] . . . (N, Ng) = 0.8
@‘@'@ (Ns,N.)= 09| (N7, Ng) = 0.9 (N7, Ng) = 0.9
(N7,Ng) =2.2)  (No,Ng) =2.3 (N2, Ns5) =2.2

BRemoved edge  [EMerged edges [ Updated edges M Non affected edges

Figure 4: One step of a BPT construction involving n lists W;. Left: the partition of Q before
and after the fusion of two nodes. Center: the associated graph &, before and after the fusion
of N3 and N4, forming the new node Ng. The red edge is removed. The blue and orange
edges are updated, e.g. (N1, N3) becomes (N1, Ng). The orange edges are merged by pairs,
e.g. (N7,N3) and (N7, N4) become (N7, Ng). The green edges are not affected. Right: the
n lists W;, each corresponding to a valuation function W;. The red cells are removed, as the
edge (N3, N4) is suppressed (this edge had been chosen due to its “optimal” position and / or
valuation in the n lists). The scores of blue and orange cells are updated with respect to Ng.
The orange cells are merged by pairs. The positions of the blue and orange cells are updated
with respect to their new scores. The scores of the green cells are not affected.

indeed sufficient. The BPT construction involving n lists is then equivalent to
that from one list.

The main difficulty raised by this policy derives from the potential hetero-
geneity of the values carried by the different W, valuation functions. Indeed,
when the features are not of same nature, their values should be normalized and
/ or weighted to allow for the definition of adequate fusion / comparison oper-
ators. This issue is mainly the same that occurs in most optimization schemes
where a given metric is built from several terms of varying semantics. Although
this remains tractable, at the cost of a certain expertise, it argues in favour of
considering the next proposed policies as relevant alternatives.

4.2.2. Relative local information consensus

Let us now consider, for instance, that the consensus policy consists of choos-
ing the edge that is the most often in first position in the n sorted lists W;, or the
most frequently present in the r < |W;| first positions in the n lists W;. These
consensus (namely, majority vote and most frequent, potentially weighted) poli-
cies do not act on the absolute valuations of the edges, but on their relative
positions in the lists. Another strategy can also consist of choosing the edge
with the lowest mean of ranks, according to the position of the edges within
the lists. In such cases, it is then mandatory to maintain n sorted lists, but the
decision process does not require to access the whole lists. It can be restricted
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to the first (or the first r) element(s) of each, leading to a local decision process.

4.2.8. Relative global information consensus

Let us finally consider that the consensus policy consists of choosing the edge
that has the best global ranking among the n sorted lists W;. As previously,
such consensus (e.g. best average or best median ranking) policy, also acts on the
relative positions of the edges in the lists, and does not consider the absolute
values of the edges. However, in contrast with the above case, the decision
process requires to explicitly access the whole content of all these lists, leading
to a global decision process of higher computational cost.

5. Technical Discussion

In this section, we finally propose a technical description of the MBPT con-
struction algorithm. This description is associated to a Java library implement-
ing this algorithm and that we distribute onlindﬂ

5.1. Details of the proposed algorithm

To build a MBPT, the main structure of the classical BPT construction
remains unchanged. Indeed, the MBPT is still built from its leaves to its root,
by choosing and merging adjacent regions that minimize a merging criterion.
However, instead of dealing with a classical merging criterion on one image
and one metric, we may now consider many images, different metrics, and a
consensus strategy as input parameters. The core of the algorithm is divided as
follows:

1. preparation of the lists WW; based on each image and metric couple;
2. preparation of the graph & modeled as a Region Adjacency Graph (RAG);
3. creation of the MBPT ¥ by merging pairs of nodes.

The general structure of the proposed algorithm is presented in Algorithm

5.1.1. Preparation of the lists W; and the RAG

As already mentioned in Section by considering k distinct images and
[ distinct metrics, we may have up to n = k.l valuation functions. This leads
us to prepare no longer one, but n sorted lists W;. Each list W; contains all
the edges of the graph & and is maintained ordered during the whole process.
An object representing the metric is instantiated by the algorithm and linked
to each list W;. At this stage, these n lists are still empty.

When all the lists W; are prepared and linked to the right couple of image
and metric, a graph & (implemented as a RAG) has to be built. The initial
nodes of the graph are created from the pixels or from an initial partition of the
image support. They constitute the leaves of the MBPT. Once these leaves are
prepared, the edges of the graph are created and their values are computed by
invoking particular methods of the corresponding metric. These edges represent
the adjacencies between neighbouring regions of the image. For each edge, n
computed metric values are associated. In parallel, we use these metric values
to fill the n lists W; that will be further maintained sorted.

