
https://hal.univ-reims.fr/hal-01658337v1
https://hal.archives-ouvertes.fr


USE Together, a WebRTC-based Solution for
Multi-User Presence Desktop

Laurent Lucas1, Herv�e Deleau2;1, Benjamin Battin3;1, and Julien Lehuraux3;1

1 University of Reims Champagne-Ardenne, CReSTIC, France,
laurent.lucas@univ-reims.fr

2 University of Reims Champagne-Ardenne, Image Center MaSCA, France,
3 OPEXMedia, France

Abstract. Ubiquitous is one of the essential features of what should
be the desktop of the future. In practice, this concept covers several
issues related to multi-users collaboration, remote applications control
or remote display and secure access over IP networks. With its stan-
dards and capabilities, WebRTC provides a new vision of real-time com-
munications services that can raise these challenges. In this paper we
present a WebRTC-based middleware solution for real-time multi-users
remote collaboration. It allows a full desktop setup where everyone can
see what other users are doing and where they position themselves in
the shared workspace. In contrast to standard WebRTC’s Peer-to-Peer
architecture, our system supports a synchronous communication model
through a star topology. It also improves network bandwidth e�ciency
by using hardware video compression when the GPU resource is avail-
able, though assuring a very low latency streaming. In this way, we can
maintain awareness and sense of presence without changing the usual
practices of the users in front of a desktop. Several use cases are pro-
vided and a comparison of advantages and drawbacks of this solution is
also presented to guide users in applying this technology under real-life
conditions.

Keywords: WebRTC, Remote Display, Multi-Users Collaborative En-
vironment

1 Introduction

The requirements related to teamwork and mobility especially in corporate en-
vironments as well as in science and academic environments are becoming in-
creasingly requested. This new way of working on spatially and temporally dis-
tributed systems has become a more commonplace practice especially with the
emergence of remote collaboration tools allowing a group of people to share their
resources or to create in a common e�ort. In this sense and for a growing range
of devices, the availability of these tools has to be ensured particularly in terms
of security and accessibility, for instance, from traditional computer as well as
from mobile devices like smartphones and/or tablets. Web technologies through
modern capabilities of browsers enable today the development of cross-platform



software systems as capable and powerful as desktop applications [1]. From this
point of view, the Web has opened a new way for the development of cloud
hosted Internet-based collaboration apps [2] and other means of interaction.
Online collaboration tools can be classi�ed in two categories: synchronous vs.
asynchronous communication tools. Unlike asynchronous communication, syn-
chronous communication involves an ongoing real time character and can take
place face-to-face irrespective of distance. Although this distinction tends to fade,
the feeling of presence has become crucial in all collaborative environments [3,4]
especially with the recent development of immersive collaborative solutions [5,6].
This observation has been partly achieved by the widespread use of both HPC
and graphics virtualization that has brought signi�cant changes to corporate
networks by delivering for instance an immersive, high-quality user experience
for everyone [7], from designers [8] to engineers [9] and other mobile profession-
als or simple o�ce workers. This technological innovation used widely in many
industrial sectors is one of the most disruptive of our time.
However, if current software solutions partially and speci�cally address { e.g. in
terms of online collaborative work, video conferencing, multi-users remote con-
trol or remote display { the issues raised by the \desktop of the future" [10],
it must be noted that i) there is no integrated environment today around all
of these elements and ii) data privacy is not always guaranteed which can be a
serious problem of sovereignty for all strategic institutions.
Whether they are research projects as well as commercial systems, there are
many collaborative online solutions used today in areas such as health [11],
collaborative visualization [3,4,8] and learning [12,13] with speci�c software de-
velopments related to whiteboarding collaboration [14,15,16] for instance.
Regarding commercial products, software market can be segmented into three
�elds: i) online collaborative solutions �rst such as those o�ered by Cisco with
Spark or Amazon with Chime, ii) multi-users remote control next with Screen-
hero and iii) remote visualization after all through solutions like Citrix HDX 3D
Pro, HP RGS or Nice DCV.
In this paper we present our solution called USE Together. This middleware is a
secure multi-user collaborative system allowing professionals to share their ap-
plications and data in real time, accessible from any device, over any network. It
enhances your communications in terms of i) user QoE by delivering HD in real
time with low latency, ii) simplicity of use based on standards such as WebRTC
and HTML5 with zero-client deployment iii) security without data transmission
but only pixel on a Peer-to-Peer architecture with encrypted streams and iv) ex-
ibility of use by supporting both SaaS, on-premises and host-to-host deployment
modes. Our contribution is based on the hybridization of solutions supporting
native web access, GPU encoding and multi-cursor management, summarizing
the best of both world. The reminder of this paper is organized as follows: in
section 2 we propose a brief overview of the main functionalities of WebRTC
before introducing, in section 3, our contribution USE Together and its architec-
ture. Then we present and discuss in sections 4 and 5 some use cases and their
performance. Finally, conclusion and future works are given in section 6.



