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Topology preserving warping of 3-D binary

images according to continuous one-to-one

mappings
S. Faisan∗, N. Passat, V. Noblet, R. Chabrier, C. Meyer

Abstract

The estimation of one-to-one mappings is one of the most intensively studied topics in the research

field of non-rigid registration. Although the computation of such mappings can now be performed

accurately and efficiently, the solutions for using them in the context of binary image deformation is much

less satisfactory. In particular, warping a binary image with such transformations may alter its discrete

topological properties if common resampling strategies are considered. In order to deal with this issue,

this article proposes a method for warping such images according to continuous and bijective mappings,

while preserving their discrete topological properties (i.e. their homotopy type). Results obtained in the

context of atlas-based segmentation of complex anatomicalstructures highlight the advantages of the

proposed approach.

Index Terms

Binary image warping, discrete topology preservation, one-to-one mapping, simple points and skull

segmentation.
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I. INTRODUCTION

A. Motivation

During the past two decades, many methods have been proposedto non rigidly register 3D images,

enabling the estimation of deformation fields, that model the geometrical variations between two images

presenting a similar semantics. An intensive effort has been devoted to develop registration methods

yielding deformation fields that are one-to-one mappings, thus preserving the topology of the warped

image in the continuous domain (see [1] for a survey). Particularly in the context of inter-subject medical

image registration, such constraint appears to be relevantsince, in the continuous domain, anatomical

structures have the same topology for any individual (at least for non-pathological cases). Topology

preservation ensures that connected structures remain connected and that the neighborhood relationship

between structures is maintained. It also prevents the appearance or disappearance of new or existing

structures. Notice that the existing topology preserving registration methods are generally developed in

the “continuous” space of the support of the image (i.e. a part ofR3).

However, applying such deformation fields to warp adiscrete image (i.e. defined on a part ofZ3)

may raise some problems, especially for images defined with alimited number of values, such as binary

or label images. For instance, in the context ofatlas-based segmentation, warping a predefined atlas of

anatomical structures according to a deformation field thatensures topology preservation in the continuous

domain may not guarantee that the discrete topology of the warped atlas is preserved. Consequently, all the

“good” properties induced by such deformation fields (i.e. no splitting, no merging, etc.) may definitely

be lost when actually applied on binary or label images.

Applying such deformation fields in a “correct” way,i.e. by guaranteeing that the topology of the

warped discrete objects is not altered, is of precious use for several purposes including (but not limited

to):

• visualisation of anatomical structures: topology errors may generate visualisation artifacts,e.g.when

generating a mesh model of a surface;

• positioning of an initial model as the preliminary step of a topology preserving deformable model

method;

• analysis of segmented structures: topological details, such has holes or cavities can actually be used

as landmarks;

• post-processing of segmented structures: for instance, the –classical– computation of differential

properties of a cortical surface will be incorrect if this surface is not actually a manifold.
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In such a crucial context, it is not possible to consider standard interpolation methods (which provide

no topological guarantee) to perform discrete object warping based on topology preserving deformation

fields. More sophisticated processes, such as the one proposed in this article, are then necessary.

B. Problem statement

Image warping is the process of applying a geometric transformation to a discrete image. Two different

ways can be considered to define a transformation for warpingan imageM to obtain an imageT . We

can consider either the transformation that associates foreach point ofM its coordinates inT or the

transformation that associates for each point ofT its coordinates inM , the two transformations being the

inverse one of each other in case of one-to-one mapping. The second formulation is used in this paper.

This formulation is generally preferred since the first one would require the use of irregular sample

interpolation methods, whereas the second one can rely on standard interpolation techniques. Given a

discrete imageM and a continuous transformationh, the purpose is to compute the warped imageT so

that for each voxelv we haveT (v) = M ◦ h(v) = M(h(v)). The main problem is that, in the general

case,h(v) does not necessarily correspond with “grid points” ofM . In such conditions,M ◦ h is not

correctly defined. Some interpolation techniques are then required to consider acontinuousrepresentation

of imageM which has the same values as the sampled data at the grid locations (exact interpolation).

