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Finite Sample Identifiability of Multiple Constant Modulus
Sources

Amir Leshem, Member, IEEE, Nicolas Petrochilos, and
Alle-Jan van der Veen, Senior Member, IEEE

Abstract—We prove that mixtures of continuous alphabet constant
modulus sources can be identified with probability1 with a finite number
of samples (under noise-free conditions). This strengthens earlier results
which only considered an infinite number of samples. The proof is based on
the linearization technique of the analytical constant modulus algorithm
(ACMA), together with a simple inductive argument. We then study the
finite-alphabet case. In this case, we provide a subexponentially decaying
upper bound on the probability of nonidentifiability for a finite number
of samples. We show that under practical assumptions, this upper bound
is tighter than the currently known bound. We then provide an improved
exponentialy decaying upper bound for the case of -PSK signals ( is
even).

Index Terms—Blind source separation, Chernoff bound, constant mod-
ulus signals, finite sample analysis, identifiability, large deviations, phase-
shift keying (PSK).

I. INTRODUCTION

The constant modulus algorithm (CMA) is very popular for blind
equalization [1], [2]. Similarly, the separation of constant modulus
(CM) signals has attracted much attention in the signal processing
literature. In [3], a direction-of-arrival (DOA) estimation based on the
sequential separation of CM signals using the CM array is proposed. In
[4], a maximum-likelihood approach is taken, also using a structured
array manifold. A blind analytic solution based on the analytic CMA
[5] demonstrated that good performance can be achieved with a
relatively small number of samples. It was also recognized that the
underlying CM cost function can also be used for the separation of
non-Gaussian signals, and more specifically, finite-alphabet signals
[6]. While practical algorithms do exist, the issue of identifiability
was still open. Identifiability is an important issue, establishing that
the only existing solutions in the noiseless case are the original source
signals up to inherent indeterminacies of permutation and phase.
Identifiability analysis has been mostly based on the expected value
of the CM cost function, so that the results are only valid for infinitely
many samples and ergodic scenarios. Not much is known about
identifiability based on afinite number of samples. Previous results
for the special case of harmonic retrieval in one and more dimensions
were given in [7] and the references therein. For the separation of
a linear mixture ofd continuous CM sources, [5] conjectured that
about2d samples should be sufficient. The provided argument was
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unsatisfying and based on counting the number of equations and
unknowns, ignoring possible indeterminacies. For binary signals
(binary phase-shift keying (BPSK)), a sufficient condition for identifi-
ability in [6] was based on the premise that all2

d�1 combinations of
constellation points (up to sign) have been received. This means that
an average of approximately(d � 1)2(d�1) many samples is needed
for BPSK signals and much more for higher constellations. Moreover,
there is always a nonzero probability that any finite number of samples
does not provide identifiability (e.g., if all inputs are identical). The
proof in [6] does not generalize to continuous CM sources.

In this correspondence, we give a rigorous proof of identifiability of a
mixture ofd continuous or discrete complex CM sources, with finitely
many samples. We use the linearization technique of [5], together with
a simple inductive argument, to show that for continuous CM sources,
d(d�1)+1many samples suffice with probability1 [5]. The analysis of
the finite-alphabet case is harder because there is a nonzero probability
that sample vectors are repeated. For sufficiently largeN , we specify
an upper bound on the probability that a data set withN samples is not
yet identifiable. The probability decays exponentially.

The structure of the correspondence is as follows. The problem is for-
mulated in Section II. Section III reduces the general problem of more
channels than sources to the case of an equal number of channels and
sources. A simple result characterizing linear transformations of the
torus onto itself is given. Section IV contains the proof of the main the-
orem, where we discuss the finite-sample case. Identifiability is spec-
ified in terms of “persistently exciting signals,” which are studied in
Section V. In Section V-B, we provide a simple bound for the finite-al-
phabet CM sources based on large deviations theory. Then, in Section
V-C, we strengthen the result forL-PSK signals. In this case, we ob-
tain that the probabitlity of nonidentifiability decreases exponentially
as a function of the number of samples and asL�N�1 as a function of
the alphabet size for a given number of samples. Finally, in Section VI,
we demonstrate some of the results by means of a simulation.

