
HAL Id: hal-01694358
https://hal.univ-reims.fr/hal-01694358v1

Submitted on 1 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Connected filtering based on multivalued
component-trees

Camille Kurtz, Benoît Naegel, Nicolas Passat

To cite this version:
Camille Kurtz, Benoît Naegel, Nicolas Passat. Connected filtering based on multivalued
component-trees. IEEE Transactions on Image Processing, 2014, 23 (12), pp.5152-5164.
�10.1109/TIP.2014.2362053�. �hal-01694358�

https://hal.univ-reims.fr/hal-01694358v1
https://hal.archives-ouvertes.fr


PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Connected filtering based on component-graphs:

Multivalued component-trees
Camille Kurtz, Benoı̂t Naegel, Nicolas Passat

Abstract—In recent works, a new notion of component-graph
was introduced. It extends the classical notion of component-
tree initially proposed in mathematical morphology to model
the structure of grey-level images. Component-graphs can indeed
model the structure of any – grey-level or multivalued – images.
We now extend the antiextensive filtering scheme based on
component-trees, in order to make it tractable in the framework
of component-graphs. More precisely, we provide solutions for
building a component-graph; reducing it based on selection
criteria; and reconstructing a filtered image from a reduced
component-graph. In this article, we first consider the cases where
component-graphs still have a tree structure; they are then called
multivalued component-trees. The relevance and usefulness of
such multivalued component-trees are illustrated by applicative
examples on hierarchically classified remote sensing images.

Index Terms—Component-graphs, component-trees, multival-
ued component-trees, antiextensive filtering, connected operators,
partially ordered sets, mathematical morphology.

I. INTRODUCTION

C
ONNECTED operators [1] gather image processing tools

defined in the framework of mathematical morphology

and successfully applied in a wide spectrum of applications

(see [2][3, Ch. 7] for recent surveys). In this context, the notion

of component-tree [4] has received a specific attention.

The component-tree is a hierarchical data structure that

models some characteristics of a grey-level image by con-

sidering its binary level-sets obtained from successive thresh-

oldings. Component-trees are particularly well-suited for the

design of methods devoted to process grey-level images,

based on hypotheses related to the topology (connectedness)

and the specific intensity (local extrema) of structures of

interest. Based on these properties, component-trees have been

involved in several image processing applications, especially

for filtering and segmentation.

The success of component-trees in the field of grey-level

image processing, together with the increasing need for ap-

plications involving multivalued images, has motivated their

extension to the case of such images, which can take their

values in any – totally or partially – ordered sets. After a

preliminary study of the relations between component-trees

and multivalued images [5], a generalisation of component-

trees to such images has been initiated in [6], leading to a

new notion of component-graph.
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A theoretical study of the structural properties of

component-graphs has been proposed in [7]. We now fo-

cus on the algorithmic key-points that lead to the effective

development of filtering procedures based on this notion.

More precisely, we propose an extension of the classical

antiextensive filtering scheme based on component-trees [4],

[8], and thus initially devoted only to grey-level images.

Our work, that contributes to the extension of mathemat-

ical morphology to multivalued images, is divided in two

parts. In the present article, we deal with the case where

the component-graphs preserve a tree structure, despite the

partial order defined on the image values; in such case,

the component-graphs are called multivalued component-trees.

(The case where component-graphs are no longer trees will

be considered in a further study, that will focus on specific

algorithmic issues, that differ from those evoked hereinafter.)

This article – which is an extended and improved ver-

sion of the conference paper [9] – is organised as follows.

Sec. II describes the context of this work. Sec. III provides

useful background notions. Sec. IV recalls the notion of

component-graph. Sec. V describes the antiextensive filtering

scheme initially developed for component-trees and extended

to component-graphs. Sec. VI provides the conditions under

which a component-graph is indeed a multivalued component-

tree. Secs. VII–IX then provide algorithmic solutions to deal

with the successive steps of the antiextensive filtering scheme

in that case: Sec. VII describes how to build a multivalued

component-tree; Sec. VIII discusses various ways to reduce

it; and Sec. IX deals with the issue of image reconstruction

from a reduced multivalued component-tree. Sec. X presents

experimental results. Sec. XI concludes this work.

II. RELATED WORKS

A. Component-tree

Initially proposed in the field of statistics [10], [11], the

component-tree (also known as dendrone [12], [13], confine-

ment tree [14] or max-tree [4]) has been (re)defined in the

framework of mathematical morphology and involved in the

development of morphological operators [4], [8].

From a methodological point of view, some efforts have

been conducted to enable the efficient computation of

component-trees [4], [15], [16], [17] (see also [18] for a com-

parative study). From an applicative point of view, component-

trees have been involved in the development of several image

processing and analysis techniques. Most are devoted to filter-

ing or segmentation [4], [8], [19], [20], [21]. However, other

applications have also been considered, e.g., image registration
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[22], [14], retrieval [23], [24], classification [25], visualisation

[26], or document binarisation [27].

In the field of filtering and segmentation, many methods

have been designed to detect some structures of interest by

using information modelled by attributes [28], [29], and stored

at each node of the tree. These attributes are chosen according

to hypotheses related to the applicative context. The subtree

obtained by reducing the component-tree of an image with

respect to these attributes, can then be used to reconstruct a

binary (segmentation) or grey-level (filtering) result.

B. Multivalued mathematical morphology

Mathematical morphology has been first defined on binary

images, and then on grey-level ones [30]. Its extension to

multivalued (e.g., colour, multispectral, label) images is an

important task, motivated by potential applications in multiple

areas. Several contributions have been devoted to this specific

purpose (a whole state of the art is beyond the scope of this

article; see [31] for a recent survey).

In general, the sets in which such multivalued images take

their values are not canonically equipped with total orders, but

with partial ones. Various strategies have been considered to

deal with this issue. Except in few works (see, e.g., [32]), they

intend to split these value sets into several totally ordered ones

(marginal processing), or to define ad hoc total order relations

on them (vectorial processing), with several variants [33], [34],

[35], [36], [37], [38].

