M. ?. Ilsever and C. Ünsalan, Two-Dimensional Change Detection Methods: Remote Sensing Applications, SpringerBriefs in Computer Science, 2012.
DOI : 10.1007/978-1-4471-4255-3

H. M. Pham, Y. Yamaguchi, and T. Q. Bui, A case study on the relation between city planning and urban growth using remote sensing and spatial metrics, Landscape and Urban Planning, vol.100, issue.3, pp.223-230, 2011.
DOI : 10.1016/j.landurbplan.2010.12.009

A. Räsänen, A. Rusanen, M. Kuitunen, and A. Lensu, What makes segmentation good? A case study in boreal forest habitat mapping, International Journal of Remote Sensing, vol.84, issue.23, pp.8603-8627, 2013.
DOI : 10.1016/S0167-8655(97)00083-4

C. V. Westen, 3.10 Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management, Treatise on Geomorphology, pp.259-298, 2013.
DOI : 10.1016/B978-0-12-374739-6.00051-8

T. Blaschke, Object based image analysis for remote sensing, ISPRS Journal of Photogrammetry and Remote Sensing, vol.65, issue.1, pp.2-16, 2010.
DOI : 10.1016/j.isprsjprs.2009.06.004

T. Esch, M. Thiel, M. Bock, A. Roth, and S. Dech, Improvement of Image Segmentation Accuracy Based on Multiscale Optimization Procedure, IEEE Geoscience and Remote Sensing Letters, vol.5, issue.3, pp.463-467, 2008.
DOI : 10.1109/LGRS.2008.919622

H. Cheng, X. Jiang, Y. Sun, and J. Wang, Color image segmentation: advances and prospects, Pattern Recognition, vol.34, issue.12, pp.2259-2281, 2001.
DOI : 10.1016/S0031-3203(00)00149-7

URL : http://cvprip.cs.usu.edu/6630/survey.pdf

J. Michel, D. Youssefi, and M. Grizonnet, Stable Mean-Shift Algorithm and Its Application to the Segmentation of Arbitrarily Large Remote Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.2, pp.952-964, 2015.
DOI : 10.1109/TGRS.2014.2330857

M. Baatz and A. Schäpe, Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation, Angewandte Geographische Informationsverarbeitung XII, pp.12-23, 2000.

Z. Wang, J. R. Jensen, and J. Im, An automatic region-based image segmentation algorithm for remote sensing applications, Environmental Modelling & Software, vol.25, issue.10, pp.1149-1165, 2010.
DOI : 10.1016/j.envsoft.2010.03.019

S. Derivaux, G. Forestier, C. Wemmert, and S. Lefèvre, Supervised image segmentation using watershed transform, fuzzy classification and evolutionary computation, Pattern Recognition Letters, vol.31, issue.15, pp.2364-2374, 2010.
DOI : 10.1016/j.patrec.2010.07.007

URL : https://hal.archives-ouvertes.fr/hal-00512749

B. Peng, L. Zhang, and D. Zhang, A survey of graph theoretical approaches to image segmentation, Pattern Recognition, vol.46, issue.3, pp.1020-1038, 2013.
DOI : 10.1016/j.patcog.2012.09.015

Q. Zhan, M. Molenaar, K. Tempfli, and W. Shi, Quality assessment for geo???spatial objects derived from remotely sensed data, International Journal of Remote Sensing, vol.34, issue.14, pp.2953-2974, 2005.
DOI : 10.1037/0033-295X.84.4.327

URL : http://hdl.handle.net/10397/16760

H. Zhang, J. E. Fritts, and S. A. Goldman, Image segmentation evaluation: A survey of unsupervised methods, Computer Vision and Image Understanding, vol.110, issue.2, pp.260-280, 2008.
DOI : 10.1016/j.cviu.2007.08.003

D. Martin, C. Fowlkes, D. Tal, and J. Malik, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp.416-423, 2001.
DOI : 10.1109/ICCV.2001.937655

