N

N

Extraction of complex patterns from multiresolution
remote sensing images: A hierarchical top-down
methodology

Camille Kurtz, Nicolas Passat, Pierre Gancgarski, Anne Puissant

» To cite this version:

Camille Kurtz, Nicolas Passat, Pierre Gangarski, Anne Puissant. Extraction of complex patterns from
multiresolution remote sensing images: A hierarchical top-down methodology. Pattern Recognition,
2012, 45 (2), pp.685-706. 10.1016/j.patcog.2011.07.017 . hal-01694409v1

HAL Id: hal-01694409
https://hal.univ-reims.fr /hal-01694409v1
Submitted on 1 Mar 2018 (v1), last revised 5 Mar 2018 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.univ-reims.fr/hal-01694409v1
https://hal.archives-ouvertes.fr

Hierarchical segmentation of multiresolutfamultisource remote sensing images

Camille Kurt2*, Nicolas PassatPierre Gancarskj Anne Puissafit

aUniversité de Strasbourg, LSIIT, UMR CNRS 7005, France
buniversité de Strasbourg, LIVE, ERL CNRS 7230, France

Abstract

The extraction of urban patterns from Very High Spatial Retson (VHSR) images presents several challenges relatétetsize,
accuracy and complexity of the considered data. Based cavtiibility of several images of a same scene at variougutsns
(Medium, High and Very High Spatial Resolution), a hieracahapproach is proposed to iteratively extract segmehiisterest
from the lowest to the highest resolution data, and thenlfirddtermine urban patterns from VHSR images. This approach
inspired from the principle of photo-interpretation, has purpose to use as much as possible the user’s skills whiilanising

its interaction. In order to do so, at each resolution, iiegs an interactive segmentation of one sample regiongoh esemantic
class of the image, and then automatically reproduces thiesusehaviour in the remainder of the image. This processaly
based on tree-cuts in binary partition trees. Since it gfiyprelies on user-defined segmentation examples, it cashiavonly low
level —spatial and radiometric— criteria, then enablirg fomputation of comprehensive results. Experimentopmigd on urban
images datasets provide satisfactory results which maytedr used for objects detection and classification puepos

Keywords: hierarchical segmentation, binary partition trees, nsoliirce images, multiresolution, interacf&etomated
segmentation, remote sensing, urban analysis

1. Introduction range of spatial resolutions can enable the extraction t#rpo

In the field of Earth observation, a new generation of sen-tIaIIy hierarchical pattems, especially when such dagapo-

. . . vided by diferent acquisition devices, providing complemen-

sors of submgtrlc resolut|o_r11 has l?d’ at the e_nd of the 90.3’ tary information at distinct radiometric bands (see Figgje
o the product|on.of very ngh.S.pauaI Resolution (VHSR) im- Such new segmentation tools should allow the end-user to
28;31 ’i::';d et: ?)gsl?;%r%\gand Ztt);leltr)(la to( %n d?\l,ﬁﬁaTLboaunszgenZi' I<5’btain satisfactory results, at possiblytdrent levels of pattern
d % ' f q bp . :g terial d ' 9 extraction {.e., scales), with minimal time (by automating the

ens, roa s) are formed byfren materia sd.9, red orgrey  tasks which do not require human expertise), minintédrés
roofs, diferent asphalts or fierent kinds of vegetation), while (by reducing the parameters induced dyriori knowledge)
complex onesd.g, urban districts, urban blocks) generally and ergonomic interaction '
contain dfferent kinds of basg: patterns (see Figdje Thus, In order to do so, it is possible to involve the data available
by opposition to lower resolution images, all these pateme

not necessarily composed of homogeneous pixels (but a oft at several resolutions (from Medium Spatial Resolution BYIS
. . y P 9 P to VHSR ones) ] in a hierarchical strategy which enables, at
hierarchically organised).

These specific properties induced by VHSR images lead 2 given resolution, the exploration of the whole structurarm

new challenges, for human experts (since the size and cam leurban sceneq 7]. By analysing first the image content at a
. =Nges, nexp . . BMPIE-Harse resolution and then gradually increasing this utisol
ity of the images make visual analysis a time consuming an

. . . 8], itis in particular possible to detect complex patterniigi
error prone task), and for 'mage anal¥5|s tools (since miitho structure the scene) while avoiding the semantic noisededu
developed for lower resolutions,g, region-based oneg|[ 3],

. : by the details 9].
are generally designed to extract segments based on rafiome Based on these considerations, a hierarchical approach is
homogeneous hypotheses). '

. . roposed to iteratively extract, from multiresolution i of
In this context, and due to the actual importance to analysg P y 9o

VHSR images4] in addition to lower spatial resolution ones, it same urban scene, segments of interest from the lowest to th
: . ' highest resolution data (by opposition to ascendant agpesa
is then useful to develop tools adapted to the extractiomof-c g (by opp Bh

plex patterns from such data, and in particular (low-legef)- often proposed in the literatur&(]), and then finally determine

mentation ones. Moreover, the availability of data with @éa urban pattgrng from VHSR'|mages. Th's approach, inspired
from the principle of photo-interpretation, has for purpds

use as much as possible the user’s skills while minimisisg it
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unable to directly extract more complex structure at a highe
semantic level.