These approaches present the advantage of embedding mul-

tivalued images into simpler models which authorise to process

them similarly to grey-level ones, enabling in particular to

reduce the algorithmic complexity induced by partially ordered

sets. However, they also potentially bias the information intrin-

sically carried by these – more complex but richer – partially

ordered value sets.

In the present work, we deal with the general case of any

(partially or totally) ordered value sets, without attempting

to modify the order, then providing a contribution to the

extension of mathematical morphology to multivalued images.

III. DEFINITIONS AND NOTATIONS

This section gathers definitions and notations required to

make this work self-contained.

A. Notations

The inclusion (resp. strict inclusion) on sets is noted ⊆ (resp.

⊂). The cardinality of a set X is noted |X |. The power set of

a set X is noted 2X .

A function F from a set X to a set Y is noted F : X → Y ,

and the set of all the functions from X to Y is noted Y X . If

X ′ ⊆ X and Y ′ ⊆ Y , we note F (X ′) = {F (x) | x ∈ X ′}
and F−1(Y ′) = {x ∈ X | F (x) ∈ Y ′}. If F is a bijection,

we also note F−1 its inverse function.

Let ≍ be a (binary) relation on a set X . The restriction of

≍ to a subset Y ⊆ X will generally still be noted ≍ (except

if a new notation is introduced).

We say that ≍ is an equivalence relation if ≍ is reflexive,

transitive and symmetric. For any x ∈ X , the equivalence class

of x with respect to ≍ is noted [x]≍. The quotient set of all

these equivalence classes is noted X/≍.

We say that ≍ is an order relation (and that (X,≍) is an

ordered set) if ≍ is reflexive, transitive and antisymmetric.

Moreover, we say that ≍ is a total (resp. partial) order relation

(and that (X,≍) is a totally (resp. partially) ordered set), if ≍
is total (resp. partial), i.e., if ∀x, y ∈ X, x ≍ y ∨ y ≍ x (resp.

if ∃x, y ∈ X, x 6≍ y ∧ y 6≍ x).

For any symbol further used to denote an order relation (⊆,

≤, E, etc.), the inverse symbol (⊇, ≥, D, etc.) denotes the

associated dual order, while the symbol without lower bar (⊂,

<, ⊳, etc.) denotes the associated strict order.

The Hasse diagram of an ordered set (X,6) is the couple

(X,≺) where ≺ is the cover relation associated to 6, defined

for all x, y ∈ X by x ≺ y iff x < y and there is no z ∈ X
such that x < z < y.

If (X,6) is an ordered set and x ∈ X , we note x↑ =
{y ∈ X | x 6 y} (resp. x↑⋆ = {y ∈ X | x < y}) and

x↓ = {y ∈ X | y 6 x} (resp. x↓⋆ = {y ∈ X | y < x}),

namely the sets of the elements greater (resp. strictly greater)

and lower (resp. strictly lower) than x, respectively. If Y, Z ⊆
X , we write, by abuse of notation, Y 6 Z when for any

y ∈ Y and any z ∈ Z , we have y 6 z. If Y ⊆ X , the set of

all the maximal and minimal elements of Y are noted
`6

Y
and

a6
Y , respectively. The supremum and the infimum of

Y are noted (when they exist)
∨6

Y and
∧6

Y , respectively

(we will note
⋃

and
⋂

for
∨⊆

and
∧⊆

, respectively). The

maximum and the minimum of Y are noted (when they exist)b6 Y and
c6 Y , respectively. An ordered set (X,6) is a

lattice if for any x, y ∈ X ,
∨6{x, y} and

∧6{x, y} exist.

B. Basic notions

Let Ω be a nonempty finite set. Let V be a nonempty finite

set equipped with an order relation 6. We assume that (V,6)
admits a minimum, noted ⊥.

An image is a function
∣∣∣∣
I : Ω −→ V

x 7−→ v
(1)

The sets Ω and V are called the support and the value set of

I , respectively. For any x ∈ Ω, I(x) ∈ V is the value of I at

x. Without loss of generality, we assume that I−1({⊥}) 6= ∅.

If (V,6) is a totally (resp. partially) ordered set, we say that

I is a grey-level (resp. a multivalued) image. We note ≤ the

pointwise order relation on V Ω induced by 6.

For any v ∈ V , the thresholding function at value v is

defined by
∣∣∣∣
λv : V Ω −→ 2Ω

I 7−→ {x ∈ Ω | v 6 I(x)}
(2)

For any X ⊆ Ω and any v ∈ V , the cylinder function of

support X and value v is defined by
∣∣∣∣∣∣

C(X,v) : Ω −→ V

x 7−→

{
v if x ∈ X
⊥ otherwise

(3)

In order to handle component-graphs, we need to define a

notion of connectedness on Ω. In this work, we consider the
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classical and versatile graph-based connectedness, generally

used in digital image processing [39].

Let a be an adjacency (i.e., irreflexive, symmetric) relation

on Ω. For any X ⊆ Ω, we define the connectedness relation

↔ as the reflexive-transitive closure of a on X . It is an

equivalence relation, and the set X/↔, that contains the

connected components of X , is noted C[X ].

IV. COMPONENT-GRAPHS

The notion of component-graph has been initially intro-

duced in [6]. It generalises the notion of component-tree [4],

previously proposed for the representation and processing of

grey-level images, i.e., images taking there values in totally

ordered sets. We restrict our presentation to the definitions and

properties mandatory to understand the sequel of this work. A

complete description of the structural properties of component-

graphs can be found in [7].

