
HAL Id: hal-01694403
https://hal.univ-reims.fr/hal-01694403

Submitted on 28 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive segmentation based on component-trees
Benoît Naegel, Nicolas Passat

To cite this version:
Benoît Naegel, Nicolas Passat. Interactive segmentation based on component-trees. Image Processing
On Line, 2014, 4, pp.89-97. �10.5201/ipol.2014.71�. �hal-01694403�

https://hal.univ-reims.fr/hal-01694403
https://hal.archives-ouvertes.fr

Published in Image Processing On Line on 2014–00–00.
Submitted on 2013–02–12, accepted on 2013–05–06.
ISSN 2105–1232 c© 2014 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2014.71

20
13

/0
7/

19
v
0.

4
IP

O
L

ar
ti

cl
e

cl
as

s

Interactive segmentation based on component-trees

Benoît Naegel1, Nicolas Passat 2

1 University of Strasbourg
http://icube-miv.unistra.fr/fr/index.php/Benoît_Naegel

b.naegel@unistra.fr
2 University of Reims

http://crestic.univ-reims.fr/membre/1542-nicolas-passat
nicolas.passat@univ-reims.fr

Abstract

Component-trees associate to a discrete gray-level image a descriptive data structure induced by
the inclusion relation between the binary components obtained at successive level-sets. This web
page presents an interactive segmentation methodology based on component-trees. It consists
of the extraction of a subset of the image component-tree, enabling the generation of a binary
object which fits at best (with respect to the gray-level structure of the image) a given binary
target selected beforehand in the image.

Compared to other interactive segmentation methods, the proposed methodology has the
following advantages:

• the segmentation result is only composed of an union of connected components of the
level-sets, which ensures that no “false contour” are included;

• only one image marker is needed: in particular, there is no need to give a marker for the
background (contrary to some other methods);

• the method is fast and efficient, leading to a result computation in real-time on common
image sizes.

Source Code

The on line demonstration will be accessible at the IPOL web part of this article1.

Keywords: Component-tree, Mathematical morphology, Segmentation.

1http://dx.doi.org/10.5201/ipol.2014.71

Benoît Naegel, Nicolas Passat , “Interactive segmentation based on component-trees,” Image Processing On Line, vol. 2014, pp. 1–10.
http://dx.doi.org/10.5201/ipol.2014.71

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2014.71
http://icube-miv.unistra.fr/fr/index.php/Beno�t_Naegel
http://crestic.univ-reims.fr/membre/1542-nicolas-passat
http://dx.doi.org/10.5201/ipol.2014.71
http://dx.doi.org/10.5201/ipol.2014.71

Benoît Naegel, Nicolas Passat

A

B D

E F G H

K L M N

O P Q R

C

Original image I Component-tree of I

Figure 1: An image and its component-tree.

A

B

C

D E

F

G

H

M

N

L

K O P

R

Q

Xv(0) Xv(1) Xv(2) Xv(3) Xv(4)

Figure 2: Successive thresholds-sets of I for v from 0 to 4.

1 Short Presentation

1.1 Component-tree

• A component-tree T associates to a (discrete) gray-level image a descriptive data structure
induced by the inclusion relation between the binary components obtained at successive level-
sets.

• A level-set of an image I : E → V at level v is defined as: Xv(I) = {p ∈ E | I(p) ≥ v}.

• A node of the component-tree is a connected component of Xv(I).

• A node N1 is an ancestor of N2 if N2 ⊂ N1.

• The root of the component-tree is the set E.

Fig. 1 illustrates an image and its component-tree and Fig. 2 gives its successive thresholds-sets.

1.1.1 Segmentation Based on Component-tree

Let K be the set of all connected components of all threshold sets:
K =

⋃
v∈V C[Xv(I)] where C[X] denotes the connected components of X.

Segmentation from component-tree is performed by selecting a subset K′ ⊆ K of nodes and computing
the associated binary image: S =

⋃
N∈K′ N . The figure 3 illustrates such a steps.

