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Finite Sample Identifiability of Multiple Constant Modulus  unsatisfying and based on counting the number of equations and

Sources unknowns, ignoring possible indeterminacies. For binary signals
(binary phase-shift keying (BPSK)), a sufficient condition for identifi-
Amir Leshem Member, IEEE Nicolas Petrochilos, and ability in [6] was based on the premise that 2l combinations of
Alle-Jan van der VegrSenior Member, IEEE constellation points (up to sign) have been received. This means that

an average of approximate{yl — 1)2(‘1‘” many samples is needed
for BPSK signals and much more for higher constellations. Moreover,
modulus sources can be identified with probabilityl with a finite number there is always_, a n.onze.r.o p.rc.)bablllty t_hat a_ny finite nur.nber.of samples
of samples (under noise-free conditions). This strengthens earlier results does not provide identifiability (e.g., if all inputs are identical). The
which only considered an infinite number of samples. The proofis based on proof in [6] does not generalize to continuous CM sources.
the linearization technique of the analytical constant modulus algorithm In this correspondence, we give a rigorous proof of identifiability of a
]Sﬁgé\"glhtgg:tthgs:’“m ?hissirzgfei”\ggCti‘(’;\’/ig‘gg;’gﬁgngfn;m‘iglftuggcgh‘ian mixture ofd continuous or discrete complex CM sources, with finitely
upper bpound on the probability c;f nor?identifiability foPa finite nyumbery ‘ maﬂy sar_nples._We use the linearization tEChn'que_ of [5], together with
of samples. We show that under practical assumptions, this upper bound @ Simple inductive argument, to show that for continuous CM sources,
is tighter than the currently known bound. We then provide an improved  d(d—1)41 many samples suffice with probabilityf5]. The analysis of
exponentialy decaying upper bound for the case of-PSK signals T is  the finite-alphabet case is harder because there is a nonzero probability
even). that sample vectors are repeated. For sufficiently la¥gaeve specify
Index Terms—Blind source separation, Chernoff bound, constant mod- an upper bound on the probability that a data set witeamples is not
ulus signals, finite sample analysis, identifiability, large deviations, phase- yet identifiable. The probability decays exponentially.
shift keying (PSK). The structure of the correspondence is as follows. The problem is for-
mulated in Section Il. Section Il reduces the general problem of more
I. INTRODUCTION channels than sources to the case of an equal number of channels and
) ) ~ sources. A simple result characterizing linear transformations of the
The constant modulus algorithm (CMA,) is very popular for blingorys onto itself is given. Section IV contains the proof of the main the-
equalization [1], [2]. Similarly, the separation of constant modulysrem, where we discuss the finite-sample case. Identifiability is spec-
(CM) signals has attracted much attention in the signal processifgq in terms of “persistently exciting signals,” which are studied in
literature. In [3], a direction-of-arrival (DOA) estimation based on th&gction V. In Section V-B, we provide a simple bound for the finite-al-
sequential separation of CM signals using the CM array is proposed jifapet CM sources based on large deviations theory. Then, in Section
[4], & maximum-likelihood approach is taken, also using a structurgdc we strengthen the result fdr-PSK signals. In this case, we ob-
array manifold. A blind analytic solution based on the analytic CMAqgjn, that the probabitlity of nonidentifiability decreases exponentially
[5] demonstrated that good performance can be achieved witha@j function of the number of samples and.as’ " as a function of
relatively small number of samples. It was also recognized that thg, alphabet size for a given number of samples. Finally, in Section VI,

underlying CM cost function can also be used for the separation gt gemonstrate some of the results by means of a simulation.
non-Gaussian signals, and more specifically, finite-alphabet signals

[6]. While practical algorithms do exist, the issue of identifiability
was still open. Identifiability is an important issue, establishing that

the only existing solutions in the noiseless case are the original sourcgonsider an array with sensors receivind narrow-band constant
signals up to inherent indeterminacies of permutation and phaggsdulus signals. Under standard assumptions for the array manifold,

Identifiability analysis has been mostly based on the expected valyg can describe the received signal as an instantaneous linear combi-
of the CM cost function, so that the results are only valid for infinitelation of the source signals

many samples and ergodic scenarios. Not much is known about

identifiability based on dinite numb(a_r of ;amples. Previous_ resul_ts z(n) = As(n) 1)

for the special case of harmonic retrieval in one and more dimensions

were given in [7] and the references therein. For the separationv\%ere

a linear mixture ofd continuous CM sources, [5] conjectured that B T { ; ived signal

about2d samples should be sufficient. The provided argument was 2(n) = [r1(n),..., xp(n)]" isapx 1 vector of received signals
at discrete time: (T denotes matrix transposition);