Moreover, when dealing with HSR imagesffdirent com-
posite objects could be merged to form new kinds of strusture
of interests enabling fferent levels of analysis. For instance,
the main environments, such as urban areas, rural zones, or
forests, can be identified at coarsest levels, while morailéeit
structures, such as buildings and roads, will emerge atrilestfi
ones P]. Thus, diferent objects can emerge at various scales
and be related according to some suitable criteria in a fdkira
cal structure. Consequently, it is needed to improve “gnogip
Figure 1: Example of object of interest (a urban block) deguidn red ona  gapproaches” by considering hierarchical strategies tblerthe
Eacnocrtl;g&atlg;: satellite image with a spatial resolution@®E®. (FIXME: origin (potential) extraction of more complex structure (with gher

' semantic level).
To this end, some techniques providing a multiscale parti-
user’s behaviour in the remainder of the image. This procestioning have been recently proposed.
is mainly based on tree-cuts in binary partition trees. &iiic
strongly relies on user-defined segmentation examplegnit ¢ 2-2. Multiscale partitioning
involve only low level —spatial and radiometric— criterthen Multiscalghierarchical segmentation methods compute a
enabling fast computation of comprehensive results. series of partitions of an image with an increasing (or daeste

The article, which is an extended and improved version oing) level of details. Such methods have been widely studied
the preliminary work described iri[l], is organised as follows. for the last decades (se=g, [13] for an example of pioneering
Section?2 provides a state of the art on hierarchical and multires-work).
olution segmentation dealing with (but not restricted tajiote In the field of remote sensing (and especially for HSR im-
sensing data. Sectiof describes the proposed segmentationages), several techniques have been proposed4ndompo-
method. Sectiom gathers experiments enabling to assess theitions of opening and closing operations with structueter
relevance of the approach. Conclusions and perspectides wiments (SEs) of increasing sizes generate morphologictilgso
be found in Sectio®. for any pixel, enabling their characterisation. Althouglorm
phological profiles are sensitive tofflirent pixel neighbour-
hoods, the segmentation decision is performed by individua
evaluating pixels without considering the neighbourhaddi-
mation, and the assumption that all pixels in a structureshav
only one significant derivative maximum occurring at the sam
'SE size often does not hold for very high resolution images. T
overcome this limitation, new approaches have been prabose
In [6], morphological profiles are enriched with neighbourhood
and spectral information, while inlp], a framework is pro-
ﬁ’osed to detect complex objects in HSR images by combining
spectral information with structural one. These approa&me-
phasise the potential of hierarchical segmentation. Hewev
these “pixel-based” methods hardly take into account the in
trinsic and semantic information of the images, by oppositi
to “object-based” ones.

An object-based segmentation hierarchy is a set of image
segmentations at fierent levels of detail in which the segmen-
Ration at a level can be produced by merging regions at finer
4evels. Such hierarchies can be built by following two oppo-
site paths. In the top-down approaches, the process stants f

coarse segmentation and successively refines the regiens,
in [16], where segmentation is treated as a graph partitioning
problem. However, such an approach, which makes the as-
sumption that the images contain only few objects of intsriss
not adapted to capture the richness and complexity of HSR im-
ages. Another approach can be foundlid][ where a top-down

ofb {ECts} 'S dlregtly rl]lr:keﬂ 0 the c:juaht%/ gfttht‘i] 'T;!altf)mnn t.Construction scheme for irregular pyramids is presentealt-S
ofthe image. such techniques, devoted o he Tirst-seran Iing from an initial topological map, regions are succedgive-

level of complex objectse(g, complex buildings) then seems fined by splitting operations. However, finding a relevamda

2. Related work

2.1. Complex objects segmentation

features from satellite images, in order to involve thenoint
learning systems. This extraction, often performed thaoks
low-level processing, generally relies on radiometric loge-
neousness hypotheses. This can lead to valid results for b
sic objects extraction from High Spatial Resolution (HSR) i
ages P], but not for images€.g, VHSR ones) anfr objects

of higher complexity 8].

A way to extract complex objects is by grouping several
basic ones, using, for instance, a graph-based approa@p-A r
resentative example is proposed 0], where a graph-based
structural pattern recognition system is used to infer Oroa-
egories of urban land use from HSR images. (This system h
been considered to analyse discrete land cover parcelkby t
ing into account the structural properties and the relatioe-
tween simple objects.) Another example of such approach ¢
be found in 2] in which a set of particular subgraphs of a val-
ued graph is introduced. However, two major problems are in
herent to such approaches. Firstly, computing all the graup
possibilities within the (large) space of candidate segmen
not actually feasible. Secondly, the capacity to detectperm
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(a) 1 pixel=10mx 10 m (c) 1 pixel= 60 cmx 60 cm

Figure 2: Satellite images representing the same geogm@phrea with dierent spatial resolutions and infidirent radiometric bands. (a) Medium Spatial
Resolution (MSR) image. (b) High Spatial Resolution (HSRage. (c) Very High Spatial Resolution (VHSR) image.

(FIXME: bands+ origin + copyright?)

robust) splitting function remains an open issue. In theranmo ity paradigm, has been recently introduced28|[and applied
frequent, bottom-up approaches (“region merging” or ‘smtid ~ to process VHSR images i@9]. The connectivity relation gen-
merges” methods), the finest segmentations are productd firgrates a partition of the image definition domain. Fine tosea
and their regions are then merged, based on similarity-critepartition hierarchies are then produced by varying a troksh

ria [18]. In remote sensing, various algorithms use this princi-value associated with each connectivity constraint.

ple. Forinstance, inl[9], a hierarchical segmentation algorithm Approaches based on connected operators have shown en-
that combines spectral clustering with iterative regioovgng  couraging results in the context of complex objects eximact

is proposed. The multiscale segmentation algorithm ptesen However, in the case of remote sensing, they are limited by th
in [20] also consists of bottom—up region merging, where eaclspatial and spectral properties of the images. Indeed, lmp
pixel is initially considered as a separate object and pdich-  objects appear in (V)HSR images too much heterogeneous to
jects are iteratively merged to form new larger ones. 4f],[]  be extracted in an ascendant way. This justifies the use of mul
segmentation is performed through a region merging proces#resolution data to enhance their ability to extract suzmplex
carried out by hierarchical stepwise optimisation. Themisi  objects.