Definition 1: Let v ∈ V and X ∈ C[λv(I)]. The couple

(X, v) is called a valued connected component. We define the

set Θ of all the valued connected components of I as

Θ =
⋃

v∈V

C[λv(I)]× {v} (4)

From the order relation 6 on V , and the inclusion relation

⊆ on 2Ω, we define the order E on Θ as

(X1, v1) E (X2, v2) ⇐⇒

{
(X1 ⊂ X2) ∨
(X1 = X2 ∧ v2 6 v1)

(5)

In first approach, the component-graph G of I is the

Hasse diagram of the ordered set (Θ,E). However, three

variants of component-graphs can relevantly be considered by

defining two other subsets Θ̈ ⊆ Θ̇ ⊆ Θ of valued connected

components

Θ̇ = {(X, v) ∈ Θ | ∀(X, v′) ∈ Θ, v 6< v′} (6)

Θ̈ = {(X, v) ∈ Θ | ∃x ∈ X, v = I(x)} (7)

We note ◭ (resp. ◭̇, resp. ◭̈) the cover relation associated

to the order relation E on Θ (resp. to the restriction of E

to Θ̇, resp. to the restriction of E to Θ̈). We then have the

following definition for the three variants of component-graphs

(see Fig. 1).

Definition 2 ([7]): The Θ (resp. Θ̇, resp. Θ̈)-component-

graph of I is the Hasse diagram G = (Θ,◭) (resp. Ġ =
(Θ̇, ◭̇), resp. G̈ = (Θ̈, ◭̈) of the ordered set (Θ,E) (resp.

(Θ̇,E), resp. (Θ̈,E)). The term Θ̊-component-graph and the

notation G̊ = (Θ̊, ◭̊) will sometimes be used for the three

kinds of component-graphs. The elements of Θ̊ are called

nodes; the elements of ◭̊ are called edges; (Ω,⊥) is called

the root; the elements of
aE

Θ̊ are called the leaves of the

Θ̊-component-graph.

The component-graph is a relevant extension of the

component-tree since both notions are compatible for grey-

level images.

Proposition 3 ([7]): If (V,6) is a totally ordered set, then

two of the three variants of component-graphs, namely Ġ and

G̈, are isomorphic to the component-tree.

(a) I : Ω→ V

a

db c e

f g h

ji

(b) (V,≺)

A

(c) λa(I)

B

F

(d) λb(I)

D E

C

(e) λc(I)

G

M

(f) λd(I)

H

N

(g) λe(I)

I O

X

X

(h) λf (I)

J

K

(i) λg(I)

Q

L

(j) λh(I)

R

X

X

(k) λi(I)

P

S

(l) λj(I)

A

G H

CB

D E F

S

Q R

I J K

M N O

L

P

(m) G

A

CB

S

R

I J K L

P

(n) Ġ

A

B

S

R

I K L

P

(o) G̈

Fig. 1. (a) An image I : Ω → V , with V = {a, b, c, d, e, f, g, h, i, j}.
(b) The Hasse diagram of the ordered set (V,6). For the sake of readability,
each value of V is associated to an arbitrary colour. (c–l) Thresholded images
λv(I) for v ∈ V . (m–o) The Θ, Θ̇ and Θ̈-component-graphs of I . The letters
(A–S) in nodes correspond to the associated connected components in (c–l).

V. ANTIEXTENSIVE FILTERING SCHEME

Beyond the structural compatibility expressed in Prop. 3,

the component-graphs also satisfy the image (de)composition

formula classically associated to component-trees. Indeed, the

image I can be represented via the cylinder functions induced

by the nodes of its component-graph.

Proposition 4 ([7]): We have

I =

≤j

K∈Θ̊

CK =

≤∨

K∈Θ̊

CK (8)

In the framework of component-trees, the analogue of this

formula led to the proposal of an antiextensive filtering scheme

for grey-level images [4], [8]. This scheme can be extended

in the framework of component-graphs. It consists of three

successive steps (see Diag. (9)):
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(i) construction of the component-graph G̊ associated to I;

(ii) reduction of G̊, leading to a reduced component-graph

Ĝ; and

(iii) reconstruction of a filtered image Î ≤ I induced by Ĝ.

I −−−−→ Î ≤ I

(i)

y
x(iii)

G̊
(ii)

−−−−→ Ĝ

(9)

Due to the complex structure of arbitrary images and

component-graphs – compared to grey-level images and

component-trees – extending this scheme is not straightfor-

ward. In particular, each step may present specific difficulties.

These difficulties depend on the structure of the component-

graph, and in particular on the fact that it is a tree or not. The

purpose of this work is to provide algorithmic solutions for

making this filtering scheme tractable in the first case, i.e.,

when component-graphs are multivalued component-trees.

VI. MULTIVALUED COMPONENT-TREES

When considering grey-level images, i.e., when (V,6) is

totally ordered, the component-graph G̊ has a tree structure,

such as the component-tree. We precise hereafter what is the

exact meaning of “tree structure”.

Definition 5: Let (A,⊑) be an ordered set. We say that

(A,⊑) is an upper (resp. lower) piecewise totally ordered set

(UPTOS) (resp. (LPTOS)) if for any a ∈ A, (a↑,⊑) (resp.

(a↓,⊑)) is totally ordered. We say that the Hasse diagram of

(A,⊑) has a tree structure if (A,⊑) is a UPTOS or a LPTOS.

The first question that arises is: What are necessary and

sufficient conditions on (V,6) for guaranteeing that the

component-graph G̊ of any image I : Ω → V has a tree

structure? The answer is provided by the following proposi-

tion.

Proposition 6: The component-graph G̊ of any image I :
Ω → V has a tree structure if and only if (V,6) is a LPTOS.

Proof: Let (V,6) be a LPTOS. Let I : Ω → V and

G̊ its component-graph. Let K = (X, v) ∈
aE

Θ̊. Let

K1 = (X1, v1),K2 = (X2, v2) ∈ K↑. From Eq. (5), it comes

v1, v2 6 v. As (V,6) is a LPTOS, we can assume v1 6 v2.

Then, Eq. (4) implies X2 ⊆ X1, and thus K2 E K1. Finally,

(K↑,E) is totally ordered, and (Θ̊,E) is a UPTOS.

For any I : Ω → V we assume that G̊ has a tree structure.