A = [a1, ... ,aq], Wherea; is the array response vector toward

Manuscript received August 10, 2001; revised January 26, 2003. The work of  theith signal;
A. Leshem was supported in part by the NOEMI project of the STW under Con-  s(n) = [s;(n), ..., sa(n)]” is ad x 1 vector of source signals
tract DEL77-4476. The material in this correspondence was presented in partat ¢ timer..

Abstract—We prove that mixtures of continuous alphabet constant

Il. THE IDENTIFICATION PROBLEM

the IEEE Sensor Arrays and Multichannel Signal Processing 2002 Worksh%, .
Washington DC, August 2002. e further assume that all sources have constant modulus, i.e., for all
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mixing matrix. Furthermore, we can permute the sources and simultariquely determined by the observations, up to a permutation and a

neously permute the columns 4f Thus,A is determined only up to unit-modulus complex scaling of the columns.

a permutation of its columns and a complex unit-modulus scaling of Proof: Suppose that there is another mafBixe C?*¢ and col-

each column. lection of source signals(n) € T? which generate the same data
The identifiability problem asks for the number of samples needdd:(n)}.

in order to ensure (with probability) that in thenoiselesgase we have  The linear span of the collectiofs(n)} is C?, so that the linear

a unique solution up to the above indeterminacies. span of{z(n)} is ad-dimensional subspace i@*. Hence,B is full

column rankd. Since its column span must be the same as thzk, of

G:=BA ¢ C™is full rank. Moreover, since(n) is dense inl,

it follows that for anys € T¢, Gs = z € T?. HenceG € G, and

Lemma 1 claims thaf = PA, so thatd = BPA. O

1l I DENTIFIABILITY WITH INFINITELY MANY SAMPLES

Let T = {z:|z| = 1} be the complex unit circle, and Idt" be
the Cartesian product af copies of T, representing the collection
of d-dimensional CM source vectors. Topologically, this collection is The proof of the theorem shows that the infinite collection of vectors
a d-dimensional torus embedded indadimensionalcomplexvector {s(n)} is only used to quickly deduce thét € G. The question is
spaceC?. whether this can be done using a finite set of vectors.

We first characterize linear transformatiofsmappingT¢ into it-

self. Consider the séb
IV. IDENTIFIABILITY WITH FINITELY MANY SAMPLES

_ dxd : Nla d d
G= {G € C777|G invertible; s € T" = Gs €T } In this section, we derive a sufficient condition on the number of

_ ) samples needed to guarantee identifiability with probablljtior the
Lemma 1: LetG € G. ThenG = PA, whereP is a permutation case of constant modulus signals with continuous alphabet. Based on
matrix andA a diagonal matrix with diagonal elements on the unighe discussion of the previous section we restrict ourselves to invertible

circle. _ _ linear transformations frori? to T¢.
Proof: We will prove that each row off contains at most one  Consider a collection oV vectors

nonzero element with magnitude Let

S={s(n)eT n=1,..., N}
. ”
g=1lg1, ...y g4] = [117%Y, ..., rae??d] and let
be a row ofG wherer; is the magnitude of,. For eachs € T‘f, we 1 si(1)s3(1)  s7(1)s2(1) s5()sq—1(1)
know that|gs| = 1. Chooses; such thas; = [e 7?1, ..., e 7?7, ¢ _ - : :

We obtain e : B}
s3(N)sa—1(N)

4)
wherex denotes complex conjugate aWichas sizeV x d(d — 1) + 1.
We callS “persistently exciting”if ¥ has full column rank. Note that
thisimpliesthatV > d(d—1)+1. It also implies that the constellation
is complex (for BPSK constellations, columns®fare repeated and a

1 s51(N)s5(N) s7(N)sa2(N)

d
g81:7‘1—|—z7‘i:1 (2)

> 1

since all»; are nonnegative real numbers. Similarly, defise by
(82)1 = e ??rand(sz); = —e ’?* for2 < i < d. Then

d

gs8> =71 — E ri.

i>1
Since|gs2| = 1 we have either

d

7'1—27',':1

> 1

©)

or

d
ry— E r; = —1.