sue with such approaches is that the segmentation results de

pend on the user-defined threshold related to local homegen&.3. Exploiting multiresolution data

ity criteria. An alternative solution is proposed i29. In this Structures of interest in images may generally have very
approach, the goal is to detect complex urban structuregusi gjfferent sizes and be formed by various heterogeneous objects.
a hierarchical multiple Markov chain model. It considers th | order to cope with this variability, either the used featl
image as a complex collection of textures, emergingf@int st e size invariant, or the image must be processedat-di
scales of observation, and non-textured patches. The NMergi ent resolutions. As the resolution gets coarser from thahef
process exploits textural image properties, together &t original image, larger (and thus, complex) structures fivat
tial and spectral ones, in order to recognise the semaniig un \ide the general image context can be represented withing be
of complex regions. However, such criteria, useful to esttra ¢onyoluted with the details. This property has led to thestiev
textural objects, are not relevant for objects formed byesav  opment of segmentation methods using multiresolution. data
heterogeneous components. A way to deal with multiresolution data is to generate im-
In mathematical morphology, connected operatd® 24 ages with lower resolution than the original (monoresotali
may be used in a hierarchical segmentation fashion by usingyne in order to enable the extraction offfdient levels of
for instance, tree data structures. Notions such as conmpone getails. Numerous approaches has been proposed using the
tree (25 and level-lines treeZ6], potentially enable to per- \yavelet transform30, 31], which provides hierarchical frame-
form hierarchical segmentation, by enabling the fusion aff fl ok for interpreting the image. In particular, i82, 33], some
zones. However, such structures strongly relying on the imaytensions of the watershed segmentation have been pbpose
age intensity and in particular on extremal values, theiobth 5 geal with multiresolution images provided by wavelet ap-
segmented components may be non relevant in the case of satgfoaches. However the major drawback of this family of meth-
lite images. By opposition, the binary partition tree (BRT)  ods is to introduce new contours during the segmentation pro
reflects a (chosen) similarity measure between neighbguein  cass which are not relevant to the extraction of complexaibje
gions, and models the hierarchy between these regiatsie In remote sensing, the wide variety of sensors directly pro-
tree structure. The BPT represents a set of regionsfiardnt  \jjes multiresolution set of images., MSR, HSR, VHSR).
scales of resolution and its nodes provide good estimatiéis (W |t is then not required to produce degraded images. A way to
respect to the chosen measure) of the objects in the scétas It geg with such multiresolution satellite images consigtsom-
been used to extract complex objects from various kinds ef imbining all the descriptions of the objects associated todifve
ages P7]. Alast approach, based on the constrained connectivferent resolutions into a unique image at the highest réisolu
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[34, 35] and then segmenting the output result. For instance3.2. Images
several approache8§, 37] use a pansharpening fusion tech- | etE = [0, d,—1]x[0, dy—1] c Z2. The se€ corresponds
nique, which consists of fusing low spatial resolution mult 5 the discretisation of the continuous spaiaa,(the part ofR?)
spectral images with high spatial resolution panchromiatic  \hich will be visualised in the images. (Note that, withcags
ages to obtain high spatial resolution multispectral insade  of generality,E may also be any connected subseaf for
such cases, the segmentation performances are, of coérse, g given connectivitye.g, the 4- or 8-connectivity) An element
fected by possible errors induced by this fusion step. x = (x,y) € E is called a pixel, and physically corresponds to a
Recently, new approaches dealing with multiresolution im-cypic square region in the continuous counterpa of
ages without fusion have been proposed. These methods aim at | et \, = [0,v, — 1] ¢ Z. The setV, corresponds to the
discovering the structural decomposition of the studiehes  gjscrete sampling of the intensities observed for a givexsal
by using images with dierent spatial resolutions. Forinstance, hand. Letv = []5_, Vi, ¢ Z° (s > 1). The set corresponds

in [5] a hierarchical multiresolution segmentation method isig the discrete sampling of the intensities observedsfgiven
proposed to extract complex object from such images. Baseghectral bands.

on a bottom-up approach, the proposed algorithm works first A monovalue image is a functiofi, : E — V, which to

on the high-resolution data, performing an over-segm@mtat ogch pointx = (x,y) € E of the scene, associates a spectral
devoted to preserve fine details. The initial over-segntemta intensity Zp(x) = vin exactly one spectral band.

produces a large number of elementary regions which are then A multivalue image is a functiod : E — V (with s > 1)
progressively merged, based on both spectral and spatipt pr \yhich to each poink = (x,y) € E associates a vector af

erties, in a hierarchical fashion. This method providesiss  gpectral intensitieg (x) = v = [15_, T(X) in the considered
ing results but does not fully exploit the richnesteced by the  gpectral bands.

images at low resolutions. Indeed, it may seem relevant$e po

sibly adopt an opposite strategy. By analysing first the ienag 3 3. Segmentation, clustering

content at a coarse resolution and then gradually incrgdiis A segmentation of an imagg : E — V is a partition® =
resolution, it is possible to detect complex patterns wénieid- (RIL, (t > 2) of E. Equivalently, such a segmentatiencan

ing the semantic noise induced by the details, as propesgd, . . i . .
in [38]. This process is also similar to the strategy used by thebe considered as a functiohs : E — [1.1] (i.e. a "false