Fig. 1. a) WebRTC system architecture and b) peers connection topology { star {
where a callee (noted Ce) sends captured media to each caller (noted Cr) which, in
turn, transmit their inputs with transactions of control messages in both cases.

2 WebRTC

WebRTC (Web Real Time Communication) [17] is a technology that allows real-
time Peer-to-Peer communication between browsers without the use of additional
plugins. WebRTC is designed \to enable rich, high-quality RTC applications to
be developed for the browser, mobile platforms, and IoT devices, and allow them
all to communicate via a common set of protocols" [18]. WebRTC was open-
sourced by Google in 2011 and after that an ongoing work started to standardize
the protocols associated with it by IETF and its browser APIs by W3C. Interest
and support for WebRTC has been since growing steadily. Today, the most
advanced WebRTC implementation is o�ered by Mozilla Firefox and Google
Chrome and includes three APIs:

1. MediaStream, which allows an application to stream media from the users
web camera and microphone or from a screen capturing.

2. DataChannel, which allows to share arbitrary data between peers. This layer
is an important feature of WebRTC allowing the development of all kind of
Peer-to-Peer applications and collaborative solutions.

3. PeerConnection, which represents the glue between MediaStream and Dat-
aChannel by providing a handshake mechanism for two machines to exchange
necessary information so a Peer-to-Peer connection can be set up.

The architecture of WebRTC including the signaling server is shown in schematic
1. Although WebRTC aspires to enable Peer-to-Peer communication between
browsers without relaying data through any intermediary, the use of a server is
still required for two reasons: the �rst reason is the obvious one, a web server is
needed to serve the actual web application that utilizes WebRTC. The second
reason is less obvious. A server is required in order to initialize sessions between
the clients that need to communicate. This process is known as Signaling and
is responsible for the exchange of the initial (meta) data of session descriptions
(using SDP and ICE framework) which contain details on the form and nature



of the data which will be transmitted [24]. These information can include net-
work data, such as IP addresses and ports, media metadata such as codecs and
codec settings, bandwidth and media types, error messages or user and room
information. PeerConnection API is used to achieve this process.

3 USE Together overview and implementation

Based on the native C++ APIs implementation of WebRTC by Google, USE
Together is structured around two modules: USE Signaling and USE Engine.
The implemented and developed solution with all its elements with respect to
the architecture is illustrated in �gure 1.a. In the two following subsections, to
give a better understanding of the overall architecture to the reader, we will
illustrate the description of each module with a typical usage scenario: a user A
starts a collaborative working session S on his desktop and a user B wants to
join S.