Although several image interpolation techniques (linear,cubic) [2] have been proposed for gray-

level images, no specific attention has been paid to the case of binary images. In particular, common

interpolation techniques, except the nearest neighbor interpolation, do not guarantee the resampled image

T = M ◦ h to remain a binary one. To circumvent this limitation, it is possible to perform a post-

processing thresholding operation to get a binary image. Unfortunately, warping a discrete imageM

according to a continuous and bijective (i.e. topology-preserving) transformationh with such common

interpolation techniques may fail in preserving itsdiscretetopological properties,i.e., M andT may not

have the same homotopy type. As an illustration, a synthetic2-D binary image, composed of one circle

(seeM in Fig. 1), has been warped according to a one-to-one mapping(an affine transformation with

a positive determinant) using the nearest neighbor interpolation. The topology of the resulting warped

imageT (N) is strongly altered: the hole ofM has been fused with the infinite background component of

the image, while the circle has been split into several disconnected components (see right side of Fig. 1).

Two main strategies can be considered to warp a binary imageM according to a one-to-one mapping

h, leading to a solutionT = M ◦ h topologically equivalent toM . The first strategy is to compute the
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M T
(N)

Fig. 1. Topological alterations induced by the nearest neighbor interpolation. The binary imageM is composed of one circle.

The resultT (N) of the warping ofM according to an affine transformation using the nearest neighbor interpolation is not

topologically equivalent toM (see text).

binary imageT by using a standard interpolation method with a post-processing thresholding operation,

and to automatically correct the topology ofT a posteriori. However, nearly all the methods devoted to

topology correction can only be applied to simply connectedobjects, in particular, full or hollow spheres

[3], [4], [5], [6], [7], [8], [9], with applications to the segmentation of anatomical structures assumed to

present such non-complex topologies (e.g.cortex or vascular trees). The correction of objects presenting

more complex topologies is still an open problem in3-D. To the best of our knowledge, the most general

methods proposed in the literature are for hole closing [10](which enables to choose the size of the

holes to be closed), and a dual approach for holes retrieval [11] (which enables to choose the number

and size of the holes to retrieve).

An alternative strategy consists in preserving the topological properties of the object during the whole

warping process, thus guaranteeing the initial and final objects to be topologically equivalent. The basic

idea is to start fromT = M , and to modifyT in a homotopy-preserving fashion untilT is geometrically

as close as possible toM ◦ h.

This paradigm based on the modification of a binary image by preserving its discrete topology is

generally considered in the context of segmentation. Such segmentation methods [12], [13], [14], [15],

[16] often rely on the concept of3-D simple points [17],i.e. points whose addition or removal to/from

a binary object does not alter its topology and in particularpreserves its homotopy type. Such points

are added and/or removed to/from an initial model, having the desired topology w.r.t. the structure

to segment, the choice of the points being generally guided by constraints related to anatomical and/or

physical properties of the structure. Note that, since simple points can be locally characterized in constant

time [18], such methods are often of low algorithmic complexity. We can notice finally that few methods

also propose to use other topological modeling frameworks such as cubical complexes (seee.g. [19]).

To the best of our knowledge, the only method tackling the problem of warping a binary image by
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preserving its discrete topology has been proposed in [20].More precisely, this approach is devoted to

label images. However, we will only consider it in the context of binary image warping. A justification of

this restriction is provided in Section V. The basic idea of this method is to modify the initial imageM

in a homotopy-preserving fashion by “moving” simple pointsin the direction provided by the continuous

deformation fieldh. This continuous one-to-one mapping is approximated by a digital homeomorphism

hd, which is directly estimated from the movement of simple points. The algorithm ends when the

residual error for each voxelv verifies‖h(v) − hd(v)‖ < 1 (i.e. the “size” of a voxel) or when no more

voxel can be moved. Although this method ensures topology preservation, it may fail to converge to the

geometrically desired solution. Indeed, in the context of brain tissue segmentation warping, [20] reports

maximal error higher than20 voxels between the estimated digital homeomorphism and thecontinuous

transformation. We also highlight such problems of convergence in experiments presented in Section III.