D. W. Paglieroni, Design considerations for image segmentation quality assessment measures, Pattern Recognition, vol.37, issue.8, pp.1607-1617, 2004.
DOI : 10.1016/j.patcog.2004.01.017

P. Corcoran, A. Winstanley, and P. Mooney, Segmentation performance evaluation for object-based remotely sensed image analysis, International Journal of Remote Sensing, vol.66, issue.3, pp.617-645, 2010.
DOI : 10.4018/978-1-59140-753-9.ch020

URL : http://eprints.maynoothuniversity.ie/8069/1/AW-Segmentation-2010.pdf

H. Vojodi, A. Fakhari, and A. M. Moghadam, A new evaluation measure for color image segmentation based on genetic programming approach, Image and Vision Computing, vol.31, issue.11, pp.877-886, 2013.
DOI : 10.1016/j.imavis.2013.08.002

H. Zhang, J. E. Fritts, and S. A. Goldman, An entropy-based objective evaluation method for image segmentation, Electronic Imaging, pp.38-49, 2003.

J. F. Khan and S. M. Bhuiyan, Weighted entropy for segmentation evaluation, Optics & Laser Technology, vol.57, pp.236-242, 2014.
DOI : 10.1016/j.optlastec.2013.07.012

S. Chabrier, C. Rosenberger, H. Laurent, B. Emile, and P. Marché, Evaluating the segmentation result of a gray-level image, 2004.

S. Srubar, Quality Measurement of Image Segmentation Evaluation Methods, 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems, pp.254-258, 2012.
DOI : 10.1109/SITIS.2012.45

H. Chen and S. Wang, The use of visible color difference in the quantitative evaluation of color image segmentation, ICASSP. Proc, pp.593-596, 2004.

X. Zhang, P. Xiao, and X. Feng, An Unsupervised Evaluation Method for Remotely Sensed Imagery Segmentation, IEEE Geoscience and Remote Sensing Letters, vol.9, issue.2, pp.156-160, 2012.
DOI : 10.1109/LGRS.2011.2163056

B. Johnson and Z. Xie, Unsupervised image segmentation evaluation and refinement using a multi-scale approach, ISPRS Journal of Photogrammetry and Remote Sensing, vol.66, issue.4, pp.473-483, 2011.
DOI : 10.1016/j.isprsjprs.2011.02.006

N. S. Anders, A. C. Seijmonsbergen, and W. Bouten, Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping, Remote Sensing of Environment, vol.115, issue.12, pp.2976-2985, 2011.
DOI : 10.1016/j.rse.2011.05.007

L. Dr?agutdr?agut, ?. , O. Csillik, C. Eisank, and D. Tiede, Automated parameterisation for multi-scale image segmentation on multiple layers, ISPRS Journal of Photogrammetry and Remote Sensing, vol.88, issue.0, pp.119-127, 2014.
DOI : 10.1016/j.isprsjprs.2013.11.018

C. Persello and L. Bruzzone, A Novel Protocol for Accuracy Assessment in Classification of Very High Resolution Images, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.3, pp.1232-1244, 2010.
DOI : 10.1109/TGRS.2009.2029570

E. Christophe and J. Inglada, Open source remote sensing: Increasing the usability of cutting-edge algorithms, IEEE Geosci. Remote Sens. Newslett, vol.35, pp.9-15, 2009.

J. Yang, P. Li, and Y. He, A multi-band approach to unsupervised scale parameter selection for multi-scale image segmentation, ISPRS Journal of Photogrammetry and Remote Sensing, vol.94, issue.0, pp.13-24, 2014.
DOI : 10.1016/j.isprsjprs.2014.04.008

H. Kekre, S. D. Thepade, T. K. Sarode, and V. Suryawanshi, Image Retrieval using Texture Features extracted from GLCM, LBG and KPE, International Journal of Computer Theory and Engineering, vol.2, issue.5, pp.1793-8201, 2010.
DOI : 10.7763/IJCTE.2010.V2.227