II. THE IDENTIFICATION PROBLEM

Consider an array withp sensors receivingd narrow-band constant
modulus signals. Under standard assumptions for the array manifold,
we can describe the received signal as an instantaneous linear combi-
nation of the source signals

xxx(n) = AAAsss(n) (1)

where

xxx(n) = [x1(n); . . . ; xp(n)]
T is ap�1 vector of received signals

at discrete timen (T denotes matrix transposition);
AAA = [aaa1; . . . ; aaad], whereaaai is the array response vector toward
the ith signal;
sss(n) = [s1(n); . . . ; sd(n)]

T is ad� 1 vector of source signals
at timen.

We further assume that all sources have constant modulus, i.e., for all
n, jsi(n)j = 1 (i = 1; . . . ; d), and thatAAA has full column rank (this
impliesp � d).

In our problem, the array is assumed to be uncalibrated so that the
array response vectorsaaai are unknown. Unequal source powers are
absorbed in the mixing matrix. Phase offsets of the sources after de-
modulation are part of thesi. Thus, we can writesi(n) = ej� (n),
where�i(n) is the unknown phase modulation for sourcei, and we de-
fine �(n) = [�1(n); . . . ; �d(n)]

T as the phase vector for all sources
at timen. Note that this leads to the fundamental indeterminacy of
phase exchange between a source and the corresponding column in the
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mixing matrix. Furthermore, we can permute the sources and simulta-
neously permute the columns ofAAA. Thus,AAA is determined only up to
a permutation of its columns and a complex unit-modulus scaling of
each column.

The identifiability problem asks for the number of samples needed
in order to ensure (with probability1) that in thenoiselesscase we have
a unique solution up to the above indeterminacies.

III. I DENTIFIABILITY WITH INFINITELY MANY SAMPLES

Let = fz : jzj = 1g be the complex unit circle, and letd be
the Cartesian product ofd copies of , representing the collection
of d-dimensional CM source vectors. Topologically, this collection is
a d-dimensional torus embedded in ad-dimensionalcomplexvector
spaceCd.

We first characterize linear transformationsGGG mapping d into it-
self. Consider the set

= GGG 2 d�djGGG invertible; sss 2 d ) GGGsss 2 d
:

Lemma 1: LetGGG 2 . ThenGGG = PPP���, wherePPP is a permutation
matrix and��� a diagonal matrix with diagonal elements on the unit
circle.

Proof: We will prove that each row ofGGG contains at most one
nonzero element with magnitude1. Let

ggg = [g1; . . . ; gd] = [r1e
j�

; . . . ; rde
j� ]

be a row ofGGG whereri is the magnitude ofgi. For eachsss 2 d, we
know thatjgggsssj = 1. Choosesss1 such thatsss1 = [e�j� ; . . . ; e�j� ]T .
We obtain

gggsss1 = r1 +

d

i> 1

ri = 1 (2)

since all ri are nonnegative real numbers. Similarly, definesss2 by
(sss2)1 = e�j� and(sss2)i = �e�j� for 2 � i � d. Then

gggsss2 = r1 �

d

i> 1

ri:

Sincejgggsss2j = 1 we have either

r1 �

d

i> 1

ri = 1 (3)

or

r1 �

d

i> 1

ri = �1:

From (2) and (3), we obtain in the first case thatr1=1 and
i> 1

ri=
0 whereas in the second caser1 = 0 and

i > 1
ri = 1. Proceeding

inductively, we obtain that exactly one element ofggg is nonzero with
magnitude1. Since all the rows ofGGG have this property andGGG is invert-
ible, it must be a permutation of a diagonal matrix with unit-modulus
diagonal entries.

The identifiability theorem for infinite samples follows directly from
the preceding lemma.