As (Θ̊,E) admits a maximum, it is a UPTOS. Let v ∈
`6

V .

Let I : Ω → V be the constant image defined by I(x) = v for

all x ∈ X . Then (Ω× v↓,E) is totally ordered. From Eq. (4),

it is isomorphic to (v↓,6), that is then also totally ordered.

Thus, (V,6) is a LPTOS. �

In this article, we assume that (V,6) is a LPTOS; in such

case, the component-graphs are called multivalued component-

trees. We study, in Secs. VII–IX, how the three steps of the

antiextensive filtering scheme described in Diag. (9) can be

handled in that tree case.

VII. MULTIVALUED COMPONENT-TREE CONSTRUCTION

Many efforts have been successfully devoted to efficiently

build component-trees [4], [14], [15], [16], [17], [18]. The

induced algorithms are consequently designed to handle grey-

level images, but they cannot process images for which (V,6)
is a LPTOS but not a totally ordered set.

The second question that arises is then: How can we

efficiently build the multivalued component-tree of an image

I : Ω → V when (V,6) is a LPTOS?

To answer this question, we propose to “enrich” the image

I . Let us first define the following two sets

C(Ω) =
{
{x, y} | x a y ∧

(
I(x) 6 I(y) ∨ I(y) 6 I(x)

)}

C(Ω) =
{
{x, y} | x a y ∧

(
I(x) 66 I(y) ∧ I(y) 66 I(x)

)}

(10)

that gather the adjacent points whose values in I are compa-

rable, and non-comparable, respectively.

Let us now define the extended set

ΩΓ = Ω ∪
{
εc
}
c∈C(Ω)

(11)

that adds to Ω one new point ε{x,y} for each couple of adjacent

points x, y whose values I(x), I(y) are not comparable.

We then enrich the image I as
∣∣∣∣∣∣

IΓ : ΩΓ −→ V
x ∈ Ω 7−→ I(x)

ε{x,y} ∈ ΩΓ \ Ω 7−→
∧6{I(x), I(y)}

(12)

Based on the adjacency relation a on Ω, we define a new

adjacency relation aΓ on ΩΓ as follows

∀{x, y} ∈ C(Ω), x aΓ y (13)

∀{x, y} ∈ C(Ω),
(
x aΓ ε{x,y}

)
∧
(
ε{x,y} aΓ y

)
(14)

More generally, we extend all the notions introduced in

Sec. III-B to IΓ, by suffixing them by Γ, in case of ambiguity.

The image I and the enriched one IΓ are strongly related.

First, from Eqs. (10–14), we have, for any v ∈ V

∀X ∈ C[λv(I)], ∃XΓ ∈ CΓ[λv(IΓ)], X ⊆ XΓ (15)

In other words, any valued connected component K ∈ Θ can

be “embedded” in a valued connected component ofKΓ ∈ ΘΓ.

We can then licitly define the function
∣∣∣∣
Γ : Θ −→ ΘΓ

(X, v) 7−→ (XΓ, v) such that X ⊆ XΓ
(16)

The injectivity and surjectivity of Γ follow from Eqs. (10–

16). The inverse function Γ−1 : ΘΓ → Θ of Γ is then defined,

for any (XΓ, v) ∈ ΘΓ, as

Γ−1((XΓ, v)) = (XΓ ∩Ω, v) (17)

Proposition 7: The bijection Γ induces an isomorphism

between (Θ,E) and (ΘΓ,EΓ).
Proof: Let K = (X, v),K ′ = (X ′, v′) ∈ Θ. Let KΓ =

Γ(K) = (XΓ, v),K
′
Γ = Γ(K ′) = (X ′

Γ, v
′) ∈ ΘΓ. From the

bijectivity of Γ and Eq. (15) we have KΓ E K ′
Γ ⇒ K E K ′.

Let us now suppose that K E K ′. As (Θ,E) is a UPTOS,

Eq. (5) implies v′ 6 v, and X ⊆ X ′. Let xb ∈ XΓ. If xb ∈ Ω,

then xb ∈ X ⊆ X ′ ⊆ X ′
Γ. If xb /∈ Ω, then, from Eq. (10),

there exist x′b, x
′′
b ∈ X ⊆ X ′ such that x′b aΓ xb aΓ x

′′
b and

v 6 I(x′b), I(x
′′
b ). From Eq. (12), we have v′ 6 I(xb), and

then xb ∈ X ′
Γ. Finally, it comes KΓ E K ′

Γ. �
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The following result derives from this proposition and

Eqs. (4,6).

Corollary 8: The multivalued component-trees G and Ġ are

isomorphic to GΓ and ĠΓ, respectively.

Remark 9: Such an isomorphism does not hold between G̈

and G̈Γ, due to the potential addition of nodes in Θ̈Γ, induced

by the addition of points in ΩΓ.

Despite this isomorphism, IΓ is still not a grey-level image.

However, it now presents an important property, by compari-

son with I .

Property 10: Let x, y ∈ ΩΓ. We have
(
x aΓ y

)
=⇒

(
IΓ(x) 6 IΓ(y) ∨ IΓ(y) 6 IΓ(x)

)
(18)

In other words, any adjacent points have comparable values.

Let us now consider the function∣∣∣∣
ψ : V −→ N

v 7−→ |v↓|
(19)

that associates to each value v ∈ V the length of the shortest

path between v and ⊥ in (V,6). The following property

derives from Eq. (19).

Property 11: The function ψ induces a homomorphism

from (V,6) to the totally ordered set (N,6N).
If (V,6) is not totally ordered, it is plain that ψ is not

injective. In other words, we may have ψ(v) 6N ψ(v
′) while

v 66 v′. However, this does not constitute a problem when

considering images IΓ : ΩΓ → V . Indeed, let us consider the

grey-level image IΨ = ψ ◦ IΓ defined as
∣∣∣∣
IΨ : ΩΓ −→ N

x 7−→ ψ(IΓ(x))
(20)

We extend all the notions introduced in Sec. III-B to IΨ, by

suffixing them by Ψ, in case of ambiguity.