(- H - _ 1/
human vision system, already considered9n 39 to create Colour” image) unambiguously defined By = 7 s ({i}) for all

: . i €[1,t].
thematic map from HSR and MSR images. Let& = {R}_, be a partition ofE, associated to an image

2.4. Purpose I :E - V,andZg : E — [1,t] be the image induced by

Based on these considerations, we propose a hierarchicg\' A clustering of 7 into u classes is provided by the defini-

top-down segmentation method, extending the BPT to dehl witt'on. of Emapc :.l[tl’t]l - l[hﬂ.cvl\'hwh;q eiChl orle ?J_t.he
multiresolution images. It combines the advantages ofinagk regions, assoclates one o assew(i). A clusterk; in-

olution strategies and thefiency of the connected operators duced by such a clustering is then definedy: U jec-1qi Ris

approaches, in the context of the mapping of urban areas. It € by ggthermg all the regiorf3; which correspond to a same
based on interactive tree-cut segmentation (based on il sk class.. Similarly tq -the case of segmentat!on, each clmgér!
of the end-user), defined by the user on a part of the image fa.n Image’ part!tlone(‘j‘ by can be”c'on5|dered as gfuncﬂon
and automatically reproduced on the whole data. The methog®, E = [1, 4] (i.e, a*false colour” image) unambiguously
operates first on the low resolution data, extracting théajllo efined bylc =Co Ie.

structure of the scene, and subsequently enriches thisiplesc 3.4. Histoarams
tion thanks to the high resolution data. It aims, in parécut T 9

understanding the scene in the same way as the human vision The histogram of an imagé : E — V, is the function
system. ‘Hr : V — N which associates to each value V the number

Hr(v) = | 771({v}))| of pixels of I of valuev.

The histogram off associated to a subskt C E is the
functionHr x : V — N which associates to each value V
3.1. Sets and functions the numberH;(v) = [771({v}) N X|, i.e., the histogram of the

Let X be a finite set. The set of all the subsetXphamely ~ restriction of7 to X.
{Y ] Y C X} is noted Z. The cardinal oiX is notedX|. If a set
At X i i
{X'}i=1 €2 (t 2 1) of subsets oK is a partition ofX, we note 1This definition which enables to conveniently formaliseamitjbased clus-

thatX = [ [i_; Xi (or X = Xg U Xp... LU Xp). tering, also enable to deal with pixel-based clusteringitnply assuming that
A function F from a setX to a setY is notedF : X — Y. S = {{x} | x € E}, i.e., by partitioning the image into pixels instead of larger

For anyZ C X, the image oZ by F, namely{F(2) | z€ Z}is  regions.
notedF(Z). For anyT C Y, the preimage of by F, namely
{t| F(t) € T} is notedF~*(T).
An interval onR bounded bya, b € R will be noted R, b].
An interval onZ bounded bya, b € Z will be noted [a, b].

3. Definitions and notations
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Figure 3: Interactive segmentation method (see Sedtity In green: inpybutput. In red: user interactions. In blue: automatic pssegg.FIXME: complete the
figure accordingly.

3.5. Binary partition tree (i) an example-based segmentation approach;
Let7 : E — V be animage. A binary partition tree (BPT) (i) a multiresolution clustering approach.

[7] of I is a tree data-structure that provides a hierarchy of ren aoch resolutiofstep, the output of the process (namely a seg-

gions ofE with respect tal’. mentation map) is embedded into the next resolution image to
More formally, a BPT off is a couple &, ¢) such that\V C be treated as input of the next step.

£ g )
2~ is asetof subsets & verifying E € N, andy - N\E} > N The interactive segmentation approadh ié an original
is & function verifying the following properties: strategy, which constitutes another contribution of thiicke.
(P) foranyN € o(N \{E}) we havayL({N}) = {N1, No} such  Itis then first presented in details in Sectiérl
thatN; # N, € N andN = N; U N, The whole segmentation methodology, is then presented in

details in Sectiort.2 Since the multiresolution clustering ap-
The elements olV are called the nodes of the BPT. The func- proach {i) has already been fully described by the authors in

tion ¢ models the “parent” relation between the nodes: broadl3[40], it is only briefly recalled in Section.2.2
speaking, ifN; = ¢(N2), thenN; (resp.Ny) is the “father” (resp.
a “child”) of N, (resp.Nz). The nodeE is the root of the BPT.
The nodes ofV \ ¢(N \ {E}), i.e., those how have no children,
are the leaves of the BPT.

Practically,o enables to recursively dividg into several
partitions, successively obtained by splitting exacthe ate-
ment of the current partition into two subsets. Note in ailftr
that the setV \ (N \ {E}) (resp.{E} constitutes a partition, and
actually the finest (resp. the coarsest) on&afith respect to

@.

4.1. Example-based segmentation

One of the main steps of the proposed segmentation
methodology consists of a segmentation method visually- sum
marised in Figure.

This method takes as inpkit- 2 images of dierent scenes,
having the same resolution and semantics, and providededy th
same sensoe(g, 10 images of 10 distinct urban districts com-
posed of roads and individual houses).