2https://bitbucket.org/agat-team/agat-v0.3
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Algorithm 1: MBPT construction

Data: Image I[ |; Metric W[ |; Consensus strategy Consensus;
Result: A Multi-feature Binary Partition Tree M BPT}

/* Variables */
1 Region Adjacency Graph &; // the RAG
2 List W[ [; // the list of lists W
3 Image preSeg; // initial partition of the image
/* Initialization */
a prepareLists(I, W); // associates metrics, images & adjacency lists
5 prepareRAG(W, preSeg); // builds initial leaves & adjacencies
6 fillLists(W, &); // £ills the lists with the initial adjacencies
/* Node fusion */

7 while &.tabAdja is not empty do

8 Adjacency chosenAdja = Consensus.apply(W);

9 Node nl = chosenAdja.regionl;

10 Node n2 = chosenAdja.region2;

11 Node newNode = fusionOf(nl, n2);

12 &.tabNode.add(newNode);

13 &.tabAdja.update(); // adds, removes and updates values
/* Updates the content of the lists */

14 for i = 0;i < W.size();i++ do

15 | WIlil.update(); // adds, removes and updates values

16 M BPT.tabNode = &.tabN ode;
17 return M BPT

5.1.2. Creation of the multi-feature BPT by merging nodes

Once the lists W; and the graph & are ready, an iterative fusion of the
nodes is operated to build the MBPT. This iterative process stops when the
lists W; are empty. The root of the tree is then reached. Each iteration is
mainly composed of:

1. the choice of the next two adjacent nodes of & to be merged, based on the
consensus strategy;

2. the handling of the n lists W; by removing, in each list, the adjacency
linking the two chosen nodes, and updating the values of all adjacencies
that link them to their neighbours;

3. the resorting of the lists.

5.2. Complexity Analysis

In the multi-feature paradigm, choosing the edge to remove is no longer a
constant time operation. Indeed, it depends on the way information are used
and compared. Afterwards, operations (1-3) described in the standard BPT
construction algorithm, for the sorted list maintenance, have to be duplicated
for each list. These operations are then carried out in O(n), O(n.a.Tyw,) and
O(n.a.logy W), respectively, where Ty, is the cost for computing W; for a
given edge, while « is an upper bound for the nodes degree within the graph &.

This analysis can be refined with respect to the policies considered for choos-
ing an edge, and the information carried by the valuation functions W; and /
or the sorted lists W;. Besides, the choice of a consensus strategy is strongly
application-dependent. It is then important to consider a trade-off between the
structural and computational cost of the approach versus the benefits in terms
of results accuracy. These costs are summarized in Table
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Edge Edge Edge Edge

# W, | choice removal | update | sorting
Stand. BPT [4] 1 o(1) o(1) o(1) O(log, W)
Absolute inf. 1 o(1) o(1) o(1) O(log, (W)
Relative local inf. n O(n) O(n) O(n) O(n.logy |Wil)
Relative global inf. | n O(n.Wk|) | O(n) O(n) O(n.log, |Wi])

Table 1: Cost of the BPT construction for various families of consensus. For readability
purpose, o and Ty, , practically bounded by low constant values, have been omitted.

This table provides the cost of an elementary step of the BPT construction.
The number of these steps is equal to the size of the initial graph &, namely |L|.
More precisely, it is equal to the number of vertices in this initial graph (minus
one). Indeed, each step merges two of these vertices, until obtaining a graph
formed by exactly one node. At each step, at least one edge is removed from
the graph. The number of remaining edges is then equal to the size of the list(s)
|[W;|. We can assume that the number of edges is bounded by the number of
vertices of the graph, up to a multiplicative constant «, generally low for images
defined on discrete grids. Based on these assumptions, an upper bound for the

overall computational cost of the standard BPT construction [4] is Zﬁll (O(1)+

O(log, W) = 355, O(1) + Y21E) Oflogy (i) = O(1L]) + Ology(IL]) =
O(|L]log,y |L]), and so is the cost for the first consensus policy (Section |4.2.1)).
Following the same kind of calculation, the cost for the second consensus policy

(Section[4.2.2) is O(n.|L|log, |£]). That of the third (Section[4.2.3) is O(n.|L[?).