Theorem 2: Consider an infinite collection of vectorssss(n) 2 d;

n = 1; . . . ; 1, and suppose that the collection is dense ind. (For
that to hold it is sufficient thatsss(n) is an ergodic process, e.g., when
sss(n) are independent and identically distributed (i.i.d.) with indepen-
dent coordinates.) Suppose that we have available the observations
xxx(n) = AAAsss(n), whereAAA 2 p�d is full column rankd. ThenAAA is

uniquely determined by the observations, up to a permutation and a
unit-modulus complex scaling of the columns.

Proof: Suppose that there is another matrixBBB 2 p�d and col-
lection of source signalszzz(n) 2 d which generate the same data
fxxx(n)g.

The linear span of the collectionfsss(n)g is d, so that the linear
span offxxx(n)g is ad-dimensional subspace inp. Hence,BBB is full
column rankd. Since its column span must be the same as that ofAAA,
GGG :=BBB

y
AAA 2 d�d is full rank. Moreover, sincesss(n) is dense in d,

it follows that for anysss 2 d, GGGsss = zzz 2 d. Hence,GGG 2 , and
Lemma 1 claims thatGGG = PPP���, so thatAAA = BBBPPP���.

The proof of the theorem shows that the infinite collection of vectors
fsss(n)g is only used to quickly deduce thatGGG 2 . The question is
whether this can be done using a finite set of vectors.

IV. I DENTIFIABILITY WITH FINITELY MANY SAMPLES

In this section, we derive a sufficient condition on the number of
samples needed to guarantee identifiability with probability1, for the
case of constant modulus signals with continuous alphabet. Based on
the discussion of the previous section we restrict ourselves to invertible
linear transformations from d to d.

Consider a collection ofN vectors

S = fsss(n) 2 d
; n = 1; . . . ; Ng

and let

			 =

1 s1(1)s
�
2(1) s�1(1)s2(1) � � � s�d(1)sd�1(1)

...
...

...
...

1 s1(N)s�2(N) s�1(N)s2(N) � � � s�d(N)sd�1(N)

(4)

where� denotes complex conjugate and			 has sizeN � d(d� 1)+1.
We callS “persistently exciting”if 			 has full column rank. Note that
this implies thatN � d(d�1)+1. It also implies that the constellation
is complex (for BPSK constellations, columns of			 are repeated and a
modified definition can be introduced).

Lemma 3: LetN�d(d�1)+1, and letsss(n)2 d; n=1; . . . ; N;

be a persistently exciting collection. Consider an invertible linear trans-
formationGGG2 d�d such thatGGGsss(n)2 d, for n=1; . . . ; N . Then
GGG=PPP���, where��� is a diagonal matrix with unit norm diagonal entries
andPPP is a permutation matrix.

Proof: SinceGGG is invertible, it is sufficient to prove that each row
ggg of GGG contains exactly one nonzero element which is unit norm. Let
ggg = [g1; . . . ; gd]; and lety(n) = gggsss(n) be the corresponding entry
of GGGsss(n).

Then for eachn 2 f1; . . . ; Ng, we have

y(n) =

d

i=1

gisi(n)

) jy(n)j2 =

d

i=1

gisi(n)

2

) 1 =
1�i; j�d

gig
�
j si(n)s

�
j (n): (5)

DenotePij = gig
�
j andPT = d

i=1
Pii. By linearizing (5) and

considering alln, we obtain (as in [5])

			ppp = 1 (6)

where

ppp = [PT ; P12; P21; . . . ; Pd; d�1]
T

1 = [1; . . . ; 1]T
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and			 is as in (4). A particular solution of (6) forppp is given by

PT = 1

Pij = 0; 8i 6= j:
(7)

Suppose thatgj 6= 0 for somej, then sincePij = gig
�

j we immediately
obtain thatgi = 0 for all i 6= j. SincePT = 1, jgj j2 = 1. Hence, each
row ggg of GGG has precisely one nonnull entry, which is unit-modulus. It
follows thatGGG = PPP���.