P> 1

From (2) and (3), we obtain in the first case that=1 and)_, _ , ;=
0 whereas in the second case= 0 and)_, . , »; = 1. Proceeding
inductively, we obtain that exactly one elementgofs nonzero with
magnitudel . Since all the rows off have this property an@ is invert-

ible, it must be a permutation of a diagonal matrix with unit-modulus

diagonal entries. O

The identifiability theorem for infinite samples follows directly from

the preceding lemma.

Theorem 2: Consider an infinite collection of vectosgn) € T¢,
n = 1,..., co, and suppose that the collection is densd fh (For

modified definition can be introduced).

Lemma 3: Let N >d(d—1)+1,and lets(n) e T*, n=1, ..., N,
be a persistently exciting collection. Consider an invertible linear trans-
formationG € C?*? such thailGs(n) € T¢, forn=1, ..., N. Then
G = PA, whereA is a diagonal matrix with unit norm diagonal entries
and P is a permutation matrix.

Proof: SinceG is invertible, it is sufficient to prove that each row

g of G contains exactly one nonzero element which is unit norm. Let
g =l[91, ..., 94], and lety(n) = gs(n) be the corresponding entry
of Gs(n).

Then for eachw € {1, ..., N}, we have

d
y(n) = gisi(n)
=1
d 2
= ly(m)* = > gisi(n)
=1

=1= Z gig; si(n)s;(n). (5)

1<, j<d

DenoteP;; = g:gy; and Pr Zle P;;. By linearizing (5) and
considering all2, we obtain (as in [5])

Up=1

(6)

that to hold it is sufficient thas(n) is an ergodic process, e.g., when,nere
s(n) are independent and identically distributed (i.i.d.) with indepen-
dent coordinates.) Suppose that we have available the observations
z(n) = As(n), whereA € C?*? is full column rankd. ThenA is

p=[Pr, Pis, Poi, ..., Pi.a1]"
1

=01, ...,1]"



2316 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

and¥ is as in (4). A particular solution of (6) fqris given by For eachn, this is a linear condition on thé — 1 coefficients
Py =1 {aq;}. Usingd — 1 independent samples suffices to derive that
{Pi,» —0, Vi) @ vion: = 0.
2) Similarly, from the conditiore(n) = 0 and usingd — 1 other
Suppose that; # 0 for somej, then since?;; = g:g; we immediately independent samples, we obtain thata;; = 0.
obtain thaty; = 0 forall i # j. SincePr = 1, |¢;|*> = 1. Hence, each
row g of G has precisely one nonnull entry, which is unit-modulus. It 3) b(n)=0= ag + Z aijsi(n)s;(n) = 0.
follows thatG = PA. iAi>1

Since¥ is full column rank, this is the only solution to (7). O . o - N .
y ™ This condition is verified by applying inductively the same argu-

Combining with Theorem 2 we obtain the following. ment onb(n) as we did on (8).

Theorem 4: Identifiability as in Theorem 2 already holds for a finiteWe thus obtain that atk;; are equal to zero, anty = 0. Therefore,
collection of source signal&(n), » = 1, ..., N, whereN > d(d — ¥ is full rank with probability one. _
1) + 1 if this collection is persistently exciting. If d = 1, then we trivially need one sample to conclude ®as full

rank. Hence, the recursive application of the argument needs

V. PERSISTENCE OFEXCITATION 20d—1)+---4+24+1=dd-1)+1

dT_he remaining ISSue 15 to establish V‘_'h(?n a collection of ve_ctor_s inependent samples, and this number is sufficient with probabilify
T is persistently exciting. As usual, this is hard to characterize in a

deterministic setting. In a stochastic sense, ainyd“_sufficiently randor’g‘_’ The Finite-Alphabet Case—Large Deviations Bound

collection of N > d(d—1)+1 complex vectors i is expected to be

persistently exciting. Although this appears a reasonable argument, thEOr discrete-alphabet sources, we have to use a different approach.
interrelations of the elements # make it not completely evident that Let 8(n), forn = 1...., N, be a collection of zero mean i.i.d. com-
this is the case. Moreover, in the case of discrete-alphabet CM sourdd@X vectors inT* with stochastically independent and circularly sym-
e.g., quaternary phase-shift keying (QPSK), proofs are harder becati§dric components, or more explicitly

pathological cases appear with positive probability. We first make a E(|si?) =1

more explicit statement for continuous CM sources, and then consider

2
the discrete-alphabet CM case. E(s;) =0
E(sis;) =0, i£]j
A. The Continuous-Alphabet Case E(s7s}) =0, i
Lemma 5: Let s(n), forn = 1, ..., N, be a collection of con- E(s;s;5%) =0, itj#k
tinuous-alphabet i.i.d. complex vectorsif with stochastically inde- E(sis5%57) =0 e )
5i8; ) =0, : £ L.

pendent components. N > d(d — 1) + 1, then the matrix¥ has full
column rank with probabilityl (relative to the Lebesgue measure obDenote a generiath row of ¥ by
T, .