From Eqs. (18–20), we have, for any v ∈ V

∀XΓ ∈ CΓ[λv(IΓ)], ∃XΨ ∈ CΨ[λψ(v)(IΨ)], XΓ = XΨ (21)

In particular, any valued connected component KΓ ∈ Θ̇Γ can

be put in correspondence with a valued connected component

of KΨ ∈ Θ̇Ψ. We can then licitly define the function
∣∣∣∣
Ψ : Θ̇Γ −→ Θ̇Ψ

(XΓ, v) 7−→ (XΓ, vΨ) where vΨ = ψ(v)
(22)

The injectivity and surjectivity of Ψ follow from Eqs. (19–

22) and the fact that (V,6) is a LPTOS. The inverse function

Ψ−1 : Θ̇Ψ → Θ̇Γ of Ψ is defined, for any (XΓ, vΨ) ∈ Θ̇Ψ, as

Ψ−1((XΓ, vΨ)) = (XΓ,

6k
I(XΓ)) (23)

Proposition 12: The bijection Ψ induces an isomorphism

between (Θ̇Γ,EΓ) and (Θ̇Ψ,EΨ).
Proof: Let KΓ ∈

aEΓ Θ̇Γ, and KΨ = Ψ(KΓ) ∈
aE

Ψ Θ̇Ψ.

From Eqs. (19,20), (K↑
Γ,EΓ) and (K↑

Ψ,EΨ) are isomorphic.

It follows that (Θ̇Γ,EΓ) and (Θ̇Ψ,EΨ) are also isomorphic.

�

The following result derives from this proposition and

Eqs. (4,6,7).

Corollary 13: The multivalued component-tree ĠΓ is iso-

morphic to ĠΨ.

Algorithm 1: Construction of Ġ when (V,6) is a LPTOS

Input: I : Ω→ V
Input: a ⊆ Ω× Ω
Output: Ġ = (Θ̇, ◭̇)

1 ΩΓ ← Ω
2 aΓ ← a

3 foreach x a y do
4 if I(x) 66 I(y) and I(y) 66 I(x) then
5 ΩΓ ← ΩΓ ∪ {ε{x,y}}
6 aΓ ← aΓ \ {(x, y)} ∪ {(x, ε{x,y}), (ε{x,x′}, y)}

7 foreach x ∈ Ω do
8 IΨ(x)← ψ(I(x))

9 foreach ε{x,y} ∈ ΩΓ \ Ω do

10 IΨ(ε{x,y})← ψ(
∧6{I(x), I(y)})

11 compute ĠΨ = (Θ̇Ψ, ◭̇Ψ) for IΨ : ΩΓ → N
12 Θ̇← ∅
13 foreach KΨ ∈ Θ̇Γ do

14 Θ̇← Θ̇ ∪ {Γ−1(Ψ−1(KΨ))}

15 ◭̇← ∅
16 foreach KΨ ◭̇Ψ K ′

Ψ
do

17 ◭̇← ◭̇ ∪ {(Γ−1(Ψ−1(KΨ)),Γ−1(Ψ−1(K ′
Ψ
)))}

Algorithm 2: Construction of G when (V,6) is a LPTOS

Input: Ġ = (Θ̇, ◭̇)
Output: G = (Θ,◭)

1 Θ← Θ̇
2 ◭ ← ∅
3 foreach (X, v) ◭̇ (X′, v′) do
4 if v′ ≺ v then
5 ◭ ← ◭ ∪ {((X, v), (X′, v′))}

6 else
7 foreach v′ < w′ < v do
8 Θ← Θ ∪ {(X,w′)}

9 for v′ ≺ w < v do
10 ◭ ← ◭ ∪ {((X,w), (X′, v′))}
11 foreach w 6 w′ ≺ w′′ 6 v do
12 ◭ ← ◭ ∪ {((X,w′′), (X,w′))}

Algorithm 3: Construction of G̈ when (V,6) is a LPTOS

Input: I : Ω→ V

Input: Ġ = (Θ̇, ◭̇)
Output: G̈ = (Θ̈, ◭̈)

1 Θ̈← Θ̇
2 ◭̈← ◭̇

3 foreach K = (X, v) ∈ Θ̈ do
4 if ∀x ∈ X, I(x) 6= v then

5 Θ̈← Θ̈ \ {K}
6 for K ′ ◮̈ K do
7 ◭̈← ◭̈ \ {(K,K ′)}
8 foreach K ′′ ◭̈ K do
9 ◭̈← ◭̈ \ {(K ′′, K)} ∪ {(K ′′,K ′)}

From Prop. 6 and Cors. 8, 13, we have the following result.

Theorem 14: If (V,6) is a LPTOS, then the multivalued

component-tree Ġ of any image I : Ω → V is isomorphic to

the multivalued component-tree ĠΨ of the grey-level image

IΨ : ΩΓ → N, i.e., its component-tree.

This justifies Alg. 1, proposed for constructing the Θ̇-
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multivalued component-tree of I : Ω → V when (V,6)
is a LPTOS. Its first part consists of adding at most |a|
new points to Ω, thus leading to a computational cost of

O(|Ω| + |a|) (lines 1–10). Then, any standard component-

tree construction algorithm can be applied to build the Θ̇-

multivalued component-tree of I (line 11). It has been proved

in [15] that it could be carried out in quasi-linear time with

respect to |Ω| + |a| (see also [18] for a comparative study

of several algorithms). Finally, each node of the obtained

component-tree has to be post-processed to retrieve the actual

nodes of the Θ̇-multivalued component-tree Ġ. The global cost

of this post-processing (lines 12–17) is also O(|Ω| + |a|).
Consequently, the computational cost for constructing the Θ̇-

multivalued component-tree Ġ of an image I : Ω → V is of

the same order as the computational cost for constructing the

component-tree of a grey-level image defined on a support of

size |Ω|+ |a|, i.e., quasi-linear with respect to |Ω|+ |a|.
Remark 15: Practically, we generally have |a| = O(|Ω|).