3.1 USE Engine

The USE Engine module consists in two major sub-systems: the former, called
‘USE Engine Core’, acts as the central point of communication between the host
(which initiates the collaborative session) and the remote users who join it. In
terms of network topology (cf. Figure 1.b), one can see a collaborative session
as a star where the host is located in the center and each remote user resides in
a branch. Thus, the ‘USE Engine Core’ part is essentially dedicated to receiving
and delivering data to each branch over WebRTC channels: video and audio
streaming (resp. input and control messages) over Media Channels (resp. Data
Channel). The latter sub-system, named ‘USE Engine GUI’, is an application
responsible for the following tasks: i) capturing an entire desktop or a speci�c
window, ii) capturing local video and/or audio data (eg. from a webcam), iii)
encoding the resulting streams and transmitting it to ‘USE Engine Core’, iv)
injecting keyboard and mouse input events from remote peers and v) specifying
multiple settings to con�gure the session.
When the user A wants to start a collaborative working session, he just starts
USE Engine, which automatically creates a working session S and registers it on
USE Signaling (described below). The session is now active and can be reachable
by any remote user who knows the session name and the session password.
In order to provide the best possible experience to the user, USE Engine espe-
cially focuses on addressing two typical issues related to collaborative softwares:
latency and multiple user inputs management. With traditional remote desktop
visualization tools, the user generally has to deal with high latency which could
be annoying while using real time applications remotely. USE Engine exploits
the latest technologies in terms of screen capturing and video encoding respec-
tively with the use of the NVIDIA’s GRID and NVENC APIs. The �rst one,
(GRID), provides direct access to video memory while NVENC makes use of a
hardware H.264 encoding chip, integrated since the release of Kepler NVIDIA



GPUs, to produce a low latency H.264 video stream. Obviously, if the desktop
is not equipped with such hardware, a fallback mode provides a desktop capture
system based on OS APIs and a CPU encoding framework delivering either an
H.264 (still with a low latency pro�le) or a VP8 video stream. The last issue
lies in the input events handling of each connected user on an operating system
natively thought for a single usage. To that end, USE Engine includes two inter-
action modes: a synchronized one, where a user can seamlessly take the control
anytime he does a speci�c action (mouse clicks or keyboard usage) and if no-
body already did, ignoring the other users input events for the duration of those
actions, and a token-based one where a user has the control as long as he keeps
the token (set by the session administrator).

3.2 USE Signaling

As mentioned in section 2, an auxiliary server, which acts both as a web server
and as a signaling server, is required to set up the Peer-to-Peer communication
between user A and user B . Firstly, user B has to log himself, then specify the
session name and the associated password. USE Signaling is then able, from
the session name, to identify the user who initiates the collaborative session (in
our case, user A) and to relay messages between A and B during the signaling
stage. Signaling can be de�ned as a classic handshaking phase during which the
two users exchange network information (to �nd the best network route between
them) and their session descriptions (a data structure containing streaming ca-
pabilities of a speci�c machine/browser couple) to negotiate a compatible way
to exchange data. As soon as the negotiation is done, the peer connection (and
the associated communication channels) can be created between A and B . At
this point, B is now connected to S and can work collaboratively with user A.

4 Use cases description and discussion

Two kind of use cases have been realized with a common objective to stay focused
on what is essential to application area by centralizing data and applications for
a remote multi-peer collaborative access.
For manufacturing industries case �rst, USE Together has been used as a project
management tool to enable its users to work remotely with di�erent CAD appli-
cations. Project review, synchronous co-design, simulation and visualization are
the main functions tested in a multi-user collaborative framework. As we can see
in �gure 2, four users interact synchronously on a same 3D model during a project
review phase. The second use case was carried out within a biomedical environ-
ment with di�erent softwares visualization. Mainly based on GPU-accelerated
direct volume rendering algorithms, these tests con�rmed the compatibility of
the system with GPU-intensive resources applications without altering facility
to encode the output video stream in real time. Several scenarios have been
designed to work remotely with di�erent partners on a collegial basis in order
i) to jointly annotate and navigate in a set of biological data obtained through



Fig. 2. Example CAD viewer application. The actual image shown on screen is being
rendered remotely. The four users connected to their browsers can interact simultane-
ously on the 3D model.

a slide scanner and ii) to engage HPC resources to visualize and interact with
simulations remotely.
In both cases, USE Together has received a large endorsement by:

{ increasing users’ productivity on load-intensive applications and complex
data through remote access on centralized resources.