Since			 is full column rank, this is the only solution to (7).

Combining with Theorem 2 we obtain the following.

Theorem 4: Identifiability as in Theorem 2 already holds for a finite
collection of source signalssss(n), n = 1; . . . ; N; whereN � d(d�
1) + 1 if this collection is persistently exciting.

V. PERSISTENCE OFEXCITATION

The remaining issue is to establish when a collection of vectors in
d is persistently exciting. As usual, this is hard to characterize in a

deterministic setting. In a stochastic sense, any “sufficiently random”
collection ofN � d(d�1)+1 complex vectors in d is expected to be
persistently exciting. Although this appears a reasonable argument, the
interrelations of the elements of			 make it not completely evident that
this is the case. Moreover, in the case of discrete-alphabet CM sources,
e.g., quaternary phase-shift keying (QPSK), proofs are harder because
pathological cases appear with positive probability. We first make a
more explicit statement for continuous CM sources, and then consider
the discrete-alphabet CM case.

A. The Continuous-Alphabet Case

Lemma 5: Let sss(n); for n = 1; . . . ; N; be a collection of con-
tinuous-alphabet i.i.d. complex vectors ind with stochastically inde-
pendent components. IfN � d(d� 1)+ 1, then the matrix			 has full
column rank with probability1 (relative to the Lebesgue measure on
d !).

Proof: GivenN � d(d�1)+1 samples ofsss(n), assume toward
contradiction that there exists a vector��� 6= 000 such that			��� = 0, or
equivalently,9f�0; �ij ; 1 � i 6= j � dg, not all zeros such that for
everyn = 1; . . . ; N; the next equation holds

�0 +
i6=j

�ijsi(n)s
�
j (n) = 0: (8)

After multiplying every equation bys�1(n), this becomes, for all
n = 1; . . . ; N

j > 1

�1js
�
j (n) + s

�
1(n) �0 +

i 6= j > 1

�ijsi(n)s
�
j (n)

+ (s�1(n))
2

i> 1

�i1si(n) = 0:

After taking the conjugate of this expression, we see that it is a set of
N independent quadratic equations ins1(n)

a(n) + b(n)s1(n) + c(n)s21(n) = 0:

Hence, one of the following holds: a)s1(n) is a function of
(s2(n); . . . ; sd(n)), which contradicts the independence assumption,
and fors1(n) in a continuous alphabet is a zero-measure event, or b)
the coefficients satisfy

a(n) = b(n) = c(n) = 0; 8n 2 f1; . . . ; Ng:

Hence,

1) a(n) = 0)
j > 1

�1js
�
j (n) = 0:

For eachn, this is a linear condition on thed � 1 coefficients
f�1jg. Usingd� 1 independent samples suffices to derive that
8 i, �1i = 0.

2) Similarly, from the conditionc(n) = 0 and usingd � 1 other
independent samples, we obtain that8i, �i1 = 0.

3) b(n) = 0) �0 +
i 6= j > 1

�ijsi(n)s
�
j (n) = 0:

This condition is verified by applying inductively the same argu-
ment onb(n) as we did on (8).

We thus obtain that all�ij are equal to zero, and�0 = 0. Therefore,
			 is full rank with probability one.

If d = 1, then we trivially need one sample to conclude that			 is full
rank. Hence, the recursive application of the argument needs

2(d� 1) + � � �+ 2+ 1 = d(d� 1) + 1

independent samples, and this number is sufficient with probability1.

