L. M. Donoho-d, S. J. , and P. J. , M. ? Compressed sensing MRI, IEEE Signal Processing Magazine, vol.25, pp.72-82, 2008.

B. P. Atkinson-d, H. D. Irarrazaval-p, and H. J. Larkman-d, ? Matrix description of general motion correction applied to multishot images, Magnetic Resonance in Medicine, vol.54, pp.1273-1280, 2005.

M. J. Herbst-m and . Speck-o, ? Prospective motion correction in brain imaging: A review, Magnetic Resonance in Medicine, vol.69, pp.621-636, 2013.

R. F. , G. O. Iordanova-b, . Rodriguez-carranza-c, B. B. Vigneron-d, and . Studholme-c, ? Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images, Academic Radiology, vol.13, pp.1072-1081, 2006.

K. K. , H. P. Rousseau-f, G. O. Barkovich-a, and . Studholme-c, ? Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation, IEEE Transactions on Medical Imaging, vol.29, pp.146-158, 2010.

M. J. Kober-t, . Krueger-g, . W. Van-der-zwaag, and . Van-de-moortele-p.-f, ? MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field, NeuroImage, vol.49, pp.1271-1281, 2010.

S. S. Noblet-v, . Rousseau-f, and R. L. Heitz-f, -P. ? Evaluation of brain atrophy estimation algorithms using simulated ground-truth data, Medical Image Analysis, vol.14, pp.373-389, 2010.

V. U. Pernus-f, ? A review of methods for correction of intensity inhomogeneity in MRI, IEEE Transactions on Medical Imaging, vol.26, pp.405-421, 2007.

P. S. , A. N. Barrick-t, and . Roberts-n, ? Maximum likelihood estimation of the bias field in MR brain images: Investigating different modelings of the imaging process, MICCAI, Proceedings, pp.811-819, 2001.

S. J. and Z. A. Evans-a, C. ? A nonparametric method for automatic correction of intensity nonuniformity in MRI data, IEEE Transactions on Medical Imaging, vol.17, pp.87-97, 1998.
URL : https://hal.archives-ouvertes.fr/in2p3-00085063

G. T. Sroka-l and . Jenne-steinmetz-c, ? Residual variance and residual pattern in nonlinear-regression, Biometrika, vol.73, pp.625-633, 1986.

M. S. Wavelet, Third Edition: The Sparse Way, Signal Processing, 2008.

S. S. Brady, A new approach to low level image processing, International Journal of Computer Vision, vol.23, pp.45-78, 1997.

C. P. , Y. P. , P. S. Hellier-p, . Kervrann-c, and . Barillot-c, ? An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images, IEEE Transactions on Medical Imaging, vol.27, pp.425-441, 2008.

D. P. Bloch-i, C. M. , R. D. Urtasun-r, and . Garnero-l, ? Topologically controlled segmentation of 3D magnetic resonance images of the head by using morphological operators, Pattern Recognition, vol.36, pp.2463-2478, 2003.

S. N. Aggarwal-l, Automated medical image segmentation techniques, Journal of Medical Physics, vol.35, pp.3-14, 2010.

B. J. Ehrlich-r and F. W. Fcm, The fuzzy c-means clustering algorithm, Computers & Geosciences, vol.10, pp.191-203, 1984.

C. B. Passat-n, . A. Habas-p, . Studholme-c, and . Rousseau-f, ? A non-local fuzzy segmentation method: Application to brain MRI, Pattern Recognition, vol.44, pp.1916-1927, 2011.

V. L. Soille-p, ? Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, pp.583-598, 1991.

P. D. Bazin-p.-l and . Prince, ? Digital topology in brain imaging, IEEE Signal Processing Magazine, vol.27, pp.51-59, 2010.

B. L. Pham-d, ? Topology-preserving tissue classification of magnetic resonance brain images, IEEE Transactions on Medical Imaging, vol.26, pp.487-496, 2007.

L. D. , A. E. Bloch-i, and . Funka-lea-g, ? A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes, Medical Image Analysis, vol.13, pp.819-845, 2009.

N. L. Talbot-h, Mathematical Morphology: From Theory to Applications, ISTE, 2010.

D. A. , T. O. Naegel-b, T. H. , R. C. Baruthio, and . Dokládal-p, ? Filtering and segmentation of 3D angiographic data: Advances based on mathematical morphology, Medical Image Analysis, vol.17, pp.147-164, 2013.