6. Experimental studies

6.1. Experimental protocol — Motivation and choices

Multi-feature BPTs do not define, by themselves, a segmentation method.
Indeed, MBPTs —such as BPTs— are data structures, that provide a reduced
space of partitions of the image support, hierarchically organized with respect
to the (partial order) refinement relation. Such (M)BPTs can then further be
involved in segmentation methods (but also in other tasks: detection, image
simplification, classification, etc.).

Based on these considerations, our purpose is not to prove that MBPTs lead
to better results for segmentation tasks compared to other segmentation meth-
ods. Indeed, this would require to involve subsequent segmentation processes
on MBPTSs, whose own quality evaluation could not be easily deconvoluted from
that of the very data structure. By contrast, our purpose is to focus on the qual-
ity of the data structure itself. This is why we choose to compare the MBPTs
with the standard notion of BPT (built from one feature) and with BPTs built
from one feature obtained as the linear combination of many.

Other tree-based data structures exist for image modeling, for instance
component-trees [16], trees of shapes [I7] and hierarchical watersheds [19]. How-
ever, these trees are not built from features, and they require information pro-
vided beforehand. Indeed, component-trees and trees of shapes require the
definition of a total order on the image values, whereas hierarchical watersheds
require the definition of a saliency measure (namely, a gradient) on the im-
age. By contrast, the (M)BPTs rely on relative information between nodes,
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that evolve while the organization and geometry of the nodes changes from the
leaves up to the root. For these reasons, related to the different nature of the
involved information, a direct comparison between (M)BPTs and such other
tree structures would not provide relevant clues with respect to the advantages
of a multi-feature paradigm in BPTs.

In the sequel, we then compare MBPTs with various kinds of BPTs. As
stated above, this cannot be done by simply observing segmentation results,
but by observing more generally the ability of (M)BPTs to potentially lead to
good segmentations. Then, we need a specific validation framework dedicated
to the evaluation of hierarchical image representations such as trees. Such a
framework, recently proposed in [47], is described in Section it is used for
our experiments.

Since the BPTs have been mainly involved in remote sensing image process-
ing and analysis over the past 20 years, we choose to consider two case studies
within this application field. In Section [6.3] we show how a MBPT can be built
from a single satellite image, by considering simultaneously various metrics. In
Section [6.4] we show how a MBPT can be built from multiple satellite images
sensed over the same area.

6.2. BPT quality evaluation

Many works have been dedicated to improve the construction of BPTs. How-
ever, only few works were dedicated to quantitatively evaluate the “quality” of
these trees, (i.e. their ability to allow for a satisfactory segmentation), and then
to determine if they were “correctly” constructed. In the case of supervised
evaluation, the segmentation results are generally compared to a ground-truth
(GT) map with standard quality indices based on spatial overlapping informa-
tion. In the case of BPTs, such frameworks can not be easily considered, since
several segmentations can be obtained from one single BPT.

We designed in [47] a supervised framework for BPT quality evaluation. Our
approach is not to match an ideal partition of the image. We aim to evaluate the
ability of a BPT to construct nodes that match at best with a subset of expert-
defined segments. Then, we assume that a GT map, composed of reference
segments S; C Q (i € [1,k]), is provided by an expert. Such GT segments can
be labelled, allowing us to embed semantic criteria in the framework. We recall
the three main points of this framework for BPT quality evaluation (see [47] for
more details).

6.2.1. Node / segment matching metrics
First, we choose a local metric to evaluate the matching degree between a

GT segment S and a node N of the BPT. We define a local score A(N, S) € RT,

where A is a metric evolving monotonically with respect to this similarity. The

most common quality indices are based on a combination of the true positives

(T'P), false positives (F'P) and false negatives (F'N) computed between N and

S. Examples of A functions, considered in this work, are the Jaccard index J'

[48]:

NS TP

"~ [NuUS| TP+ FP+FN

J'(N,S) (1)
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and the Dice coefficient D [49):

2INNS| 2.TP

D(N, S) = —
(N, 5) IN|+|S|  2.TP+ FP+FN

(2)

In particular, these two classical quality functions were chosen as they are quite
often considered for remote sensing image analysis evaluation, which is coherent
with the context of the following two case studies.

6.2.2. Finding matching nodes in the BPT

Then, we determine the nodes within the BPT that maximize matching with
the GT segments. Given k GT segments S; (i € [1,k]), and a BPT T composed
of n nodes N; (5 € [1,n] with n = 2.|£| — 1), we aim to solve k times the
optimization problem: N! = arg max;eq,n] AN, S;). A brute-force approach
would be to browse, for each GT segment S;, the whole BPT in a bottom-up
way. This would involve useless comparisons. To reduce this cost, we consider
two strategies.