2

Interactive segmentation based on component-trees

v =

v =

v =

v =

2

3

4

v =

1

0

(a) Original image I (b) Its component-tree T

(c) Selected subsets of nodes (in gray) (d) Associated binary image

Figure 3: Illustration of the segmentation process based on component-tree.

3

Benoît Naegel, Nicolas Passat

1.1.2 Problem to Solve

• Let G be a binary image (for example a manual marker depicted by the user)

• How to select a subset of nodes of T whose union fits “at best” the binary image G ?

• This problem can be summarized as a minimization problem, consisting of determining:

K̂ = arg min
K′∈P(K)

{
d
(⋃
N∈K′

N,G
)}

• Given a parameter α ∈ [0, 1], dα is a pseudo-distance that takes into account the amount of
false-positives/negatives between G and

⋃
N∈K′ N . This distance is defined by:

dα(X, Y) = α.|X \ Y |+ (1− α).|Y \X|

1.1.3 Solution

A solution of this problem can be found by using dynamic programming. Let Fα and cα be the
functions recursively cross-defined, for all N ∈ K, by:

(Fα(N), cα(N)) =

{
({N}, α.n(N,G)) if α.n(N,G) ≺ (1− α).ps(N,G) +

∑
N ′∈ch(N) c

α(N ′)

(
⋃
N ′∈ch(N)Fα(N ′), (1− α).ps(N,G) +

∑
N ′∈ch(N) c

α(N ′)) otherwise

where:

• ch(N) is the set of children of N ;

• EN = N \
⋃
N ′∈ch(N)N

′ (the points of N which do not belong to the children);

• ps(N,G) = |EN ∩G| the number of points of N which belong to G and which do not belong to
any children of N ;

• n(N,G) = |N \G| (the number of points of N which do not belong to G).

The set of nodes Fα(E) enables to minimize dα(., G)

2 On Line Demo
Outline of the interactive demo

1. Interactive drawing of marker set (painting method) on the original image.
or
Upload marker (binary) image of same size than original image.

2. Computation of component-tree (automatic step, no interaction).

3. Interactive selection of the parameter α, which defines the distance between the manual marker
set and the segmentation result (binary image).
or
Enter an α value (real number between 0.0 and 1.0).

4. Display of the segmentation result.

5. To refine the segmentation, go to 1.

4

Interactive segmentation based on component-trees

3 Algorithm

3.1 Description

The algorithm is based on two steps:

1. Component-tree computation of the image to be segmented;

2. Computation of the segmentation result based on a cost minimization.

An interesting consideration is that when using interactive version of the method (where the α
parameter is adjusted in real-time) the first step (component-tree computation) needs only to be
performed once.

3.2 Component-tree Computation

This step can be accomplished by using Salembier’s algorithm [1] based on a recursive flooding of the
image or Najman’s one [2], based on Tarjan’s union-find paradigm. In the case of 8 bits image (V =
[0 . . . 255]) Salembier’s algorithm is twice as fast than Najman’s algorithm. The attributes ps(N,G)
and n(N,G), associated to each node, can be computed incrementally during the construction of the
tree.

3.3 Short Complexity Analysis

The algorithmic complexity of step 1. depends on the chosen algorithm. Salembier’s algorithm has a
worst-case time complexity of O(|E|.|V |) whereas Najman’s one is quasi-linear if the sorting step is
implemented in a linear fashion2. The algorithmic complexity of step 2. and 3. is O(max{|K|, |E|}),
linear with respect to the number of nodes of the tree or the size of the image.

4 Implementation

4.1 Command Line Implementation

A command line implementation of the method in C++ working with PGM gray-level images is
available in IPOL web part of this article (ctseg_1.zip)3. The program ctseg takes three arguments:

1. The source image (PGM file, 8 bits);

2. The marker image (PGM file, 8 bits). This image must have the same size as the source image.
All non-zero pixels belong to the marker.