Proof: GivenN > d(d—1)+1samples 0(n), assume toward v(n) =[1, si(n)sa(n), sz2(n)si(n), ...J. (10)
contradiction that there exists a vector# 0 such thatPe = 0, or

. o Then (omitting the index) we have
equivalently3{ao, a,;, 1 < i # j < d}, not all zeros such that for

everyn = 1, ..., N, the next equation holds 1 5153 5:25
" 5287 1 s3sT2
oo + Z(u]‘si('n).sj(n) =0. (8) v (n)y(n) = 5185 sis32 1
i#j . . .
After multiplying every equation by (n), this becomes, for all
n=1,...., N With the assumptions (9), it follows that(v?v) = I. Note that
+9"¥ — E(v'v) asN — oo. Hence, for sufficiently largeV,
Z arjsi(n) + si(n) [ a0 + Z aijsi(n)st(n) ¥ must have full column ranif. For _cc_mtinu_ous CM sources we glready
= it proved thatV > d(d — 1)+ 1 is sufficient with probabilityl. For dis-

crete-alphabet sources it can happen that the same constellation vector
is received multiple times and, hencdé,might have to be larger.
We next quantify the probability thaY samples of the array output
After taking the conjugate of this expression, we see that it is a set#t sufficient. We first provide a simple proof which gives subexpo-
N independent quadratic equationssir{n) nentially decreasing probability of nonidentifiability. Subsequently, in
2 the next subsection, we provide a more accurate (but also more com-

a(n) +b(n)si(n) + c(n)sy(n) = 0. plex) analysis providing an exponentially decreasing upper bound on
Hence, one of the following holds: a),(n) is a function of the probability of nonidentifiability. Let
(s2(n), ..., sa(n)), which contradicts the independence assumption,
and forsl_(_n) ina c_ontinuous alphabet is a zero-measure event, or b) Ry = l‘I’H\I’ — i Z v(n)v(n).
the coefficients satisfy N N

+(s7(n))” Z ai18:(n) = 0.

i>1

a(n) = b(n) = ¢(n) =0, Viedl ..., N} As we have showrE(Rx~) = I. We now analyze the rate of conver-
Hence, gence ofRx to I and provide an upper bound on the probability that
1) a(n) =0= Z aiysi(n) =0. Ry is singular. To that end we use the following consequence of Ger-
;=1 shgorin’s theorem.
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Theorem 6 [8, p. 349]:Let A = [a;;] be a Hermitian matrix. As- 1 ! ' '
sume that for all, |a::| > 0, and that4 is diagonally dominated, i.e.,
for all i

2 sources

o
=)
.

laiil > laij|

J#

o
o
:

thenA is strictly positive definite.

Assume that all off-diagonal elements Bfy have magnitude less

Inverse conditioning of ¥: mean and std.

b , 0.4}
than 77—+ Then for all:
( - 1) 0.2l
> (B, < <(Rn)i=1 (11) . »
J#i d(d=1)+1 6 sources
and by Theorem 6 we can conclude that is strictly positive definite. 0 y '

0 20 40 60 80 100

It remains to compute a bound on the probability that all off-diagonal Number of Samples

elements o have magnitude less thm. This will provide
a lower bound on the probability of persistence of excitation since gg. 1. (circles) Mean of the inverse condition numbelitfand (shaded area)
discussed above, B is nonsingular thei is full rank. its +1o standard deviation interval for the continuous CM sources.