We use a spatial constraint to “vertically” restrict the search space within
the BPT. In particular, for finding an optimal node N, it is sufficient, for a given
GT segment S, to restrict the study to the BPT branches whose ending leaves
intersect S. We also use a quantitative heuristic to “horizontally” restrict the
BPT browsing. Indeed, to correctly match a GT segment S, a node N has to be
of comparable size. Practically, it is relevant to restrict the actual computation
of the A values to nodes N with size within a confidence interval [, k7] C N,
with k= < |S] < k™.

At this stage, the scores A are computed. The score A(N,,S) of the best
node is then set as the quality score A\(S) of ¥, for each GT segment S.

6.2.3. Global quality score
Finally, we define a global quality measure that merges the local scores for
the different GT segments. We define a weighted formulation of such global

quality score I" as
D=> w Y wiA(S;) (3)
el S;eC,

with 0,0 we = 1, ZSieCe w; = 1, and wy > 0, where L is the label set and
Cy are the different semantic classes of GT segments. The weights wy can be
used to assess the relative importance of each semantic class Cy. In particular,
wy = 1/|L] if each class has the same importance. The weights w; can be used to
discriminate the importance of each GT segment, i.e. the necessity to correctly
segment it.

6.3. Case study 1: Multi-criteria segmentation

The analysis of very high spatial resolution (VHSR) remote sensing images
is a challenging task. In this context, the segmentation of satellite images using
classical mono-metric BPTs has been widely investigated [36], B7, B8], 40l [41].
This motivates the following experimentation on multi-criteria segmentation
procedures on such images.
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Figure 5: (a—b) Two VHSR satellite images (2000 x 2000 pixels) at a spatial resolution
of 60 cm sensed by the PLEIADES satellite and covering different geographical areas. (c—d)
Segmentation results from standard BPTs computed from (a) and (b), respectively (23500
and 5000 regions, respectively). (e—f) Segmentation results from MBPTs computed from
(a) and (b), respectively (23500 and 5000 regions, respectively), using 4 features: Weoiour,
Welon97 Wndvia Wndwi-

6.3.1. Data

The dataset used in this study (courtesy LIVE, UMR CNRS 7263) was
sensed over the town of Strasbourg (France) by the PLEIADES satellite, in 2012.
The first sample is a VHSR image (2000 x 2000 pixels) representing a com-
plex high-density urban area (Figure[5|(a)) composed of different urban objects
(e.g. individual houses, industrial buildings, parking lots, roads, shadows, wa-
ter canals). The second sample is a VHSR image (2000 x 2000 pixels) that
represents a typical low-density urban area (Figure b)) composed of different
geographical objects (e.g. crop fields, forests, bare soils, rivers). Both are mul-
tispectral images at a spatial resolution of 60 cm with 4 spectral bands (R, G,
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Figure 6: Partial ground-truth map representing urban objects of the VHSR image of Fig-
ure a). This map contains 228 segments delivered by a crowd-sourcing campaign in the
context of the COCLICO research project. L = 5 different semantic classes are available:
built area, forest area, herbaceous area, roads, water.

B, NIR).

Ground-truth maps of different urban objects represented in the scene are
also available. These maps were derived from a public crowd-sourcing campaign
in the context of the COCLICO research projecﬂ We only retained the ref-
erence segments that led to the highest consensus between the crowders. The
segments are labelled with L = 5 different semantic classes: built area, forest
area, herbaceous area, roads, water. Figure [f] presents the partial GT map of

the first image (Figure [5(a)).

6.3.2. Experiments

To reduce the patial complexity, all (M)BPTs are built from an initial par-
tition £ composed of 200000 regions obtained from a cut on a standard BPT,
thus providing superpixels composed each of 5 pixels, in average.

We consider five valuation functions W,. Each models either radiometric or
geometrical information related to region dissimilarities.

The first valuation function W,y is defined as the increase of the range
of the pixel intensity values for each radiometric band, induced by the pu-
tative fusion of incident regions. Let N;, N; € P be two adjacent regions /
nodes. A multispectral image Z : Q — V associates, to each point z € Q, a
s-uple of spectral intensities Z(x) = [[;_; Zp(x). Then, Weoiou, is computed as
L5 max{v; (N;), v (N;)} — min{u, (N;), v, (N;)}, where vf provides the
extremal values for the b-th spectral band in Z (i.e. in Z;).