For one of thekimages the user first proposes a segmenta-

is called a cut. Practically, the nodes®©fdefine a subtree of tion, by performing a cut in the image BPT. interactively-per

the initial BPT, of rootE and of leave£ (this tree being also a forms a segmentation, by performing acutin its BPT' This cut
BPT). is assumed to correctly characterise the user-defined sggme

tion, and is then considered as an example to reproduce in the
BPTs of thek — 1 other images. The three key-points of the ap-
4. Methodology proach are theri)the way to build the BPTs (Sectidnl.J), (ii)

the learning of the cut example on one image (Secdlidn?),

The proposed multiresolution methodology is dedicated Qi) its automatic reproduction in the- 1 other ones (Sec-
hierarchically segment > 2 images of a same scene at variousy;,, 4.1.3.

resolutions, from the lowest to the highest one, enablifigdi

ent scales of interpretation. In the classical case, thmeges 4 1 ¢ Computing the binary partition trees

are considered, name_Iy a MSR (30-5m), a HSR (3-1m) and a As stated in SectioB.5 the BPT of an image¢ : E —» V

VH_SI_E (less tharl 1tm) |matghe.d | hich titutes th .is built in a bottom-up fashioni,e., from its leaves to its root.
1S segmentation metnodology, which constitLites the m6"rl5ractically, based on an initial partition & (generally com-

contribution of this article, is performs successive steps (one posed by the singleton sdtg, for all x e E, or by the flat zones

step for each resolution), each step being iteratively avsad ¢ 1), the nodes of\’ (and th’us,o) are suécessively defined by

of. fusion of couples of (already defined) nodeshffor which ¢

Each subse€ C N of nodes such thal is a partition ofE



By opposition toM; and a, the computation of which
is actually straightforward, the elongatioa requires to
(pre)compute an elongation map associated tewhich will
emphasise linear structures,g, roads, rivers and railways)
thus dividingE into (large) regions. The detection of linear,
or more generally elongated, structures has led to a huggadit
ture (the description of which is out of the scope of thisce)i.

g Our purpose, here, is not to get the best elongation redults,
(a) HSR image to be able to compute correct elongations with a low computa-
tional cost. Following this heuristic (but pragmatic) pglithe
following strategy is considered for generating the eldiuge
mape:

(1) for each pixelx € E (considered as a seed), a series of
region-growing segmentations (based on radiometric in-
tensity) is performed with an increasing tolerance;

(2) for each segmentation, a score is computed using the ra-
tio width/length of the best bounding box of the region
(computed in several discrete orientations);

(3) the besti(e., the highest) elongation value is then as-
signed tox.

Figst”e 4: Elongation map ‘?Oi:”Pt;"g“O” (see :j‘?Xt)- I(a) HigmﬁbResol'U“O” 4 This approach presents an algorithmic cost bounded, fdr eac
g?rugﬂ'r?f ?negiﬁ'\gi; Onrgfr?_%kt)i]g)at:érﬁiggrin 'ggrﬁ g?ggt.'on map (elongate pixel, by thg area of the neighbourhood where step (1) iiexhrr
out (which, in practice, needs not to be high). The comporati
of the elongation map is then globally linear with respedthi®
has not been defined yet. (In the context of image segmentatiosize ofE. Figure4 provides an example of an elongation map
such couples of nodes are generally chosen as spatiallgeadja obtained thanks to this strategy.
ones, thus leading only to connected node&/in
A huge number of distinct BPTs may be obtained for aMerging criterion. The basic merging criterion used in most
unique initial partition ofE. In order to decide which one Of image segmentation approaches is generally radiontedric
among them will be the most relevant, it is then necessary téhogeneity{? ]. However, when dealing with (V)HSR images,
define a “merging order”.e. to decide of the priority of the geometrical details also have to be taken in considera@on-
fusions between nodes. A BPT generation then relies on twgequently, as indicated in the above region model, we pepos
main notions: aegion mode(which specifies how regions are t0 rely on both the increase of the ranges of the intensity val
characterised), andraerging criterion(which defines the simi- ues (for each spectral band) and on area and elongation of the
larity of neighbouring regions and, thus, the merging oydier regions in order to merge in priority objects which do notistr
the sequel, the chosen region model and merging criterien ature the scene. This leads to the following merging criteria
defined. It has to be noticed that it has been chosen to involve lws ' ' : ' _
only “low-level” properties in these notions, since we cides 8'((2 E’)) B i&aljgﬁvf(;%gg)))} — minf, (R), v, (R))}
that the “high-level” (semantic) knowledge is provided ke t gu s 2 ) )
approach by the user, via its segmentation example. FIXME: normalisation ofe vs. & The similarity measure be-
tween two neighbouring regiorf® andR; can then be com-

(b) Elongation map

Region model. A nodgregionR; € N (and thusR; C E) is puted as
modelled here by a couple of values

O(R,Ri) = .0/ (R, R 1-a).0q4(R;, R
M (R) = (Ve (R). Ve (R, (R, Ry)) = a.0:(R, Ry) + (1 - @).04(R;, Ry)

Mg(R) = (e(R), a(R)) with « € [0, 1]. FIXME: normalisation ofO, vs. Qy? In prac-
tice, the closest the nodes are to the root, the less rel&ant

wherevy provides the extremal values for theh spectralband  js. Consequently, the weightcan be defined as a function de-
in 7 (i.e., in Ib), while e anda provide the elongation and the pending direcﬂy on the value @ (and decreasing wheo,
area, respectively. Broadly speakirid, andMg provide (Ilow- increases). In particular, it has been experimentally okese
level) spectral and geometric information, respectivBlyring  that a standard Gaussian formulation
the merging process, the region model of two merged regions
R andR; is then provided by a(Or) = exp(-07)

M, (R UR}) = (Min{v; (R), Vg (R})}, maxvi: (R), Vi (RS, provides a satisfactory behaviour of the merging functan
My(R UR)) = (&R UR)). a(R) + A(R))) - (Note in particular that the user may be free to tune this func

tion, by introducing parameters in(O;) enabling to control,
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oo (with R € E), the criterion characterising is its (normalised)

histogramHrx : V — N (with Yoy Hrx(v) = 1). FIXME
how is determined u? FIXME how are computed the cen-
troids?This process leads to the definition of a seticfusters
{K.}I 1 associated to a set ufcentrmds{?{.}I 1» €ach centroid
Hi : V — N being actually an “averaged” (normalised) his-
togram of the clusteK;. FIXME is it true?