In such cases, the construction of Ġ has a computational cost

that is quasi-linear with respect to |Ω|.
In order to build the Θ and Θ̈-multivalued component-trees,

some post-processings can then be applied on Ġ.

Let us first consider the case of G. For any edge

(X, v) ◭̇ (X ′, v′) such that v′ 6≺ v, i.e., such that there exists

a value w′ ∈ V verifying v′ < w′ < v, we remove this

edge and we update Ġ as follows: (i) we add to Θ̇ all the

nodes (X,w′) such that v′ < w′ < v; and (ii) we create the

respective links between all these new successive nodes, with

respect to ≺, plus the two links with (X, v) and (X ′, v′). (See

[7, Prop. 12] for a formal justification of these modifications.)

This process is formalised in Alg. 2. The number of added

nodes and added edges is equal. The computational cost of

the process is then bounded by |Θ \ Θ̇|. In the worst case, for

each point x of the image, k nodes/edges are added, where k is

the length of the shortest path between ⊥ and I(x) in (V,6).
This justifies that the computational cost for constructing the

Θ-multivalued component-tree G of an image I : Ω → V ,

from Ġ, is O(|Ω|.maxv∈
`

6 V |v↓|).

Let us now consider the case of G̈. For any node K =
(X, v) ∈ Θ̇ such that for all x ∈ X , I(x) 6= v, we remove

K from Θ̇ and we update Ġ as follows: (i) we remove the

unique edge (K,K ′) ∈ ◭̇; and (ii) we replace any edge

(K ′′,K) ∈ ◭̇ by (K ′′,K ′). This process is formalised in

Alg. 3. In the worst case, each edge that is linked to a leaf

containing a point x is duplicated k times, where k is the

length of the shortest path between ⊥ and I(x) in (V,6).
This justifies that the computational cost for constructing the

Θ̈-multivalued component-tree G̈ of an image I : Ω → V ,

from Ġ, is O(|Ω|.maxv∈
`

6 V |v↓|).

VIII. MULTIVALUED COMPONENT-TREE REDUCTION

Once the multivalued component-tree G̊ has been con-

structed, the second step of the antiextensive filtering scheme

consists of reducing G̊. This implies in particular to choose a

subset of nodes Θ̂ ⊆ Θ̊. Similarly to the case of component-

tree-based filtering [4], [8], this choice is based on:

• a selection criterion, i.e., a Boolean predicate ρ : Θ̊ → B
that indicates if the nodes satisfy a required property; and

• a reduction policy which is combined with ρ to determine

which parts of the multivalued component-tree should be

preserved or discarded.

If ρ models an increasing criterion, i.e., if

K E K ′ =⇒
(
ρ(K) ⇒ ρ(K ′)

)
(24)

then the way to reduce G̊ is straightforward (in particular, the

following reduction policies are equivalent).

However, if ρ models a non-increasing criterion, i.e., if

Eq. (24) does not hold, then various reduction policies can

be considered. For component-trees, several classical policies

have been defined, including in particular the min, direct, and

max ones [4]. These policies remain consistent in the case of

multivalued component-trees.

Definition 16 (From [4]): Let (V,6) be a LPTOS. Let

Θ̂ ⊆ Θ̊. Let ρ : Θ̊ → B be a selection criterion. The three

reduction policies min, direct and max are characterised by

the following axiomatic (recursive) definitions of the subsets

Θ̂min, Θ̂direct, Θ̂max ⊆ Θ̂.

(Ω,⊥) ∈ Θ̂min, Θ̂direct, Θ̂max (25)

ρ(K) ∧
(
K ′ ◮̊ K ∧K ′ ∈ Θ̂min

)
=⇒ K ∈ Θ̂min (26)

ρ(K) =⇒ K ∈ Θ̂direct (27)

ρ(K) ∨
(
K ′

◭̊ K ∧K ′ ∈ Θ̂max

)
=⇒ K ∈ Θ̂max (28)

Remark 17: Eq. (25) is only used to guarantee the coher-

ence of the axiomatic definitions, since the root (Ω,⊥) has

actually no influence on the reconstructed image (see Eq. (8)).

The following property on the (non-)increasingness of the

different policies for the different multivalued component-trees

derives from Eqs. (4,6,7) and (25–28)

Property 18: We have the following inclusion relations

between the nine reduced sets of nodes of Θ̊.

Θ̂max(G̈)
⊆

−−−−→ Θ̂max(Ġ)
⊆

−−−−→ Θ̂max(G)

⊆

x ⊆

x ⊆

x

Θ̂direct(G̈)
⊆

−−−−→ Θ̂direct(Ġ)
⊆

−−−−→ Θ̂direct(G)

⊆

x ⊆

x ⊆

x

Θ̂min(G̈) Θ̂min(Ġ) Θ̂min(G)

(29)

The process of node selection based on these policies is

algorithmically linked to the structure of the component-tree,

and not to the nature of the order 6. As a consequence, in

the case where (V,6) is a LPTOS, the same process can be

applied for selecting nodes in multivalued component-trees.

In particular it is carried out by scanning G only once in

a bottom-up (direct, max) or in a top-down fashion (min,

direct). Its computational cost is then O(|Θ̊|).
Remark 19: There exist various selection criteria ρ : Θ̊ →

B. For those which are only sensitive to the spatial part X
of the nodes K = (X, v), the reductions of G and Ġ actually

lead to the same result. Consequently, considering the – richer

– multivalued component-tree G instead of Ġ makes sense

only if the chosen selection criterion ρ takes into account the

values v of the nodes or, more generally, the structure of the

multivalued component-tree.
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IX. FILTERED IMAGE RECONSTRUCTION

Let Θ̂ ⊆ Θ̊ be the subset of nodes in Ĝ obtained after the

reduction of G̊. The last step now consists of reconstructing

the filtered image Î : Ω → V .

