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Abstract

High Order Statistics (HOS) are widely used in many algorithms ranging from blind identification to signal separation.

A well-known identifiability result is that at most one Gaussian source should be present in static mixtures [J. Eriksson,

V. Koivunen, Identifiability, separability and uniqueness of linear ICA models, IEEE Signal Process. Lett. (2004) 601–604].

The reason for this is that these algorithms utilize cumulants of order higher than two, and that they are all null for circular

Gaussian random variables [M. Kendall, A. Stuart, The Advanced Theory of Statistics, Distribution Theory, vol. 1, C.

Griffin, 1977]. Simple examples of non-Gaussian complex random variables having zero cumulants of order three to seven

are given, which can be encountered in the real world.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many practical algorithms use High Order
Statistics (HOS), possibly non-circular, to perform
blind signal separation, blind or data-aided identi-
fication, or linear and non-linear filtering [1,3–6].
Due to the use of HOS, at most one Gaussian
source can be accepted in static mixtures (identifia-
bility result from [1]). Actually, most of these
numerical algorithms do not use cumulants of order
higher than fourth. Therefore a distribution, which
e front matter r 2006 Elsevier B.V. All rights reserved
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third and fourth order cumulants are zeros, behaves
as Gaussian from the point of view of the algorithm.

It is known that the only probability distribution
having a finite number of non-zero cumulants is
Gaussian. Reversely, having only a few cumulants
fixed permits to generate many families of distribu-
tion. However, there are very few examples given in
the literature of non-Gaussian distributions having
null fourth or sixth order cumulants [2]. Users of
HOS should not think that it is sufficient to check
the first cumulants in order to make sure that a
distribution is Gaussian or not.

We present a simple non-Gaussian complex
distribution, called Zero Constant Modulus
(ZCM), whose cumulants of order three–five are
all null [7]. Thus, this random variable exhibits an
apparent Gaussianity up to order five. Although
this may appear as a curiosity to some readers, these
variables are encountered in various practical
.
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problems, as pointed out subsequently. In addition,
we pushed further the academic exercise to cancel
all cumulants up to sixth order.

Notation. Denote moments of zero-mean complex
random variables as

mq
p ¼ Efsps�qg. (1)

For instance, moment m11 corresponds to the
variance. Also denote kq

p ¼ Cumfs; . . . ; s; s�; . . . ; s�g
their cumulants of order pþ q, where q denotes the
number of complex conjugated terms. Recall that
fourth order cumulants are related to moments via
simple relations [2]

k22 ¼ m22 � 2ðm11Þ
2
� m02m

2
0, ð2Þ

k33 ¼ m33 � 9m22m
1
1 þ 12ðm11Þ

3, ð3Þ

where k22 is referred to as the kurtosis.1

2. The ZCM distribution

Let s½n� be a random variable, whose values are
either 0, or on the unit circle, with equal probabil-
ities:

Pðs ¼ 0Þ ¼ 1
2
¼ Pðjsj ¼ 1Þ

and with an uniform distribution over the unit
circle; hence the name of ZCM. The expected mean
is then

m01 ¼
Z

sPðsÞds ¼ 0�
1

2
þ

I
C

s
1

2p
ds

� �
1

2
¼ 0,

where C is the unit circle. As the distribution is
invariant by any rotation in the complex plane, this
distribution is circular [8]. Similarly, because of
circularity, we have

m02 ¼ 0; m03 ¼ m12 ¼ 0; m04 ¼ m13 ¼ 0.

Note that all non-circular moments (i.e. moments m‘k
with ka‘) of higher order are also null. On the
other hand, the circular2 moments are equal to

mk
k ¼

Z
sks�kPðsÞds ¼ 0�

1

2
þ 1�

1

2
¼

1

2

for any k 2 N. In particular, the variance m11 and the
circular fourth-order moment m22 are non-zero.