FIXME: unclear (to discuss together) Centroid-based clus-
tering algorithms require a distance (and an averaging aagth
to compare each object to classify. The classical distased u
to compare two histograms is the Euclidean one. Howeve, thi
_ . . distance sfiers from the problem of thehyfling invariance
Figure 5: An example of BPT associated to the HSR imageE — V pre- property. This property is not desirable in the distanceveen
sented in Figurd(a) (the number of nodes is significantly reduced, for thesak . .
of readability). The nodes o¥ are depicted by colour disks (the rdétis the the histograms O.f Qr_dlnal type mea$uremems- Levels C.Ebmqt
highest node). The functiopis modelled by the couples of edges (linking two permuted by definition of ordering in levels. To deal withsthi
nodesNy, N with their common parent node(N1) = ¢(Nz). The colours of  jssue, a solution consists in using the Dynamic Time Warping
the nodes (from yellow to red) symbolise the decrease ofithézsity mea-  jigiance [42] which enables small distorsions on the ragtem
sureO, between two neighbouring regions (and thus, also the deerefithe . . . .. .
function e controlling the trade-f5 betweenO; andQg). For the sake of visu- ~ [1C axIs. Associated to this distance, an averaging methasl w

alisation, three partitions d associated to three cuts of the BPT are depicted. introduced in [43].
FIXME: figure to modify.

cut 2

Scale

4.1.3. Automatic reproduction of the cut example

The segmentation example provided by the user is then
modelled by thes centroids obtained from the cut of the BPT of
one of thek images. These centroids then have to be involved
h the automatic segmentation of tke- 1 other images.

This can be conveniently done by finding, for each one of
thek — 1 imagesr; (j € [1,k— 1]), a cutC;j in the BPT of7},
minimising an inertigFIXME: why “inertia”? between the set
Yof centroidg#H;};! ; and the set of nodéSs; (or, more precisely,
the set of normahsed histogra®r, x}xec;). The inertial (C;)

e.g, the asymptotic behaviour af andor the value ofO; for
whicha = 1-«.)

Based on these chosen region model and merging criterion
the BPT can then finally be built, as exemplified in Figbre

4.1.2. Learning of the cut example
By opposition to other strategies devoted to automaticall
extract cutsfrom BPTs? [6, 41], with the risk of generating
non-relevant resu_lts, we propose to learn the user’s behavi associated to a c@;, with respect to the set of clustelrs )"
from a segmentation example. i=1
can be defined as
Indeed, the proposed approach allows the user to interac-
tively select a relevant segmentation in one ofklmages, and UXeC
equivalently, a relevant cut in the BPT of this image. In or- I(C)) = Z | Uxec, X
der to be able to “reproduce at best” this example in the other
k — 1 imagegBPTs, it is first necessary to learn this example,FIXME what isd? FIXME why “2” in d?? whereCij cCjis
i.e. to extract the elements of knowledge which characterise ithe set of the nodes whose histogram is closer (with respect t
and then enable its reproduction. d) of the centroidH; than of any otheu— 1 centroids (note that
In previous works11], the cuts in these BPTs were straight- C; = | |i lC') and?{, j is the (weighted) mean histogram of
forwardly obtained by performing a thresholding on the simi the node ¢ C' ie.
larity measure (calle@nergyin the sequelFIXME: formally
define the energgelated to thed function, at the value induced H- Z CH
by the user’'s example. In the sequel of this section, we geovi b= | UXEC. x| X
an alternative strategy designed to more accurately mih@c t
user’s behaviour. A climbing algorithm can then be applied to find the best
LetC c N be the cut defined in the BPT interactively pro- cutC; ¢ Aj among the set of node; of the BPT ofZ ;. This
cessed by the user. This dQtis first partitioned into two sub- algorithm can be formalisetlas
setsC. andCg, corresponding to the nodesgions being elon-

dz(ﬂ_i.,-,%)

XC'

gated and non-elongated, respectivéyich a partition can be Ci=7(E)
straightforwardly obtained by a 2-class clustering preces,
a K-means based on the attribitef the nodesThe objects of 2|t can be noticed that this algorithm is actually bettereiito be applied

interest for the proposed approach are then thosgspivhich to a restricted part of the BPT dfj, which corresponds to the tree induced by

« » : the subseiVjs C I; corresponding to the non-linear regions &f. This is
correspond to the areas “bounded by the linear elemerts.of justified by the fact that the involved centroids have been obtained from the

A clustering processvhich one? is then carried out on  clustering of the subset of non-linear nodgs as described in Sectioh1.2
the regions ofCs. This clustering is based on the histogram From a practical point of view, this reduction of the BPT does intrinsically

of each regionj e. for each regiorR €cCsof I 'E > V modify the algorithmic process proposed here. The main tiffergnce arei)
o € ' the fact hat the considered tree is no longer a binary onegsimode may have
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Figure 6: Work-flow overview (see Set.2). In green: inpybutput.
wherefF : Nj — 2Vi is (recursively) defined as methodology is devoted to hierarchically segment sevenal i
ages of a same scene, at various resolutions, from the loavest

F(N) = {N} the highest one.