{ enhancing performance of teams with a real time collaborative solution run-
ning on a same application instance.

5 Performance analysis

In order to test our solution, di�erent experiments over several hundred kilo-
meters between the server and three simultaneously connected clients were con-
ducted. All these results are reported on table 1, which also includes the spec-
i�cations of the various materials used. On the server side, we used a virtual
machine (VM) equipped with an Intel Xeon E5-2650v2 @ 2.60GHz (8 cores),
32 GB of RAM and a NVidia GRID K2 of 4 GB of VRAM mounted in PCI
Passthrough as GPU. This VM runs on Windows 7 Pro with a desktop res-
olution con�gured in HD. We used both the Unigine Valley Benchmark and
FreeCAD workload to simulate real user behavior and/or monitored the follow-
ing user experience and scalability metrics in fullscreen for three kinds of image
quality setting (Low/Medium/High) with NVIDIA GPU based H.264 encoding
(NVENC high performance low latency preset). On the client side, three device
types were used with di�erent network accesses for each of them (see Table 1).
All these elements show that USE Together has achieved to bring a smooth ex-
perience on both of the use cases over any network, from 3G/4G to Wi� and
Ethernet, with a mean bitrate of about 3.2 MB/s for a full HD remote display.



Table 1. Performance comparison on three terminal types and network connections.

Specs Network Packets Bytes Mean bitrate FPS
terminal connection recvd(K)/lost recvd (Mo) (Mb/s)

L/M/H L/M/H L/M/H L/M/H

#1 Desktop ADSL 64/110/258 63/111/280 1.81/3.12/7.88 30/30/31
Quadro M4000 RJ45 6/96/469

#2 Laptop ADSL 75/110/265 72/115/295 1.99/3.22/7.95 22/23/22
Intel HD4000 Wi� 38/551/8500

#3 Tablet 4G 76/150/247 73/157/270 1.92/4.31/7.30 21/18/14
Tegra K1 11/72/394

6 Conclusion and future works

This paper proposed a WebRTC-based collaborative multi-user solution enhanc-
ing communications of a group by enabling them to share their applications and
data in real time over any network. This solution called USE Together can be
deployed on various hardware environments in a secure way and be accessed
through a simple web browser without using any additional software nor plugin.
Composed of two modules allowing i) to connect two peers and ii) to exchange
encrypted streams between peers, USE Together is able to address many chal-
lenges in relation to pervasive computing like capabilities to o�er interactive
shared workspaces in a collaborative way and to maintain calculation accessi-
bility through \invisible" resources while guaranteeing a good level of con�den-
tiality during exchanges. Exclusively based on a web implementation today, this
solution should also evolve to provide end-point devices support like speci�c 3D
displays and VR/AR devices.

Acknowledgment

This work is supported by the French national funds (PIA2’program) under
contract No. P112331-3422142 (3DNS project).

References

1. Alex Wright. Ready for a web os? Commun. ACM , 52(12):16{17, December 2009.
2. Jay F. Nunamaker, Robert O. Briggs, and Nicholas C.R. Romano. Collaboration

Systems: Concept, Value, and Use. Taylor & Francis, 2015.
3. Petra Isenberg, Niklas Elmqvist, Jean Scholtz, Daniel Cernea, Kwan-Liu Ma,

and Hans Hagen. Collaborative visualization: De�nition, challenges, and research
agenda. Information Visualization Journal , 10(4):310{326, 2011. Published online
before print July 29, 2011.



4. Christophe Mouton, Kristian Sons, and Ian Grimstead. Collaborative visualization:
Current systems and future trends. In Proc. of the 16th Int. Conf. on 3D Web
Technology, Web3D ’11, pages 101{110, New York, NY, USA, 2011. ACM.