The second valuation function W,4,; quantifies the difference of NDVI
between two adjacent regions. The NDVI (Normalized Difference Vegeta-
tion Index) is a standard indicator for the presence of green vegetation. For
each point z, it is computed from the R and NIR channels as the ratio
(Inrr(x) —Ir(x))/(In1r(z) + Ir(z)). Practically, the W, q,; valuation is com-
puted for two nodes IV;, N; as the absolute difference between the mean NDVI
scores associated to these two regions.

The third valuation function W, 4,; quantifies the difference of NDWI be-
tween two adjacent regions. The NDWI (Normalized Difference Water Index)

Shttp://icube-coclico.unistra.fr/index.php/Coclico
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Table 2:  Scores of various (M)BPTs for built areas (see Section . BPT-1: Weoiour-
BPT-2: Weomp. BPT-3: Wygyi. BPT-4: linear combination of Weoiour, Weomp. BPT-
5: linear combination of Weoiour, Wndvi- MBPT-1: {Weoiour, Weomp } With most-frequent.
MBPT-2: {Weoiours Whdvi} With most-frequent.

[ Tndex [ BPT-1 | BPT-2 | BPT-3 | BPT-4 | BPT-5 | MBPT-1 | MBPT-2 |
Dice (D) 0.561 | 0.432 | 0.393 [ 0.466 | 0.376 | 0.548 0.547
Jaccard (J)) | 0.417 | 0.283 | 0.276 | 0.313 | 0.266 | 0.403 0.409

Table 3:

Scores of various (M)BPTs for forest areas (see Section [6.3.3). BPT-1: W gi0ur-

BPT-2: W,,4y;. BPT-3: linear combination of Weoiour, Whdvi- MBPT-1: {Weoiour, Whdvi }
with mean-of-rank. MBPT-2: {W_oi0ur, Wndvi} With most-frequent.

[ Tndex [BPT-1 | BPT-2 | BPT-3 | MBPT-1 | MBPT-2 |
Dice (D) 0.612 0.684 0.679 0.685 0.715
Jaccard (J') 0.464 0.553 0.541 0.548 0.573
Table 4: Scores of various (M)BPTs for roads (see Section [6.3.3). BPT-1:
Weotour- BPT-2: Weomp. BPT-3: linear combination of Weoiour, Weomp. MBPT-1:

Weolours Weomp} with mean-of-rank.  MBPT-2: {Weoiours Weomp} with most-frequent.
MBPT-3: {Weoiours Weiong, Wndvi} With most-frequent.

[ Tndex [ BPT-1 | BPT-2 | BPT-3 | MBPT-1 | MBPT-2 | MBPT-3 |
Dice (D) 0.633 | 0.443 [ 0.466 | 0.509 | 0.697 | 0.515
Jaccard (J7) | 0.490 | 0.295 | 0310 | 0.352 | 0.564 | 0.357

is a standard indicator for the presence of water. It is computed similarly to
Wndvi, by substituting the G channel to the R channel.

The fourth valuation function Wejepg is defined as the change of geometrical
elongation, potentially induced by the fusion of two regions. The geometrical
elongation of a node N, noted elong(N), is approximated as the ratio of the

height and width of its bounding box. The Weong valuation function is then
_elong(N;)+elong(N;) |
5 .

computed for two adjacent nodes N;, N; as |elong(N;UN;)

The fifth valuation function W, is defined as the change of the geometrical
compactness values, potentially induced by the fusion of two incident regions.
The geometrical compactness of a node N, noted comp(N), is approximated as
the ratio of its border length and the root square of its size. The Wy, valuation
function is computed similarly to Weiong by substituting comp to elong.

As a baseline, standard BPTs are built for each of the two satellite images
of Figure arb)7 by using individually the 5 considered valuation functions.
Some standard BPTs are also built in a mono-feature way, by considering linear
combinations of several valuation functions.

For MBPTSs, we consider the relative local information consensus policies
mean-of-ranks and most-frequent, according to the position of the edges within
the lists W, (applied to the first 20% of their contents). To evaluate the impact
of the different valuation functions on the segmentation results, the MBPTs are
then built by considering various combinations of valuation functions.