B. The Finite-Alphabet Case—Large Deviations Bound

For discrete-alphabet sources, we have to use a different approach.
Let sss(n); for n = 1; . . . ; N; be a collection of zero mean i.i.d. com-
plex vectors in d with stochastically independent and circularly sym-
metric components, or more explicitly

E(jsij
2) = 1

E(s2i ) = 0

E(sis
�
j ) = 0; i 6= j

E(s2i s
�2
j ) = 0; i 6= j

E(sisjs
�2
k ) = 0; i 6= j 6= k

E(sisjs
�
ks

�
l ) = 0; i 6= j 6= k 6= l: (9)

Denote a genericnth row of			 by

vvv(n) = [1; s1(n)s
�
2(n); s2(n)s

�
1(n); . . .]: (10)

Then (omitting the indexn) we have

vvv
H(n)vvv(n) =

1 s1s
�
2 s2s

�
1 � � �

s2s
�
1 1 s22s

�2
1 � � �

s1s
�
2 s21s

�2
2 1 � � �

...
...

...
. . .

:

With the assumptions (9), it follows thatE(vvvHvvv) = III . Note that
1

N
			H			 ! E(vvvHvvv) asN ! 1. Hence, for sufficiently largeN ,

			 must have full column rank. For continuous CM sources we already
proved thatN � d(d� 1)+1 is sufficient with probability1. For dis-
crete-alphabet sources it can happen that the same constellation vector
is received multiple times and, hence,N might have to be larger.

We next quantify the probability thatN samples of the array output
are sufficient. We first provide a simple proof which gives subexpo-
nentially decreasing probability of nonidentifiability. Subsequently, in
the next subsection, we provide a more accurate (but also more com-
plex) analysis providing an exponentially decreasing upper bound on
the probability of nonidentifiability. Let

R̂̂R̂RN =
1

N
			H			 =

1

N

N

n=1

vvv(n)Hvvv(n):

As we have shown,E(R̂̂R̂RN) = III . We now analyze the rate of conver-
gence ofR̂̂R̂RN to III and provide an upper bound on the probability that
RRRN is singular. To that end we use the following consequence of Ger-
shgorin’s theorem.
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Theorem 6 [8, p. 349]:Let AAA = [aij ] be a Hermitian matrix. As-
sume that for alli, jaiij > 0, and thatAAA is diagonally dominated, i.e.,
for all i

jaiij >
j 6=i

jaij j

thenAAA is strictly positive definite.

Assume that all off-diagonal elements ofR̂̂R̂RN have magnitude less
than 1

d(d�1)+1
. Then for alli

j 6=i

(R̂̂R̂RN)ij <
d(d� 1)

d(d� 1) + 1
< (R̂̂R̂RN)ii = 1 (11)

and by Theorem 6 we can conclude thatR̂̂R̂RN is strictly positive definite.
It remains to compute a bound on the probability that all off-diagonal
elements of̂R̂R̂RN have magnitude less than 1

d(d�1)+1
. This will provide

a lower bound on the probability of persistence of excitation since as
discussed above, if̂R̂R̂RN is nonsingular then			 is full rank.

To obtain the bound we use large deviation theory. The following
theorem from Feller is instrumental in our analysis.

Theorem 7 [9]: Let xn be a sequence of zero-mean i.i.d. random
variables with variance�2. Let

SN =
1

�
p
N

N

n=1

xn:

Assume thatt = o(
p
N). Then for all" > 0 andN sufficiently large

P (SN > t) < e� (1�")t :

We will need the following results on the variances of products of
independent complex circularly symmetric CM signals, which are not
hard to derive [10]:

var sis
�
j =

0; i = j

1; i 6= j

var sis
�
j sks

�
l =

0; (i = j ^ k = l) or (i = l ^ j = k)

1; otherwise.
(12)

Using Theorem 7 we now prove the following lemma.