3. The alpha parameter (float number between 0 and 1).

To convert a gray-level image from any “standard” format in PGM you can use ImageMagick:

convert image.png image.pgm

To test the program, go in the test/Brainweb folder and type:
2For example using counting sort when the weights are small integers [2].
3http://dx.doi.org/10.5201/ipol.2014.71

5

http://dx.doi.org/10.5201/ipol.2014.71
http://dx.doi.org/10.5201/ipol.2014.71

Benoît Naegel, Nicolas Passat

Algorithm 1: Segmentation Algorithm
input : Image I (to be segmented);
Image G (marker (binary) image);
Parameter alpha (weight parameter for false-positives/negatives)
output: Image S (final (binary) segmentation of I);
///////////////////////////////////////1

// Step 1: Component-tree computation2

///////////////////////////////////////3

compute component-tree T ;4

for all nodes N of T do5

store n(N,G) ;6

store ps(N,G) ;7

///////////////////////////////////////8

// Step 2: Cost minimization9

///////////////////////////////////////10

for v from Imax to Imin do11

for all N such that gray-level of N is v do12

if N is a leaf then13

if alpha ∗ n(N,G) < (1− alpha) ∗ ps(N,G) then14

cost(N) = alpha ∗ n(N,G);15

F (N) = {N};16

else17

cost(N) = (1− alpha) ∗ ps(N,G);18

F (N) = {∅};19

else20

if alpha ∗ n(N,G) < (1− alpha) ∗ ps(N,G) + sum of cost(N’) for all children N ′ of21

N then
cost(N) = alpha ∗ n(N,G);22

F (N) = {N};23

else24

cost(N) = (1− alpha) ∗ ps(N,G) + sum of cost(N ′) for all children N ′ of N ;25

F (N) = ∪F (N ′) for all children N ′ of N ;26

///////////////////////////////////////27

// Step 3: Result computation28

///////////////////////////////////////29

S = F (E);30

6

Interactive segmentation based on component-trees

../../ ctseg bw1.pgm bw_mark1.pgm 0.2

which provides the image result.pgm:

bw1.pgm bw_mark1.pgm result.pgm

Optionally the flag negate can be added as a fourth argument in order to take the negative of
original image, in order to segment dark objects on white background. For example, go to folder
test/dropcaps and type:

../../ ctseg C2.pgm C2_mark.pgm 0.01 negate

which provides the image result.pgm:

C2.pgm C2_mark.pgm result.pgm

4.2 Implementation Details

Component-tree computation In our implementation, we use Salembier’s algorithm to compute
the component-tree. Therefore an implementation of the algorithm is provided in the source code.

Processing the nodes The first loop (line 11-12) ensures that all nodes are processed after all
their descendants. In our implementation, this is done by performing a preliminary breadth-first
scan of the tree and storing all the nodes in an array. This array is then processed in the reverse
order.

Node data structure A Node is implemented as a data structure having, along other attributes,
a pointer on its father and the set of its childs.

5 Examples
We present some results obtained with our segmentation method in two different contexts: drop caps
segmentation and medical imaging.

7

Benoît Naegel, Nicolas Passat

Original image Markers (in red) α = 0.02 α = 0.37 α = 0.31

Original image Markers (in red) α = 0.06 α = 0.72 α = 0.19

Original image Markers (in red) α = 0.02 α = 0.64 α = 0.16

Original image Markers (in red) α = 0.06 α = 0.73 α = 0.41

Figure 4: Drop caps segmentation

5.1 Drop Caps Segmentation

In this example drop caps obtained from digitization of archive documents are composed of bright
objects on dark background. Figure 4 illustrates some segmentation results obtained for various
markers and α values.

5.2 Medical Images Segmentation

Our segmentation method has been compared with graph-cuts based method, leading to similar
(and slightly better) results. In our experiments, we use an interactive segmentation tool providing
graph-cuts method [3]. We use the following parameters: no smoothing, α = 1, σ = 1, λ = 0,
histogram quantisation=1. The algorithms are evaluated in terms of quality with respect to the time
of interaction. The segmentation quality is computed in terms of proximity to ground truth image,
based on two distances: the point-to-set distance and the κ index defined as: κ = 2TP

2TP+FP+FN
where

TP , FP , FN defines respectively the amounts of true positives, false positives and false negatives
with respect to the ground-truth images. See [4] for further details.