6.3.3. Quantitative analysis

For quantitative analysis, we use the evaluation framework presented in Sec-
tion Our purpose is to assess the adequacy of the BPTs and MBPTs
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Table 5: Scores of various (M)BPTs for water zones (see Section [6.3.3). BPT-1: Wegiour-
BPT-2: W, 4wi. BPT-3: linear combination of Weoiour, Wiadawi- MBPT-1: {Weoiour, Whdwi }
with most-frequent. MBPT-2: {Weoiours Weiong, Wndvi} With most-frequent.

[Tndex [ BPT-1 | BPT-2 | BPT-3 [ MBPT-1 | MBPT-2 |
Dice (D) 0.803 | 0.845 | 0.906 | 0.906 | 0.940
Jaccard (J)) | 0.671 | 0.732 | 0.829 | 0.828 | 0.887

Table 6: Scores of various (M)BPTs for the five thematic classes (see Section .
BPT-1: Weoiour- BPT-2: Wigypie BPT-4: Wigws. BPT-6: Weomp. BPT-5: lin-
ear combination of Weoiour, Wndwi- MBPT-1: {Weoiour, Wndvi} With most-frequent.
MBPT-2: {WcolouraWndwi} with mOSt'fTequent' MBPT-3: {chlourvwndvi’wndwi}
with most-frequent. MBPT-4:  {Weotours Whnawi} with most-frequent. MBPT-5:
{Wcolou'm Welong’ Wndvi} with mOSt'fTequent

[ Index [ BPT-1 | BPT-2 | BPT-4 | BPT-6 | BPT-5 | MBPT-1 | MBPT-2 | MBPT-3 |
Dice (D) 0.630 | 0559 | 0.580 | 0.446 | 0.568 | 0.658 | 0.656 0.656
Jaccard (J)) | 0.489 | 0439 | 0.445 | 0.203 | 0.453 | 0.529 | 0.525 0.526

relatively to the reference segments of the GT maps. Our framework is param-
eterized as follows.

To compare nodes and GT segments, we use the Jaccard index J’ and the
Dice coeflicient D (see Equations ) As quantitative heuristics for reducing
the search space (horizontal selection), we only evaluate (M)BPT nodes whose
size lies within [0.5.]S|,1.5.|S]] for a given GT segment S. The weights involved
in the computation of the global quality scores are set as wy = 1/|L| and w; =
|S:il/ Zsj cc, 151, for a GT segment S; belonging to the semantic class Cy.

In order to highlight the efficiency of BPTs (with one metric, or one linear
combination of metrics) vs. MBPTs, we first compute the scores obtained for
different semantic classes. In particular, Tables [3}5] provide scores for built area,
forest area, roads and water, respectively. For the sake of readability, only the
most representative —and most efficient— (M)BPTs are provided.

We can observe that for 2 of the 4 tested classes, the MBPTs improve both
Dice and Jaccard indices. In particular, for forest area and water, the results are
better than for BPTs. In the case of roads, one of the MBPTs provides better
results than BPTs, while other MBPTs provide worse results. This emphasises
the fact that MBPTs do not systematically provide better results than standard
BPTs, especially when a given metric is already well fitted to a given class. For
instance, in the fourth case, namely for built area, a standard BPT provides
better results than the MBPTs, whose scores remain however fairly close. The
scores obtained by BPTs and MBPTs when considering all the GT segments
finally provide index values that are slightly better for MBPTs, compared to
BPTs. This study tends to prove that well-chosen metrics, involved in the
construction of a MBPT can allow us to slightly improve the quality of the
built tree structures for segmentation purpose.

6.4. Case study 2: Multi-image segmentation

We now illustrate the interest of MBPTs for multi-image segmentation, still
in the context of satellite imaging.
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(c) Image 3 (09-08-2007). (d) Image 4 (09-15-2007).

Figure 7: Four satellite images (1000 x 1000 pixels) sensed by the FORMOSAT-2 satellite
covering the same geographical area (see Section [6.4.1)). Note that the Image 2 is partially
affected by the presence of clouds.

Figure 8: Ground-truth map representing partial crop fields of the studied area corresponding
to the 4 images of Figure Iﬂ This map contains 198 segments of reference delivered by the
European Environment Agency.

6.4.1. Data
The dataset used here is a time series of images (1000 x 1 000 pixels), sensed
over an area located near Toulouse (France). This area is a typical agricultural
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Table 7: Scores assessing the capacity of each (M)BPT to provide nodes similar to the 198
segments of reference of the ground-truth map of Figure [§] (see Section [6.4.3)).