) L Practically, it takes as input:
if N ¢ o(N;\{E}), i.e,if Nis aleaf of the BPT, and as

e aset{;: E — Vi}', of n>2imagesi = 3 in the gen-
{N} if 1(N) < Znregrny 1N eral cases, see SectiBhof a same scene, at increasing
Unvegrny F(N) - otherwise resolutions, and with possiblyfiierent sensors (and thus

different spectral bands);

FN) = {

if N € o(N;\({E}), i.e,if Nis nota leaf of the BPT.
By performing this algorithm on each one of tke- 1 im-  and provides as output:

ages, we then automatically obtdin- 1 segmentations bein .
9 Y g 9 e a set of{Ig;}l, of segmented images (one per con-

close to the segmentation example provided by the user. ) . i= ; : . . .
g Pep y sidered imaggesolution), hierarchically linked, enabling

4.2. Multiresolution methodology different scales of interpretation.

In this section, we now describe the whole multiresolutionParameters: tolerance, neighbourhood radius, and ofiensa
methodology, which constitutes the core of this article.isTh ine(.), a, b € a(.), number of centroids.

The methodology is divided into successive (and similar
R steps), each step being devoted to the analysis of one image
0, 1 or 2 children, instead of either 0 or 2, arig {he fact thaCj does no longer T, among then ones (from the imagé; of lowest resolution,

constitute a partition oE. However, the “missing” nodes necessary to recover ; ; ; ~
a partition may be easily (and deterministically) retrig\®y embedding;j in to the imageZy, of highest resolution). At théth step, the

the initial BPT. For the sake of readability (and withoutdas correctness), we imagefky is considered (it is then assumed that the imafjes
then preferred to present the formalised algorithm on theleyBPT. (i € [1,k - 1]) have already been processed).




Each S.tep relies On).(the segmentathn of the Cyrrent im- Table 1: Typologies and levels used by end-users to map areas at dferent
age (Sectiod.2.1), and (i) its multiresolution clustering (Sec- ¢ s,

tion 4.2.9. The reader may refer to Figuéeto visually follow 1:10, 000-1:25, 000 1:10, 000 1:5, 000

1Nt Urb: level Urban blocks level Urb bj level
the description of the methodology. roan areas e e T

- red tile roofs
. « Continuous urban blocks B I?ghtgrey resiqenual roofs
h - light |
421 Image SegmentaUOn . High-den;ity urban fabI"iC .3I§SR?§S:|O$E:T;2?£C“ oV;gei;?g?‘lTemila roofs
Thanks to the previous processingff 1, a clustering of industimaveas | - Collcive ubanblocks o photbeynihaticvegetation

Iy : Ex = Vkinto U clustersFIXME: how is ux_; deter- e e s « Ut vegetaton ivictti
mined?is already availabfe (For instance, in Figur6, a clus-  Dlater surfaces « Adrulural zones ,w;;‘;'gﬁg";;g
tering of 7', into three (blue—water, green—urban vegetation and « Roads natura water bodies
yellow—urban areas) clusters is available.) These clsistar : Sare soil

able to divideZy into u,_; semantic classes corresponding of
the level of details of the (lower) resolution &f_;.

Each one of these classes may then be decomposed into né@Rd (2) the “high” resolution semantic clustering Bf (pro-
classes corresponding to the level of detail$ofln orderto do  vided by a classical clustering method directly applied loa t
S0, it is necessary to perform a segmentation of the parteof thradiometric values of the pixels), to obtain a final clustgnie-
image corresponding to each one of the; semantic classes, Sult corresponding to an mixed semantic level. For eacloregi
i.e. to segment the subimagh; : K; — Vi of 7y defined R € &, a “composition” histogram is indeed computed taking
on the clusteK; C E for anyi € [1, uc1] (note that the user into account the distribution of the pixels Bfin terms of clus-
may however choose to restrict his study to only certaine$éh  ter values in the highest resolution clustered image. Thad fin
classes, thus leading to a partial analysis of the images). clustering resultis computed by classifying (in an unsujsed

For each considered semantic class [1, u_1], the seg-  way) the regions of the lowest resolution segmented image us
mentation of7y; : Ki — Vi is carried out thanks to the ap- ing these composition histograms.
proach proposed in Sectighl Indeed,K; can be partitioned Finally, these classified segments are embedded in the next
into several (disconnected) regions, inducing severahsages ~ resolution, thus forming, for each resulting class, a newilfa
of I\; of same resolution and semantics, and provided by th@f subimages which can be processed by following the same
same sensor. These subimages can then conveniently be uséi@tegy.
as input for the previously described example-based imege s
mentation apprc_)ach. The user then performs the se_gmenntati%' Experimental studies
of one of these images (Sectiofd.1and4.1.2, and this sec-
tion is then automatically reproduced in all the other sudmes  5.1. Applicative context

(Sectlons4.1.2and4.1.3. i i In the domain of urban planning and management a wide

The segmentation imagée « obtained by gathering the 546 of object nomenclatures has been defined. For instance
U1 segmented subimages corresponding touhg semantic 6 "corine Land Cover nomenclature has been defined for
classes constitutes the output of the step (and a partiplibot Landsat images (30 m spatial resolution), whereas the SPOT
the whole methodology). _ Thema nomenclature has been defined for Spot images (5-20

FIXME: topological correction? m). These existing products enable mapping of urban areas, r

i . ) spectively, from 1:100 000 (Corine Land Cover nomenclature

4.2.2. (Multiresolution) image clustering ~ to 1:50 000 and 1:25 000 (SPOT Thema). With high-spatial-

As stated above, at any stepthe segmentation df relies  resolution (HSR) (1-5 m) satellite images, it is possiblexe
onaclustering performed at step1, on the imagé 1, which ract urban objectse(g, house, garden, and road). This allows

providesuy-, semantic classes. In order to enable to correctlysne to map individual objects at scale from 1:10 000 to 1:5000
perform stefk + 1, it is then necessary to perform a clustering

of I's x atthe current stef (except, possibly for the laststep 52 software
where no clustering is mandatory).