It turns out that cumulants of order three–five
of s are all equal to zero, including the kurtosis (2),
1The standardized cumulant k22=ðk
1
1Þ

2 is also sometimes called

kurtosis.
2Moments where exactly half of the variables are complex

conjugated are sometimes referred to as ‘‘circular’’ moments.
which takes the simpler expression: k22 ¼ m22�
2ðm11Þ

2
¼ 0. Thus, without resorting to statistics of

order higher than 5, a ZCM variable is perceived as

a Gaussian variable.
Note that by multi-linearity of cumulants, any

linear combination of ZCM variables, y ¼
P

i aisi,
will still have all its cumulants of order 3, 4 and 5 all
equal to zero. It is then not reasonable to trust
methods based only on these cumulants.

3. A radar application

More than an interesting exercise, this distribu-
tion can be met in real-life situations, and for
example secondary surveillance radars (SSR). Sec-
ondary surveillance radar (SSR) is essential for air
traffic control (ATC). Unlike primary radar, its
principle is not based on the detection of the
reflection of an electromagnetic wave, but rather
on a communication between the radar and the
aircraft [9,10]. An onboard device, the transponder,
receives a request from the radar, and transmits the
reply. The protocol of this radar is evolving from
the ‘‘Mode A/C’’ [11] toward the ‘‘Mode S’’. The
new communication protocol consists of a preamble
followed by a pulse train containing either 56 or 112
binary bits. The data bits are encoded in a
‘‘Manchester Encoding’’ scheme, which means that
a bit bn ¼ 0 is coded as bn ¼ ½0; 1�, and a bit bn ¼ 1
as bn ¼ ½1; 0�. The signal is sampled at twice the
data-rate: f S ¼ T�1 ¼ 2MHz, and the length of a
reply is N ¼ f128; 240g. Due to a tolerance on the
carrier frequency, a residual frequency f remains
after down-conversion to baseband, and several
phase rotations appear, as shown in Fig. 1. In this
figure, the effect of the frequency tolerance is visible,
and the distribution of the received signal fits a
ZCM distribution. As a consequence, the received
SSR signal has a distribution that can be assimilated
to ZCM.

3.1. Statistical behavior of SSR replies

Given the specifications, the probability to get a
zero is equal to 0:516, and the probability to obtain
a value on the unit circle is 0:484. The probability
distribution on the unit circle depends of the
product NfT , as this product represents the number
of loops the signal will do on the unit circle. The
larger this value is, the more regular on the unit
circle the probability distribution. A critical value
for the frequency is given by the condition NfT ¼ 1
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Fig. 1. A real measured ‘‘Mode S’’ reply is presented here with

the associated probability distribution.
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Fig. 2. Mean and standard deviation of k22 as a function of the

residual carrier. The simulation are done with packets of 112

samples, over 1000 independent runs.
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and corresponds to the case where the remaining
frequency induces exactly one full rotation on the
unit circle. Below this value, the reply cannot be
assimilated as a ZCM distribution as only a portion
of the unit circle is used; for instance a short mode S
(56 bits) is behaving as a ZCM distribution for a
frequency equal to 17 kHz, over a carrier frequency
of 1GHz with a 3MHz tolerance.

For sake of simplicity, we consider a simplified
model: let us reduce the replies to the informative
part (without the preamble), and with an unitary
gain (g ¼ 1). We perform the calculation of the
various sample moments, which leads to

Efm̂1g ¼ Efm̂21g ¼
1

2N

fN
� 1

f� 1
,

Efm̂20g ¼
1

2N

f2N
� 1

f2
� 1

Efm̂11g ¼
1
2
; Efm̂22g ¼

1
2
.