[ Index [ BPT-1 [ BPT-2 | BPT-3 | BPT-4 | MBPT-1 | MBPT-2 |
Dice (D) 0.651 | 0.647 | 0.669 | 0.674 | 0.677 | 0.700
Jaccard (J') | 0499 | 0500 | 0.521 | 0.524 | 0.532 | 0.559

zone, composed of different types of crop fields and vegetations. Images were
acquired by the FORMOSAT-2 in 2007. They were ortho-rectified and have a
spatial resolution of 8 m, with 4 spectral bands (R, G, B, NIR)El

From this dataset, we selected 4 images (Figure @ They were all acquired in
late August and September. This choice allows us to reduce temporal evolution
effects, since we do not aim at carrying out time-based analysis. The purpose of
this experiment is to assess the ability of our MBPT framework to capture time-
independent and redundant information from the content of multiple images
representing a same scene.

A ground-truth map of different crop fields represented in the scene is also
available (Figure . This map is derived from a field survey produced by the
European Environment Agency (http://ec.europa.eu/agriculture). The
semantic classes associated to this reference map reflect the temporal behavior
of the considered crops over the 2007 cultural year. However, we only consider
the delineation of the 198 segments of reference in the image for the quantitative
evaluation of the quality of the produced BPTs.

0.4.2. Ezxperiments

To reduce the spatial complexity, all (M)BPTs are built from an initial
partition £ composed of 200000 regions obtained from a cut on a standard
BPT, thus providing superpixels composed each of 5 pixels, in average. This
partition was produced from Image 1 (Figure [7a)), which is not affected by
clouds.

As a baseline, a standard BPT is built for each satellite image presented in
Figure with the intensity value criterion Wegjour (denoted as W9 L pyime?

> ; colour? colour?
Wé:}fsr, Wé:}gfr depending on the image where this criterion is computed).
These BPTs are denoted as BPT-1, BPT-2, BPT-3 and BPT-4, respectively.
For multi-image BPTs, we consider the relative local information consensus
policy mean-of-ranks, according to the position of the edges within the lists. It is
applied to the first 15% of the lists W,. To evaluate the impact of the different
valuation functions on the segmentation results, two MBPTs are built. The
first, denoted as MPBT-1, considers information extracted from the contents

of the four satellite images. In other words, it is built from W9t =~ pyima?

colour? colour?

wimas yyimat - The second, denoted as MBPT-2, is built from only 3 of the

colour’ colour"
4 images, but 2 metrics (colour and NDVI). In other words, it is built from
Wimgl WimgQ WimgB Wimgl WimgQ WimgS

colour? colour’ colour? ndvi ndvi ndvi

4The authors thank the researchers from CESBIO for providing the geometrically and
radiometrically corrected FORMOSAT-2 images.
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h) BPT-3 (i) BPT-4  (j) MBPT-1 (k) MBPT-2

—~ 14

(f) BPT-1  (g) BPT-2

=

(1) BPT-1/GT (m) Bf;T— (n) BPT- (o) BPT- (p) MPBPT- (q) MPBPT-

2/GT 3/GT 4/GT 1/GT 2/GT
Figure 9: Segmentation results from standard (i.e., mono-image) BPTs and multi-

image/metric MBPTs. (a-d) Crop 1, from Figure [} (e) Crop 1, from the ground-truth
map of Figure (f-1) Segmentation results from the standard BPTs (BPT-1 to BPT-4),
on Images 1 to 4. (j) Segmentation result from MBPT-1 with 4-images/1-metric on Images
1-4. (k) Segmentation results from MBPT-2 with 3-images/2-metrics on Images 1-3. (1-0)
Best-matching nodes of the BPTs with respect to the ground-truth map segments. (p—q)
Best-matching nodes of the MBPT's with respect to the ground-truth map segments.

6.4.3. Quantitative analysis

For quantitative analysis, we use the evaluation framework presented in Sec-
tion [6.:2} Our purpose is to assess the adequacy of the BPTs and MBPTs with
respect to the reference segments of the ground-truth map. Our framework is
parameterized the same way as in Section [6.3]

Table [7] presents the different scores obtained for the different BPTs and
MBPTs. The best scores for both Dice and Jaccard indices are obtained by
MBPT-2, built from 3 images and 2 metrics (Weoiours Whdvi). The other MBPT,
built from 4 images, presents lower scores than MBPT-2, which remain however
slightly higher than those of standard BPT's for the 4 images.

This quantitative evaluation suggests that MBPTs are able to improve the
quality of segmentation results obtained from standard BPTs. The increase of
the index values is slight, but indeed sufficient to show that MBPTs constitute
a fair structure for gathering and merging information collected from various
images of a same scene.