This clustering relies on a multiresolution approach fully
described in40], and briefly recalled hereafter. The reader may .

. g : : 5.3. Experiments and results
also refer to Figurd for a visual outline of this approach. . _ . _ _ .

This approach takes as input the image; : Ex_1 — Vi1, This section describes the experiments carried out with the
namely the image to be clustered, the segmentafign_;,  Proposed multiresolution framework in the context of thg-se
which provides a partitior& of Ex_;, and the “next’ image Mentation of urban patterns from MSR and HSR images. Sub-
T« : Ex > Vi. The main idea is to fuse the information pro- Section5.3.1presents the data which were used to perform the

section5.3.3 The results of the multiresolution method de-
voted to extract urban elements are then presented andsadaly

3In the case of 1, we consider, without loss of generality, that there is only in Subsectiorb.3.2 Finally, a computation time study is per-
one cluster, the semantics of which is the one of the wholgé@na formed in SubsectioB.3.5

provide details.
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5.3.1. Images . )
. . Table 2: Satellite Data used for the experiments.
Experiments have been performed on two sets of images Image Resolution Size Memory
called SrasBourc dataset and durouse dataset. SrrassourG VHSR 60cm 15000 15000 | 1,4 Gb
The SrassourG dataset is composed by three multispec- SrrasBourG HSR 2,4m
tral images with dierent spatial resolutions (2.8 m, 10 m and StrAsBOURG MSR 10m
20 m) acquired by the @ckBirp, Spor-5 and $or-4 satellites IOULOUSE ;22 ig‘m
. . OULOUSE m
(respectively in May 2001, August 2002 and July 2001). The TouLouss MSR >om

Seor-5 and Sor-4 multispectral images (Fig. (a, b)) have three

spectral bands (green, red, near-infrared). ThekKBirRp mul-

tispectral image (Fig. (c)) is available in four spectraha  5.3.2. Validation

(blue, green, red and near-infrared). All the data are geore  Results produced by the method have been assessed by

erenced in the same local cartographic projection (Lamipert quantitative comparisons with a land cover map. In order to

These images present a part (1, 506, 100 m) of the urban compare clustering results to land cover reference maps, we

area of Strasbourg (France) which is a typical suburban arelave computed:

with water surfaces (in black, centre of the image), foresaa )

(in red, bottom left of the image), industrial areas (in gnay- e the Kappa indexx);

per right of the image), individual or collective housingbks o the global accuracy;

(inred, black and white textured on the MSR image, in redeblu

and white textured in the HSR image), agricultural zonefiwit e the percentage of false positive;

different spectral responses due to the seasons (bare soil at the

end of spring on the HSR image can appear in red in summer

on the MSR image). The Kappa indexx) is a measure of global classification accu-
The TouLouse dataset is composed by three multispectralracy [44] and is defined by:

image$ with approximately the same spatial resolutions as

above (2.5 m, 10 m and 20 m). The HSR image (2.5 m) was K= w 1)

acquired by the &1-5 satellite in September 2003 (Fig. (c)). 1-Pr)

This image is a result of a fusion between the pa.nchroma.tic iMyhere Pré) is the relative agreement among raters, ane)Pr(
age at 2.5 m and XS bands at 5 m. The resulting HSR imagg the hypothetical probability of chance agreement, usiieg
has four spectral bands (green, blue, red, near-infrar@tl  opserved data to calculate the probabilities of each observ
MSR images (20 m and 10 m) were simulated from the HSRangomly choosing each category. The Kappa takes value in
one by a degradation process (Fig. (a, b)). This degradatiof 1] and decreases as the classification is in disagreement wit
process tr.ansforms H$R images into MSR ones by' simulatingye ground-truth map. There are many ways to compute this
the “physical” properties of such sensors. These images aiggex. When data is not labelled (as it is the case with clus-
georeferenced in the same local cartographic projectiam(L tering), this computation consists of taking all point ctesp
bert Ill) and present a part (1, 600x2, 100 m) corresponding (pr, p2) = ((Xu.y1) . (X.Y2) ) and see the configuration
to theT South West of the city of Toulouse (France) which is als of these two points in each partition (the clustering reani
a typical suburban area. the ground truth). There are four possible configurations; f
each one, a counter is associated and incremented each time a

_“The authors would like to acknowledge the support of the @eNational  configuration appears:
d’Etudes Spatiales (CNES) which provided the images of theduse dataset. L. .
We are grateful to Jordi Inglada for his assistance in piogicind processing 1. p1 and p; belong to the same partition both in the clus-

these data. tering and in reference map (counss;
10

e the percentage of false negative;




2. p1 and p; belong to the same partition in the clustering [15]

but not in the reference map (counss);

3. p1 and p; belong to the same partition in the reference[16]

map but not in the clustering (counis);

4. p; andp; belong to the same partition neither in the ref-

erence map nor in the clustering (coundel.

Thus, the Kappa index can be computed with:

ss+dd
Pre) = srsd+ st dd @
and
Pr(e) = (ss+ sd) x (ss+d9 + (sd+dd) x (ds+ dd) @)

(ss+ sd+ ds+ dd)2

5.3.3. Experiments and parametrisation

5.3.4. Results

5.3.5. Comparative study, Computation time study
5.4. Discussion

6. Conclusion and perspectives
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