5. Hank Childs, Berk Geveci, Will Schroeder, Jeremy Meredith, Kenneth Moreland,
Christopher Sewell, Torsten Kuhlen, and E. Wes Bethel. Research challenges for
visualization software. Computer, 46(5):34{42, May 2013.

6. Elena Zudilova-Seinstra, Tony Adriaansen, and Robert van Liere. Trends in In-
teractive Visualization: State-of-the-Art Survey . Springer Publishing Company,
Incorporated, 1 edition, 2008.

7. Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Yjs: A Frame-
work for Near Real-Time P2P Shared Editing on Arbitrary Data Types , pages 675{
678. ICWE ’15. Springer International Publishing, June 2015.

8. Caroline Desprat, Herv�e Luga, and Jean-Pierre Jessel. Hybrid client-server and
p2p network for web-based collaborative 3d design. In Proceedings of the 23rd Int.
Conference in Central Europe on Computer Graphics, Visualization and Computer
Vision , WSCG ’15, pages 229{238, 2015.

9. Lirong Wang, Jiacai Wang, Lixia Sun, and Ichiro Hagiwara. A peer-to-peer based
communication environment for synchronous collaborative product design. In Proc.
of the 4th International Conf. on Cooperative Design, Visualization, and Engineer-
ing, CDVE ’07, pages 9{20, Berlin, Heidelberg, 2007. Springer-Verlag.

10. Rodrigo Pizarro, Mark Hall, Pablo Bermell-Garcia, and Mar Gonzalez-Franco.
Augmenting remote presence for interactive dashboard collaborations. In Pro-
ceedings of the Int. Conference on Interactive Tabletops & Surfaces, ITS ’15, pages
235{240, New York, NY, USA, 2015. ACM.

11. Linh Van Ma, Jisue Kim, Sanghyun Park, Jinsul Kim, and Jonghyeon Jang.
An e�cient session weight load balancing and scheduling methodology for high-
quality telehealth care service based on webrtc. The Journal of Supercomputing,
72(10):3909{3926, 2016.

12. Michalis Xenos, Nikolaos Avouris, Vassilis Komis, Dimitris Stavrinoudis, and
Meletis Margaritis. Synchronous collaboration in distance education: A case study
on a computer science course. In Proc. of the IEEE Int. Conf. on Advanced Learn-
ing Technologies, ICALT ’04, pages 500{504, Washington, DC, USA, 2004. IEEE
Computer Society.

13. Ilya V Osipov, Alex A Volinsky, and Anna Y Prasikova. E-learning collabora-
tive system for practicing foreign languages with native speakers. Int. Journal of
Advanced Computer Science and Applications, 7(3):40{45, 2016.

14. Adham Zeidan, Armin Lehmann, and Ulrich Trick. Webrtc enabled multimedia
conferencing and collaboration solution. In Proceedings of the World Telecommu-
nications Congress 2014, WTC ’14, pages 1{6, June 2014.

15. Matthias Wenzel and Christoph Meinel. Full-body webrtc video conferencing in a
web-based real-time collaboration system. In Proc. of the 20th IEEE Int. Conf. on
Comp. Supported Cooperative Work in Design, CSCWD ’16, pages 334{339, 2016.

16. Nikos Pinikas, Spyros Panagiotakis, Despina Athanasaki, and Athanasios Malamos.
Extension of the webrtc data channel towards remote collaboration and control. In
Proceedings of the Int. Symposium on Ambient Intelligence and Embedded Systems
2016, AmiEs ’16, 2016.

17. Ilya Grigorik. High Performance Browser Networking: What every web developer
should know about networking and browser performance. O’Reilly Media, Inc.,
2013.

18. WebRTC [online]. https://webrtc.org/. [Accessed 2017-03-07].

https://webrtc.org/

	USE Together, a WebRTC-based Solution for Multi-User Presence Desktop