Lemma 8: For everyi 6= j, for all " > 0, andN sufficiently large

P (R̂̂R̂RN)ij >
1

d(d� 1) + 1
< 2e

� (1�")
:

Proof: Let vvv(n) be defined as in (10). Fixi 6= j and letxn =
vvvi(n)vvvj(n)

�. Using (12),xn is a complex random variable with zero
mean and variance�2 = 1. By definition

(R̂̂R̂RN)ij =
1

N

N

n=1

xn:

We would like to boundP (R̂̂R̂RN)ij > 1
d(d�1)+1

. Note that

P (R̂̂R̂RN)ij >
1

d(d�1)+1
=P

1

N
xn >

1

d(d�1)+1

=P
1p
N

xn >

p
N

d(d�1)+1

�P
1p
N

xn >t

Fig. 1. (circles) Mean of the inverse condition number of			, and (shaded area)
its 1 standard deviation interval for the continuous CM sources.

where

t =
N

(d(d� 1) + 1)2 log logN

andlog logN is introduced to havet = o(
p
N). Applying Theorem 7

separately to the real and imaginary parts ofR̂̂R̂Rij we obtain

P (R̂̂R̂RN)ij >
1

d(d� 1) + 1
< 2e

� (1�")

as claimed.

We now use Lemma 8 to bound the probability thatR̂̂R̂RN is non-
singular. Note that sincêR̂R̂RN is Hermitian it is sufficient to obtain
that all entries above the diagonal are sufficiently small. There are
1
2
[d(d� 1)+ 1][d(d� 1)] entries, and since most entries are uncorre-

lated (although not independent) we obtain that the probability that all
entries are smaller than1=d(d�1), forN sufficiently large, is bounded
by (but not equal to)

1� 2e
� (1�")

(d(d�1)+1)(d(d�1))

: (13)

Since for anyx such that0 < x < 1 we have(1� x)n > 1� nx, we
can bound (13) by

1� d4e
� (1�")

: (14)

In summary, the probability of having a data set that is not persistently
exciting is asymptotically less than

d4e
� (1�")

(for any � > 0).

C. Chernoff Bound and Finite-Alphabet CM Signals

We now provide a more accurate bounding using the Chernoff bound
on finite-alphabetL-PSK signals. This bound holds for all values ofN .
Furthermore, it also shows that for any fixedN > d(d�1), increasing
the alphabet sizeL decreases the probability of nonidentifiability at
least as 1

L
. Our goal is to bound

P
1

N

N

n=1

vvvi(n)
Hvvvj(n) >

1

d(d+ 1)
(15)



2318 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

Fig. 2. Finite-alphabet CM sources: Upper bound on the probability thatsource samples are not persistently exciting.sources and -PSK constellations.

wherevvvi(n), vvvj(n) are theith andjth rows of			 as defined in (10).
To that end, fixi 6= j. Let xn = vvvi(n)

Hvvvj(n). For everyn; xn

is uniformly distributed over theLth-order roots of unity (the roots
of unity form a multiplicative group and the convolution of a uniform
distribution on the group with any other distribution is uniform). Since
in practical applicationsL is always even (and actually a power of2),
let L = 2K. Using the fact thatL is even, we obtain that ifa is a
symbol also�a is a symbol. Let the alphabet be

= fa1; �a1; a2; �a2; . . . ; aK ; �aKg :

We now have that
N

n=1

xn =

K

i=1

(niai � n
�iai) (16)

whereni is the number of occurences ofai andn
�i is the number of

occurences of�ai, amongx1; . . . ; xN . Therefore, we can bound

P
1

N

N

n=1

xn > k = P
1

N

K

i=1

(ni � n
�i)ai > k

� P
1

N

K

i=1

jni � n
�ij > k

= P

K

i=1

jni � n
�ij > kN : (17)

Using the uniformity of the distribution we obtain that the preceding
equation becomes

P
1

N

N

n=1

xn > k �
K

i=1

P jni � n
�ij > k

0

N

�KP jn1 � n�1j > k
0

N

=2KP (n1 � n�1 > k
0

N): (18)

wherek0 = k

K
= 2k

L
. The inequality uses the fact that there must be

at least one element greater than or equal to the mean, and the last in-
equality uses symmetry of the distribution. We now finish the bounding
using the Chernoff bound [11]. Define a sequence of i.i.d. random vari-
ablesyi with distribution

yi =

1; with probability 1
L

�1; with probability 1
L

0; with probability L�2
L

: (19)