As a consequence, the estimation of kurtosis k̂22,
defined as a function of sample moments by

k̂22 ¼ m̂22 � 2ðm̂1m̂12 þ m̂�1m̂
�
12Þ � jm̂20j

2 � 2m̂211
þ 8jm̂1j

2m̂11 þ 2ðm̂21m̂02 þ m̂�21 m̂�02Þ � 6jm̂1j
4

has an expected mean

Efk̂22g ¼ �½2jEfm̂1gj
4 þ j2Efm̂1g

2 � Efm̂20gj
2�. (4)

Fig. 2 shows the theoretical value of k22 as a
function of the residual carrier, its estimated
average over 1000 independent runs, and its
standard deviation. For frequencies above
f ¼ 17 kHz, the expected average is negligible
compared to its standard deviation, which confirms
the kurtosis vanishing.
Fig. 3 shows the sum of the absolute values of the
cumulants used by the algorithm CoM [3] as a
function of the residual carriers of two sources. The
simulation are performed with packets of 112
samples, over 1000 independent runs.

We note that several zones are black, meaning
that the used cumulants are quite below the
estimation noise. Moreover, only a small part of
the range of possible frequencies is shown; the
brightest. Given that the carrier drifts are a priori
unknown, even if the SSR replies are not all
behaving as a ZCM sources as described above, it
is reasonable to avoid the kind of algorithms as
CoM, or JADE [12,13] to separate such sources.

The algorithm CoM has been applied successfully
to the previous protocol, the ‘‘mode A/C’’ (see [11]).
This is not a contradiction to our result as (i) this
protocol had only 42 samples, and (ii) the coding of
the data was different, leading to a probability to
get a 0 quite larger than 0:5. Consequently,
cumulants vanish for much higher residual frequen-
cies, and the probability to obtain an almost full
overlap is very weak; HOS algorithms have thus
better working conditions, and the results from [11]
are still valid.

Another case of application can be found in other
On–Off Keyings (OOK) in the presence of fre-
quency offset.
4. Cumulants of 6th order

It is now natural to wonder whether this result
could be extended to higher orders. It turns out that
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Fig. 4. Some solution points in the (b, g) plane.
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Fig. 3. Sum of the absolute values of the cumulants used by the

method CoM [3] as a function of the source residual carriers.
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the answer is yes, and we give here an explicit
answer for order six. First, it appears that all sixth
order cumulants of ZCM are null except the circular
cumulant below:

k33 ¼
7
8. (5)

Now, consider a random variable whose values are
taken equal to 0 with probability a, or taken on a
circle of radius r with probability b, or taken on a
circle of radius dr with probability g, d41. The
circular moments are for any k 2 N:

mk
k ¼ r2kðbþ gd2k

Þ. (6)

Because the distribution is circular, i.e. invariant by
rotation in the complex plane, all cumulants up to
order seven are equal to zero, except maybe circular
cumulants k11, k

2
2, and k33.

Parameter r appears just as a scale parameter, and
has no influence on standardized cumulants, which
can be expressed as a function of d only:

k22 ¼ f ðb; g; dÞ, ð7Þ

k33 ¼ gðb; g; dÞ, ð8Þ

where gð:Þ and f ð:Þ are multivariate polynomials of
degrees 4 and 6, respectively. Forcing k22 ¼ 0 and
k33 ¼ 0 yields a system of two polynomial equations
in three variables; there are thus generally infinitely
many solutions described by the union of several
one-parameter curves. This set can be restricted, due
to the constraints of positivity of the probabilities,
and of their sum to 1. Several solutions are plotted
in Fig. 4. This defines a whole family of simple non-
Gaussian distributions having zero cumulants up to
order seven.
5. Conclusions and perspectives

Even if non-Gaussian distributions having zero
cumulants of order higher than two are known to
exist, they were not really considered as likely to
occur, and no simple example was provided in the
literature, even in textbooks. We have first pre-
sented a non-Gaussian distribution behaving as
Gaussian up to order five, namely the ZCM
distribution. This distribution is found in real-life
situations, such as in Secondary Surveillance Radar
(SSR). Many other ‘‘pseudo-Gaussian’’ distribu-
tions can be derived arbitrarily. As an example
among other, a simple family of complex distribu-
tions has been proposed, having null cumulants up
to order seven.
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