L'analyse et le traitement d'images IRM cérébrales
Résumé
L'imagerie par résonance magnétique (IRM) constitue l’une des modalités les plus fréquentes en imagerie médicale, au même titre que l’imagerie par
rayons X ou l’imagerie échographique. L’IRM associe les avantages de ces dernières modalités, sans toutefois pâtir de leurs faiblesses. Elle fournit en
effet un haut niveau de résolution spatiale et spectrale, sans induire de radiation nocive pour les patients, ni nécessiter (dans la plupart des cas)
l’injection de produit de contraste. Grâce à ces qualités, l’IRM est devenue la modalité d’acquisition d’images privilégiée pour la plupart des examens médicaux liés à des affections cérébrales. Dans ce contexte, des séquences d’acquisition spécifiques ont été progressivement développées afin de répondre à des besoins liés à des structures anatomiques ou pathologiques particulières (réseaux vasculaires, tumeurs, etc.) pour le diagnostic, le suivi ou le traitement des patients. Désormais, les scanners IRM constituent un équipement standard dans les centres hospitaliers. Pour les mêmes raisons d’efficacité et de sécurité, l’IRM constitue un remarquable outil de recherche pour l’étude in vivo du cerveau humain. Là encore, des séquences d’acquisition spécifiques permettent de progresser dans la compréhension de la structure du cerveau, de son développement (maturation cérébrale chez le foetus et le jeune enfant) et de son évolution (dégénérescence liée au vieillissement) mais aussi dans la compréhension de son fonctionnement,
tant sur le plan physiologique que cognitif. Les utilisateurs d’images IRM se trouvent toutefois confrontés à plusieurs défis, liés à la nature et au contenu de ces images. La première difficulté dérive des progrès constants accomplis par les constructeurs de scanners IRM. Les images bidimensionnelles ont désormais laissé la place à des images 3D, voire 4D (images en espace et en temps). Les volumes d’information deviennent alors tels que leur analyse par le seul oeil humain n’est plus possible. La résolution des images croît également, atteignant désormais des valeurs sous-millimétriques. Cette finesse de détails, associée à la très haute complexité anatomique du cerveau humain, aboutit à une seconde difficulté, liée à l’analyse sémantique des images IRM, qui – si elle repose sur l’expertise humaine – ne peut plus désormais se passer d’une assistance informatique. Dans ce contexte, des approches de traitement et d’analyse d’images sont développées afin d’aboutir à des outils informatiques, et notamment logiciels, capables d’assister les experts médicaux et les chercheurs dans leur utilisation des images IRM. En particulier, les problématiques considérées sont multiples, allant du signal jusqu’à la sémantique des images. Il convient tout d’abord de rendre les images acquises en IRM plus aisément lisibles, en les débarrassant
au mieux d’artéfacts visuels dus aux modalités physiques de leur acquisition (§ 1). Par ailleurs, il est nécessaire de permettre ou de faciliter l’analyse de ces images, par l’ extraction des structures d’intérêt (§ 2). Enfin, à un plus haut niveau d’analyse, il convient de pouvoir formaliser, regrouper et fusionner les informations extraites de ces images, afin d’aboutir à des modèles de connaissance toujours plus complets du cerveau humain (§ 3). Cet article propose un tour d’horizon des principales réponses apportées à ces trois familles de problèmes, dans le cadre de l’imagerie anatomique, qui s’intéresse
spécifiquement à la structure du cerveau plutôt qu’à son fonctionnement (dans ce contexte, il a été choisi de se focaliser sur les séquences les plus adéquates ; en particulier, des techniques d’imagerie telles que l’IRM fonctionnelle ou encore la spectroscopie ne seront pas traitées ci-après). Outre la
description d’approches générales désormais considérées comme des gold standards, des exemples plus spécifiques d’approches récentes viennent également illustrer les dernières innovations liées à des modalités en pleine expansion, telles que l’IRM périnatale, l’IRM angiographique, ou encore l’IRM de diffusion.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...