When (V,6) is a LPTOS, for any x ∈ Ω, (I(x)↓,6) is

totally ordered, and so is ({CK(x) | K ∈ Θ̂},6). This justifies

the following result.

Property 20: If (V,6) is a LPTOS, then Î can be recovered

by substituting Θ̂ to Θ̊ in Eq. (8).

In other words, when (V,6) is a LPTOS, the reconstruction

of the filtered image Î does not present any difficulties, and can

in particular be carried out in the same way as for component-

trees. Its actual computation is performed by scanning G̊ in a

bottom-up fashion in order to update the value of each point

x ∈ Ω. The induced computational cost is then Ω(|Θ̊|+ |Ω|).
Remark 21: Practically, it is possible to handle an image

I : Ω → V by considering its flat zones [1], i.e., the

maximal connected componentsX ⊆ Ω such that I(X) = {v}
for given values v ∈ V , instead of its points. Due to the

intrinsic properties of connectedness, the flat zones can be

relevantly substituted to the points of Ω for defining the image

I and its structure. In particular, the multivalued component-

tree of the image I and its “flat zone analogue” image are

isomorphic, and the antiextensive filtering scheme then leads

to the same results for both. The preprocessing that consists

of computing the set Φ of the flat zones of I , the associated

image IΦ : Φ → V , and the adjacency aΦ on Φ induced by

a, presents a computational cost of O(|Ω|+ |a|). Afterwards,

it is possible to substitute the set of flat zones Φ to Ω in the

above complexity analyses for the three steps, until the final

reconstruction of Î from ÎΦ.

As any connected operator, the multivalued component-tree-

based antiextensive filtering does not introduce new contours

in the filtered images. However, by contrast with the case of

grey-level image filtering based on component-trees, it may

happen that new values appear in the filtered images (see,

e.g., Fig. 2).

Property 22: Let (V,6) be a LPTOS. Let I : Ω → V be

an image, and G̊ its multivalued component-tree. Let Î be a

filtered image obtained by antiextensive filtering of I , based

on G̊. If G̊ = G̈, then we have Î(Ω) ⊆ I(Ω). However, if

G̊ = G or Ġ we may have Î(Ω) * I(Ω).
In other words, only the Θ̈-multivalued component-trees

(and actually the isomorphic Θ̇-multivalued component-trees

if (V,6) is totally ordered) guarantee to preserve the values

of the initial image.

X. EXPERIMENTS

A. Influence of the choice of multivalued component-tree and

reduction policy

Before considering a real application, in Section X-B, let

us illustrate the effects of the choice of the multivalued

component-tree and the reduction policy, when filtering a

multivalued image.

To this end, we consider the synthetic example of Fig. 2, that

provides a multivalued image I : Ω → V (Fig. 2(a)) taking its

values in a LPTOS (V,6) (Fig. 2(b)). This image is associated

(a) I : Ω→ V

c db

a

e

i

f

j

g

h

(b) (V,≺)

A

(c) λa(I)

B

(d) λb(I) (e) λc(I)

D
C

(f) λd(I)

B E

F

(g) λe(I)

G

I

(h) λf (I)

H

(i) λg(I) (j) λh(I)

J K

(k) λi(I)

M

L

(l) λj(I)

A

B C D

FE G H I

J K L M

(m) G

A

B C D

E F H

J K L M

(n) Ġ

A

B

E F H

J K L M

C

(o) G̈

(p) Î(G,max) (q) Î(G, direct) (r) Î(G,min)

(s) Î(Ġ,max) (t) Î(Ġ,direct) (u) Î(Ġ,min)

(v) Î(G̈,max) (w) Î(G̈,direct) (x) Î(G̈,min)

Fig. 2. (a) An image I : Ω → V with V = {a, b, c, d, e, f, g, h, i, j}. (b)
The Hasse diagram of the LPTOS (V,6). (c–l) Thresholded images λv(I) for
v ∈ V . (m–o) The multivalued component-trees of I . (p–x) Filtered images

Î , depending on the chosen multivalued component-tree and reduction policy
(see text).
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background

urban

specific mineral housing-area

sparse dense

water-area

water lake gravel-pit

agricultural-area

meadow-area

fallow-land meadow-mix

wild-land temp-meadow meadow

non-irrigated

corn pea sunflower

irrigated

soybean sorghum

sorghum-I sorghum-I I

corn-area

corn silage

winter

wheat rape barley

forest

conifer leaved-tree

eucalyptus poplar-tree broad-leaved

Fig. 3. Hasse diagram of a LPTOS (V,6) where V contains 40 semantic labels, and 6 provides the generalisation / specialisation links between them.

(a) Satellite image S : Ω→ R4 (b) Classification map Ic : Ω→ V

Fig. 4. (a) Satellite image (FORMOSAT-2), on a support Ω of 1000 × 1000 pixels. Spatial resolution: 8 m × 8 m. Spectral resolution: 4 bands (near infrared,
red, green, blue). (b) Classification map Ic : Ω→ V obtained from (a) (courtesy J. Inglada, D. Ducrot, C. Marais-Sicre, O. Hagolle and M. Huc, CESBIO).

(a) τ = 10 000 m2 (b) τ = 50 000 m2 (c) τ = 100 000 m2 (d) τ = 500 000 m2

(e) [0, 10 000] m2 (f) [10 000, 50 000] m2 (g) [50 000, 100 000] m2 (h) [100 000, 200 000] m2

Fig. 5. Antiextensive filtering of Ic (Fig. 4(b)), based on an area attribute A. While Ic takes its values within the 26 leaves of (V,≺) (Fig. 3), the filtered
images can also contain other values, then modelling areas with less specific semantics. (a–d) Results for τ < A. (e–h) Results for A ∈ [τmin, τmax].
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(a) Computation time required for building the multivalued component-trees.
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(b) Number of nodes composing the different multivalued component-trees.