6.4.4. Qualitative analysis

Beyond the quantitative assessment of the adequacy of (M)BPTs with
ground-truth segments, it is also relevant to provide qualitative illustration of
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(g) BPT-2  (h) BPT-3 - (j) MBPT-1 (k) MBPT-2

(1) BPT-1/GT (m) BPT- (n) BPT- (o) BPT- (p) MPBPT- (q) MPBPT-
2/GT 3/GT 4/GT 1/GT 2/GT
Figure 10: Segmentation results from standard (i.e., mono-image) BPTs and multi-

image/metric MBPTs. (a-d) Crop 2, from Figure [} (e) Crop 2, from the ground-truth
map of Figure (f-i) Segmentation results from the standard BPTs (BPT-1 to BPT-4),
on Images 1 to 4. (j) Segmentation result from MBPT-1 with 4-images/1-metric on Images
1-4. (k) Segmentation results from MBPT-2 with 3-images/2-metrics on Images 1-3. (l-o)
Best-matching nodes of the BPTs with respect to the ground-truth map segments. (p—q)
Best-matching nodes of the MBPT's with respect to the ground-truth map segments.

the potential of MBPTs versus standard BPTs. These qualitative analysis is
indeed complementary to the above analysis.

On the one hand, the different (M)BPTs are segmented by a user-defined
horizontal cut. We chose a simple segmentation paradigm, in order to avoid any
bias related to the segmentation process. Such tree-cut produces a partition
with a scale adapted, according to the user, to segment the geographical objects
covering the sensed areas (e.g. agricultural crop fields, wide forest areas, lake).

On the other hand, we illustrate the nodes of the (M)BPTs that provide the
best-matching with the segments of reference of the ground-truth map. These
nodes are indeed those involved in the computation of the Dice and Jaccard
indices, in the previous quantitative analysis.

For a better visualization, we focus on two image crops representing different
parts of the geographical scene. Crops 1 and 2 are illustrated in Figures El(afd)
and Figures aufd)7 respectively.

In Crop 1, we observe that, despite of variations due to time evolutions, the
global structure of the crop fields does not evolve much. Based on a visual inter-
pretation of these images, it appears that the majority of observed geographical
areas preserve the same crop field partition. However, each segmentation ob-
tained from the standard BPTs (BPT-1 to BPT-4) presents different partitions,
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see Figure @(ffi). The results obtained from the multi-image MBPT-1 and
MBPT-2, see Figure |§|(jfk)7 arise from a consensus between the results of the 4
standard BPT results.

A better observation of this phenomenon can be observed in Figure @(pf
q) which gathers consensual information between the relevant segments found
in the Figure @(170). The best-matching nodes obtained from our multi-
image/metric MBPTs are visually close to the segments of reference of the GT
map presented in the Figure [9|(e). Such nodes are not necessarily the same as in
the arbitrary cuts of Figure fk). However, they are likely to be obtained in a
segmentation result induced by a more sophisticated tree-cut process, compared
to the trivial user-defined horizontal cut.

The same behaviour can be observed in Crop 2, see Figure These quali-
tative results corroborate the previous quantitative analysis and emphasise the
relevance of MBPTs, which provide different behaviour than standard BPTs,
with slightly better results for relevant choices of images and metrics.

7. Conclusion

In this article, we proposed a generalization of the BPT construction frame-
work. While BPTs are classically built in a mono-feature way, we considered
here a multi-feature paradigm.

The induced algorithmic evolutions require the handling of more complex
data structures and consensual algorithms, compared to standard BPTs. In
order to tackle memory and time complexity issues, a short-term perspective
of this work will be to implement distributed heuristics relying on graph-based
distribution. Integrating higher-level consensus may also allow us to improve
the relevance of the hierarchies and the induced segmentation.

Beyond the application examples described in this article, other relevant
use-cases could be considered for the processing of different families of images.
As an example, it is possible to apply MBPT's to segment hyperspectral images,
by establishing a consensus between the complementary (and potentially corre-
lated) information carried by the different spectral bands. Multi-time imaging
can also be considered, by establishing a higher-level time consensus between
the different image acquisitions of the same scene.

Another methodological challenge is raised by the possible divergence be-
tween the different values gathered by the metrics/images, which may lead to
irrelevant consensual decisions. We plan to study how non-consensual informa-
tion could be used to follow local consensus between metrics/images leading to
hypertrees where the branches model local fusion decisions.
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