Then, for any� � 0, and for anyk

P

N

i=1

yi > kN � Ee
� y �kN

= e
��kN (E (e�y ))

N
:

(20)

The parameter� is used to obtain a tighter fit of the inequality. Using
the distribution ofyi (19) we obtain

E (e�y ) =
2

L
sinh(�): (21)

Optimizing� (see the Appendix) we obtain

� = tanh�1 (k) : (22)

Substituting into (20) and simplifying we obtain

P

N

i=1

yi > kN � 2

L

N

e
�k tanh (k)N kp

1� k2

N

:

(23)
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Substitutingk0
=

2

Ld(d+1)
and using (18) we obtain

P
1

N

N

n=1

vvv
H
i (n)vvvj(n)<

1

d(d+ 1)

�2
2

L

N�1

e
� tanh 2

L d2(d+ 1)2 � 2
L

N

:

(24)

Similarly to (14), we now obtain a bound: the probability of identifi-
ability of d sources usingn vector samples taken fromL-PSK i.i.d.
sourcePid(L; d; N) satisfies the following inequality:

Pid(L; N; d)�

1�2d4
2

L

N�1

e
� tanh 2

L d2(d+1)2� 2
L

N

:

(25)

This is better than the large deviation bound (14) since the dependence
on N is exponential and not subexponential and is also valid for all
values ofN . Moreover, we can see that as the alphabet size is increased,
the probability of nonidentifiability approaches0 asL�(N�1).

VI. SIMULATIONS

To demonstrate the results of Lemma 5 for continuous CM sources,
as well as the relevance of the result in the presence of noise we sim-
ulated 1000 independent runs withN = 1; . . . ; 100 samples and
d = 2; . . . ; 6 sources. For each number of samples, we computed the
rank and the conditioning of the			 matrix. ForN > d(d�1), the rank
of 			 was always equal tod(d� 1) + 1, as predicted by Lemma 5.

Fig. 1 shows the inverse of the condition number of			, for varying
d andN . Interestingly, it is seen that			 can be rather ill-conditioned
whenN is close to its lower limit. Indeed, the lemma did not ensure
the conditioning for			. Nevertheless, with a few samples above the
lower limit, this adverse situation improves significantly. In the limit,
the conditioning converges to1. This has important implication on the
performance of least squares CMA (LS-CMA) algorithms, where a fi-
nite amount of data is reused. A further analysis of this problem ap-
peared in [12], where the connection between the local minima of the
CMA cost function and the local minima of its finite sample approxi-
mation was considered.

We also illustrate a comparison of the new upper bound on failure of
identifiability (14) to the bound by Talwar [6], see Fig. 2. We can clearly
see that the new bound is much better with orders of magnitudes less
samples necessary for a given probability of identifiability.

VII. CONCLUSION

We presented a rigorous proof of a sufficient condition for the iden-
tifiability of mixtures of CM signals, based on finitely many samples.
For continuous-CM sources,N = d(d � 1) + 1 samples are suffi-
cient with probability1. For finite-alphabet cases, only an upper bound
on the probability of nonidentifiability given alphabet size, number of
sources, and number of samples could be derived. However, the new
bound is much tighter than previously known bound and shows that
probability of nonidentifiability goes down exponentially with sample
size and polynomialy with alphabet size.

APPENDIX

OPTIMIZING � IN THE CHERNOFFBOUND

The optimal value of� satifies the equation (see, e.g., [11, p. 54])

Eyie
�y � ke

�y = 0:

Using (19) we obtain

1

L
e
� � e

�� � k

L
e
� + e

�� = 0

simplifying we obtain

tanh(�) = k:

Hence, the optimal� is given by

� = tanh�1 (k) :

Using the equality

cosh2(�)� sinh2(�) = 1

we now obtain

k
2 =

sinh2(�)

1 + sinh2(�)

and, therefore,

sinh(�) =
kp

1� k2
:
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