Fig. 6. Computational and spatial complexities related to the construction
of the multivalued component-trees of an image Ic : Ω→ V by varying the
size (|Ω|) of the image.

to three distinct multivalued component-trees G = (Θ,◭),
Ġ = (Θ̇, ◭̇), G̈ = (Θ̈, ◭̈) (Fig. 2(m–o)), with Θ = {A, B,

. . . , M} (Fig. 2(c–l)).

Let us now suppose that for a given selection criterion ρ :
Θ → B, we have ρ−1({true}) = {A, B, C, D, H, I, J, L}.

By reducing the three multivalued component-trees G̊, with

the three policies max, direct, min, we obtain nine reduced

multivalued component-trees from which we can reconstruct

nine filtered images (Fig. 2(p–x)). Their respective properties

(recovery of initially non-selected nodes; removal of initially

selected nodes; appearance of new values; . . . ) provide a wide

range of possibilities, that may fit various kinds of use cases.

B. Application example: Filtering of hierarchical classifica-

tion maps

A classical application field that involves images taking their

values in ordered sets (V,6) that are LPTOS, is the processing

of hierarchical classification maps [40]. Such hierarchical

maps, which can be obtained from supervised or unsupervised

classification, are widely considered in the context of remote

sensing, for instance when analysing multiresolution [41] or

multitemporal satellite images [42].

In such cases, (V,6) is a hierarchy of concepts. In other

words, the set V is composed of semantic labels, while the

relation 6 provides some generalisation / specialisation links

between them. We then obtain a tree structure (V,≺), in

which the leaves of
`6

V are the most precise labels – that

correspond to the smallest details of related images – while

the root
c6

V is the most general label – that is valid within

the whole images.

In the proposed application example, we define a set V of

labels that are related to the semantic elements of agricultural

areas. These labels are illustrated in Fig. 3. They are organised

from the root (background) to 26 leaves that are gathered into

wide families (urban, water, agricultural, forest), progressively

refined into 3 to 5 layers.

We then consider the satellite image illustrated in Fig. 4(a),

that represents a complex agricultural zone. This image,

defined on a set Ω of 1000 × 1000 pixels with a spatial

resolution of 64 m2 per pixel, has then been classified into

26 classes, corresponding to the leaves of (V,6), thus leading

to the classification map Ic : Ω → V depicted in Fig. 4(b).

This classification task is indeed challenging since the latest

generation of remote sensing images presents high spectral

and spatial resolution properties, leading to huge volumes of

data. This motivates in particular denoising procedures on such

kinds of images.

Based on the multivalued component-tree of Ic : Ω → V ,

two series of antiextensive filterings have been computed.

The first has been performed by considering an increasing

criterion, related to the minimal values of an area attribute

A. In other words, we removed the nodes corresponding to

regions with a size below a given threshold value. The second

has been performed by considering a non-increasing criterion,

related to intervals of values for the same attribute A, with a

direct reconstruction policy. In other words, we preserved the

nodes corresponding to regions with a size lying between two

extremal values.

Some results of these two antiextensive filterings are de-

picted in Fig. 5. As stated above, the large size of remote

sensing images, and their high resolution potentially result in

classification maps that can be impaired by semantic noise.

In this context, the simultaneous use of (i) an area criterion,

and (ii) a set of hierarchically structured labels, allows us to

efficiently carry out a mixed spatial / semantic denoising of

the classification maps. In other words, it becomes possible

to handle the trade-off between spatial and semantic filtering,

e.g., by obtaining regions of homogeneous size and / or

levels of semantic accuracy. Fig. 5(d) depicts a case where

large semantic structures (i.e., meadow, agricultural, urban

and water areas) are preserved. At the opposite, Fig. 5(e)

illustrates a filtering result where smaller semantic structures

(in this application the mineral, specific and housing areas)

are preserved.

In order to evaluate the computational and spatial complexi-

ties related to the construction of the multivalued component-

trees G, Ġ and G̈ of an image Ic : Ω → V , we studied

both the computation time required for building them and the

number of nodes composing these structures by varying the

size of the classification map. Experiments have been run on
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an Intel R© CoreTM i7-3740QM running at 2.7 GHz with 8

GB of RAM. Fig. 6 presents the results of this complexity

study. These graphs confirm that the computational and spatial

complexities for constructing the multivalued component-trees

are both quasi-linear with respect to the size of the images.

XI. CONCLUSION

In this article, it has been shown that when the image

value space is organised in a tree fashion, the induced

component-graphs, namely multivalued component-trees, also

present a tree structure. In that case, it is possible to rely

on the standard component-tree construction algorithms to

efficiently build these multivalued component-trees. Moreover,

the classical antiextensive filtering scheme initially proposed

for component-trees [4], [8] can also be adapted, by developing

an analogy between multivalued component-trees and standard

“grey-level” component-trees.

Beyond the application example described in Sec. X that is

devoted to process semantic images, it is important to notice

that numerous relevant applications can also be considered for

the processing of natural images, where the set V corresponds

to physical value spaces, such as colour ones. As an example,

it is possible to define a tree structure, e.g., on a RGB or HSV

colour space V , by defining a cover (V,≺) as a spanning

tree of the Hasse diagram induced by the canonical order

6 of V . More precisely, this can be done by defining a

valuation on the edges of this Hasse diagram. Such valuation

can, in particular, carry a priori information associated to the

applicative purposes. Based on such strategies, the multivalued

component-trees can allow us to develop original extensions

of the vectorial processing of colour images (see Sec. II-B).

In this rich context, the multivalued component-trees could

also be considered to perform not only filtering, but also

segmentation. More precisely, it could be relevant to consider

standard optimal-cut segmentation paradigms, such as intro-

duced in [43], and further considered in the framework of

mathematical morphology (see [44] for a recent survey).

In the next part of this work, we will deal with the case

where the component-graphs no longer present a tree structure,

thus rising different algorithmic difficulties and potential non-

determinism in image antiextensive filtering.
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