Figures 5 and 6 provide a performance comparison between our interactive segmentation method
and graph-cuts one. Both algorithms have been used in a similar context by three experts during
two minutes in order to obtain the best possible result.

8

Interactive segmentation based on component-trees

5.2.1 Brainweb Images (simulated normal brain MRI data)

(a) (b) (c)
(d) Time of interac-
tion (x-axis, in sec-
onds) vs. κ index.

(e) Time of interac-
tion (x-axis, in sec-
onds) vs. point-to-set
distance.

Figure 5: (a) Original image. (b) Segmentation using the proposed method. (c) Segmentation
using graph-cuts. False-positives are in red, false-negatives in green, and true-positives in white.
(d-e) κ index and point-to-set distance between segmented image and ground-truth for our method
(in blue) and method based on graph-cuts (in red).

5.2.2 In Vivo Foetal Brain MRI Images

(a) (b) (c)
(d) Time of interac-
tion (x-axis, in sec-
onds) vs. κ index.

(e) Time of interac-
tion (x-axis, in sec-
onds) vs. point-to-set
distance.

Figure 6: (a) Original image. (b) Manual marker (in red). (c) Segmentation result (in blue). (d-e) κ
index and point-to-set distance between segmented image and ground-truth for our method (in blue)
and method based on graph-cuts (in red).

Image Credits
All images and contours are given by the authors.

References
[1] P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and

sequence processing. IEEE Transactions on Image Processing, 7(4):555–570, 1998. doi: http:
//dx.doi.org/10.1109/83.663500.

[2] L. Najman and M. Couprie. Building the component tree in quasi-linear time. IEEE Transactions
on Image Processing, 15(11):3531–3539, 2006. doi: http://dx.doi.org/10.1109/TIP.2006.
877518.

9

http://dx.doi.org/10.1109/83.663500
http://dx.doi.org/10.1109/83.663500
http://dx.doi.org/10.1109/TIP.2006.877518
http://dx.doi.org/10.1109/TIP.2006.877518

Benoît Naegel, Nicolas Passat

[3] K. McGuinness and N.E. O’Connor. A comparative evaluation of interactive segmentation algo-
rithms. Pattern Recognition, 43(2):434–444, 2010. doi: http://dx.doi.org/10.1016/j.patcog.
2009.03.008.

[4] N. Passat, B. Naegel, F. Rousseau, M. Koob, and J.-L. Dietemann. Interactive segmentation
based on component-trees. Pattern Recognition, 44(10–11):2539–2554, 2011. doi: http://dx.
doi.org/10.1016/j.patcog.2011.03.025.

[5] N. Passat and B. Naegel. Selection of relevant nodes from component-trees in linear time. In
DGCI, volume 6607 of LNCS, pages 453–464. Springer, 2011. doi: http://dx.doi.org/10.1007/
978-3-642-19867-0_38.

10

http://dx.doi.org/10.1016/j.patcog.2009.03.008
http://dx.doi.org/10.1016/j.patcog.2009.03.008
http://dx.doi.org/10.1016/j.patcog.2011.03.025
http://dx.doi.org/10.1016/j.patcog.2011.03.025
http://dx.doi.org/10.1007/978-3-642-19867-0_38
http://dx.doi.org/10.1007/978-3-642-19867-0_38

	Short Presentation
	Component-tree
	Segmentation Based on Component-tree
	Problem to Solve
	Solution

	On Line Demo
	Algorithm
	Description
	Component-tree Computation
	Short Complexity Analysis

	Implementation
	Command Line Implementation
	Implementation Details

	Examples
	Drop Caps Segmentation
	Medical Images Segmentation
	Brainweb Images (simulated normal brain MRI data)
	In Vivo Foetal Brain MRI Images