To obtain the bound we use large deviation theory. The following
theorem from Feller is instrumental in our analysis.

where
Theorem 7 [9]: Let x,, be a sequence of zero-mean i.i.d. random v
variables with variance?. Let t i
(d(d—1) 4 1)?loglog N
Sy = /N Z Tn. andlog log IV is introduced to have= o(+/N). Applying Theorem 7
n=1 a

separately to the real and imaginary partdf we obtain

Assume that = o(v/N). Then for all: > 0 and N sufficiently large
dd—1)+1

as claimed. O

We will need the following results on the variances of products of we now use Lemma 8 to bound the probability that is non-
independent complex circularly symmetric CM signals, which are ngfngular. Note that sinc& is Hermitian it is sufficient to obtain

hard to derive [10]: that all entries above the diagonal are sufficiently small. There are
1

" ey N
2 P((RN)IJ >3 1 ) < 2¢ 2T @D e ow &
P(Sy>1t) < 3=, '

0 i= 5ld(d — 1) + 1][d(d — 1)] entries, and since most entries are uncorre-
var (alaj) = { 1” P lated (although not independent) we obtain that the probability that all
0’ (i J Akl or(i=inj=F) entries are smaller thdnd(d—1), for N sufficiently large, is bounded
* * s 1= L= =1 =R
var (sis}sks; ) = { 1; other]Wise. J by (but not equal to)

/ , L(d(d=1)41) (d(d—1))
(12) <1—26‘%“‘5)m)2 . (13)

o Since for anyr such thad < = < 1 we have(l — z)" > 1 — na, we
Lemma 8: For everyi # j, foralle > 0, andNV sufficiently large 531 bound (13) by

Using Theorem 7 we now prove the following lemma.

: ! —30—2) Py e s W 4 =3 =e) e N
P (Rn)ij > A= 51 <2 2 (d(d—D)+1)loglog N, 1— g% 2 (d(d=1)+1)% loglog N | (14)
Proof: Letv(n) be defined as in (10). Fik % j and letr, = In summary, the probability of having a data set that is not persistently

v;(n)v;(n)*. Using (12),x, is a complex random variable with zero®xciting is asymptotically less than

. 2 N )
mean and variance™ = 1. By definition d4€7%(175)m

J\T
Ry = % 3 . (for anye > 0).
C. Chernoff Bound and Finite-Alphabet CM Signals
i Ry 1
We would like to boundP (‘ (Bn)ij| > d(d—1)+1 ) - Note that We now provide a more accurate bounding using the Chernoff bound
on finite-alphabeL -PSK signals. This bound holds for all valuesof
P (’(QA,M ) = <f T ;> Furthermore, it also shows that for any fixdd> d(d —1), increasing
d(d— 1 N d(d=1)+1 the alphabet sizé. decreases the probability of nonidentifiability at
_ 1 VN least as“}—,l. Our goal is to bound
a \/_ d(d 1)+1
1
<P ([T >f) <\,n21 (n)""v;(n) > I(d+1)> (15)
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Probability of non-identifiability
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=
T

60|

10 —
— Talwar bound: L=8, d=3
. —— New bound: L=8, d=3
10 "+ —-©— Talwar bound: L=4, d=2 H
—— New bound: L=4, d=2
L al 1 bl n PR P n M.
10° 10° 10° 10* 10° 10°
Number of samples

Fig. 2. Finite-alphabet CM sources: Upper bound on the probabilitylWiaource samples are not persistently excitiigources and.-PSK constellations.

wherew;(n), »;(n) are theith and;jth rows of ¥ as defined in (10). <KP(jni —n_1| > k'N)
To th_at end, fi_xi _75 j. Letz, = vi(n)?v;(n). For everyn, @, —2KP(ni —n_ > k'N). (18)
is uniformly distributed over the th-order roots of unity (the roots . ) _
of unity form a multiplicative group and the convolution of a uniformivherek’ = % = Z&. The inequality uses the fact that there must be
distribution on the group with any other distribution is uniform). Sincét least one element greater than or equal to the mean, and the last in-
in practical applicationg is always even (and actually a powerd)f —equality uses symmetry of the distribution. We now finish the bounding
let L = 2K. Using the fact thaf. is even, we obtain that if is a  using the Chernoff bound [11]. Define a sequence of i.i.d. random vari-
symbol also—a is a symbol. Let the alphabet be ablesy; with distribution
. I
A= {a1, —ar, as, —ds, ..., ax, —ax}. 1, with probability

yi =< —1,  with probability - . (19)
We now have that ) 1

v % 0, with probability ==
Z Tn = Z (nia; —n_;a;) (16) Then, for anyv > 0, and for anyk

=1

n=1

N N . ) :
wheren; is the number of occurences of andn_; is the number of P <Z yi > kN) < e (T, vimhN) _ vk (E(e" NN .