V. Essen and D. C. , The future of the human connectome, NeuroImage, vol.62, issue.2, pp.1299-1310, 2012.
DOI : 10.1016/j.neuroimage.2012.01.032

H. P. , C. L. Gigandet-x, H. C. Meuli-r, . J. Wedeen-v, and . Sporns-o, ? Mapping the structural core of human cerebral cortex, PLoS Biology, vol.6, p.159, 2008.

J. D. and K. T. Turner-r, ? White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI, NeuroImage, vol.73, pp.239-254, 2013.

N. V. , H. C. Heitz-f, and J. Armspach, -P. ? Retrospective evaluation of a topology preserving non-rigid registration method, Medical Image Analysis, vol.10, pp.366-384, 2006.

A. S. , J. J. Weeks-s, and . Bullitt-e, ? Registration and analysis of vascular images, International Journal of Computer Vision, vol.55, pp.123-138, 2003.

M. J. Viergever-m, A. ? A survey of medical image registration, Medical Image Analysis, vol.2, pp.1-36, 1998.

L. C. Gee-m, C. R. Wieler-m, and M. W. Beaulieu-c, ? Diffusion tensor imaging of white matter tract evolution over the lifespan, NeuroImage, vol.60, pp.340-352, 2012.

H. P. , K. K. Corbett-detig, G. O. Rousseau-f, . J. Barkovich-a, and . Studholme-c, ? A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation, NeuroImage, vol.53, pp.460-470, 2010.

H. P. , S. J. , R. A. , R. V. , K. K. Rousseau-f et al., ? Early folding patterns and asymmetries of the normal human brain detected from in utero MRI, Cerebral Cortex, vol.22, pp.13-25, 2011.

S. N. Prastawa-m, F. P. Vachet-c, W. B. Gilmore-j, and G. Gerig, ? Multivariate modeling of longitudinal MRI in early brain development with confidence measures, ISBI, Proceedings, pp.1388-1391, 2013.

G. U. Srivastava-a and . Saini-s, ? A pattern-theoretic characterization of biological growth, IEEE Transactions on Medical Imaging, vol.26, pp.648-659, 2007.

G. U. Miller-m, I. ? Computational anatomy: An emerging discipline, Quarterly of Applied Mathematics, vol.56, pp.617-694, 1998.

T. P. Woods-r and M. M. , W. ? Mathematical/computational challenges in creating deformable and probabilistic atlases of the human brain, Human Brain Mapping, vol.9, pp.81-92, 2000.

N. W. Volkau-i, T. A. Marchenko-y, and . Ng-t, ? A 3D model of human cerebrovasculature derived from 3T magnetic resonance angiography, NeuroInformatics, vol.7, pp.23-36, 2009.

N. B. Passat-n, ? Grey-level hit-or-miss transforms?Part II: Application to angiographic image processing, Pattern Recognition, vol.40, pp.648-658, 2007.

P. N. , R. C. Baruthio, and A. , ? Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation, Medical Image Analysis, vol.10, pp.259-274, 2006.

L. C. Von, ? A comprehensive shape model of the heart, Medical Image Analysis, vol.10, pp.657-670, 2006.

B. P. Chehikian-a, ? Analyse d'image. Traitements de bas niveau, Technologies logicielles et architecture des systèmes, 1999.

I. Medinriafr and F. , Sites Internet NITRC : « The source for neuroimaging tools and resources ADNI: Alzheimer's disease neuroimaging initiative HCP : Human Connectome Project. http://www.humanconnectome.org MICCAI Challenges : Grand Challenges in Medical Image Analysis. http://www.grandchallenge .org BrainWeb: Simulated brain database IBSR: Internet brain segmentation repository NIREP: Non-rigid Image Registration Evaluation Project. http://www.nirep.org Événements Congrès international annuel, www.ismrm.org Congrès international annuel : MICCAI ? Medical Image Computing and Computer Assisted Interventionwww.miccai.org Congrès international annuel : ISBI ? International Symposium on Biomedical Imaging. http://biomedicalimaging.org Congrès international annuel : OHBM ? Organization for Human Brain Mapping