occurences of-a;, amongz:, ..., zn. Therefore, we can bound i=1

. (20)
1 ‘ 1 . . . . . . .
Pl dau|>k|=P ~ > (ni —n_i)ai| >k The parameter is used to obtain a tighter fit of the inequality. Using
n=1 ’;‘ the distribution ofy; (19) we obtain
1« 2
<P <ﬁ ; [n; —n—| > k) E(") = 7 sinh(v). (22)
K Optimizingv (see the Appendix) we obtain
=P Ini—no| >EN ). (17) !
= v =tanh™ (k). (22)

Using the uniformity of the distribution we obtain that the precedingubstituting into (20) and simplifying we obtain

equation becomes ~ N N
. T 2 ' —l\"ta‘nhfl(k)fV k '
K P Zy,; > k\) < (—> e — ) .
P ir >k < ZP (|n,i —n_;| > k/N) (i:l L V1—k?
N P (23)

N

Z Tn

n=1
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Substitutingk’ = ﬁ and using (18) we obtain Using (19) we obtain
N
1 H/ 1 1 v —v k v —v\ __
P(N n;'vi (IL)'L’J(IL)< d(d—|—1)> f (6 [ ) f (6’ +e ) =0
N . I .
<2 )1\7_1 N mlrl( , ) 9 simplifying we obtain
< 2 f e Ld(d+1) Ld(d+1)
/ Ly/d*(d+1)? - % tanh(v) = k.
(24)
Similarly to (14), we now obtain a bound: the probability of identifi-Hence’ the optimal is given by
ability of d sources using vector samples taken froh-PSK i.i.d. v = tanh™" (k).

sourceP,4(L, d, N) satisfies the following inequality:
P4(L, N, d)>

A N-1 .
1—2d’1<£) e TatarD) ‘“‘“"71(Ld(3+‘1>) .z
L L/d2(d+1)2- 2

(25)

This is better than the large deviation bound (14) since the dependence
on N is exponential and not subexponential and is also valid for all

values of V. Moreover, we can see that as the alphabet size is increased,
the probability of nonidentifiability approachésas L~ =1,

VI. SIMULATIONS

To demonstrate the results of Lemma 5 for continuous CM sources,
as well as the relevance of the result in the presence of noise we sim-
ulated 1000 independent runs wiffi = 1, ..., 100 samples and
d =2, ..., 6 sources. For each number of samples, we computed the
rank and the conditioning of th& matrix. ForN > d(d —1), the rank
of ¥ was always equal té(d — 1) + 1, as predicted by Lemma 5.

Using the equality

cosh?(v) — sinhz(z/) =1

we now obtain

9 sinhz(z/)

" 1+sinh?(v)

and, therefore,

sinh(v) = L
‘ T VI-R
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d and N. Interestingly, it is seen thaF can be rather ill-conditioned
when N is close to its lower limit. Indeed, the lemma did not ensure
the conditioning for®. Nevertheless, with a few samples above the
lower limit, this adverse situation improves significantly. In the limit,
the conditioning converges fio This has important implication on the
performance of least squares CMA (LS-CMA) algorithms, where a fi-
nite amount of data is reused. A further analysis of this problem ap-[2]
peared in [12], where the connection between the local minima of the
CMA cost function and the local minima of its finite sample approxi- 3]
mation was considered.

We also illustrate a comparison of the new upper bound on failure of
identifiability (14) to the bound by Talwar [6], see Fig. 2. We can clearly [4]
see that the new bound is much better with orders of magnitudes less
samples necessary for a given probability of identifiability. 5]

(1]

VIl. CONCLUSION 6]
We presented a rigorous proof of a sufficient condition for the iden-

tifiability of mixtures of CM signals, based on finitely many samples.
For continuous-CM sourcedy = d(d — 1) + 1 samples are suffi-
cient with probabilityl . For finite-alphabet cases, only an upper bound
on the probability of nonidentifiability given alphabet size, number of [8]
sources, and number of samples could be derived. However, the new
bound is much tighter than previously known bound and shows thatl]
probability of nonidentifiability goes down exponentially with sample [10]
size and polynomialy with alphabet size.

- [7]

APPENDIX [11]

OPTIMIZING v IN THE CHERNOFFBOUND [12]
The optimal value of satifies the equation (see, e.g., [11, p. 54])

Eye” — ke”? = 0.
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