This article presents a new strategy to tackle this problem,whose preliminary results have been

published in [21]. We propose here to formulate the problem of warping a binary image according

to a continuous deformation field in an optimization framework. Such framework requires to define a

cost function, that should be minimal for the desired solution, and an optimization strategy, that should

converge to the global minimum. Similarly to [20], we use a dynamical scheme based on the addition

and/or removal of simple points. This scheme is guided by theproposed cost function, which is minimal

when the estimated discrete imageT is as close as possible toM ◦ h. An efficient optimization strategy

has also been proposed. This framework is more comprehensive than the one proposed in [20], which

lacks of formalization, thus being difficult to extend or to improve. Moreover, directly estimating the

warped imageT rather than the corresponding digital homeomorphismhd as in [20] enables to reduce

the dimensionality of the search space (estimatinghd requires 3 times more parameters), and thus may

be a more efficient strategy, that may be less likely caught inlocal minima. Notice that, when the

warped imageT is successfully estimated, a digital homeomorphismhd, that approximates at besth, can

straightforwardly be obtained by associating to each voxelv of T the voxelv′ of M that belongs to the

same connected component ofv and that is as close as possible toh(v).

The article is organized as follows. In Section II, the proposed method is described. Section III

summarizes experimental results in the context of atlas-based segmentation of a complex anatomical

structure, namely the skull. Discussions and conclusions are provided in Sections IV and V, respectively.
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II. M ETHOD

Let EM
R

, ET
R
⊂ R

3. Let EM
Z

, ET
Z
⊂ Z

3 such thatEM
Z

= EM
R

∩ Z
3 andET

Z
= ET

R
∩ Z

3. The setsEM
Z

andET
Z

are devoted to provide a support for digital images, while the setsEM
R

andET
R

are parts of the

Euclidean space devoted to provide a support for their associated continuous analogues (see Subsection

II-A).

The process of warping a binary imageM : EM
Z

→ {0, 1} according to a continuous and bijective

transformationh : ET
R
→ EM

R
to obtain a warped imageT : ET

Z
→ {0, 1} amounts to find, among the

set of binary images topologically equivalent (∼) to –i.e. having the same homotopy type as–M , the

optimal imageT̂ , that minimizes the following constrained optimization problem:

T̂ = arg min
T∼M

d(T,M, h) , (1)

whered(T,M, h) is a distance betweenT andM ◦ h. However, as it has been mentioned in Section I,

M ◦h is not correctly defined and some interpolation techniques are then required to evaluate acontinuous

imageMR : EM
R

→ {0, 1} verifying the constraint:(MR)|EM

Z

= M . Such an imageMR enables to define

MR ◦h, and then to computeM ◦h as being(MR ◦h)|ET

Z

. Consequently,d(T,M, h) is in fact a distance

betweenT andMR ◦ h.

The basic idea to solve this constrained optimization problem is the following:T is first initialized with

M and is then modified by adding and removing simple points so that to minimize the distance between

T and the continuous warped imageMR◦h. To avoid convergence to local minima, the problem is solved

in an incremental way by considering a decomposition of the transformationh into small displacements

fields. A global overview of the method is provided in Algorithm 1.

After preliminary considerations in Subsection II-A related to the relation between the continuous and

the discrete representations of an image, we introduce, in Subsection II-B, a convenient distanced. In

Subsection II-C, we explain how to constrainT to remain topologically equivalent toM during the

deformation process. Finally, the optimization strategy is detailed in Subsection II-D.

A. From discrete to continuous representation

In the proposed framework, we associate to any discrete binary image X : EX
Z

→ {0, 1} (with

EX
Z

⊂ Z
3), the continuousbinary imageXR : EX

R
→ {0, 1} obtained by associating to each point

x = (x1, x2, x3) ∈ EX
Z

the unit cubical cell[x1 − 1/2, x1 +1/2]× [x2 − 1/2, x2 +1/2]× [x3 − 1/2, x3 +

1/2] ⊂ EX
R

. These cubical cells being closed sets, the boundaries of the continuous objects ofXR

associated to those ofX also belong to these objects (which are then closed sets too). According to this
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(classical) discrete/continuous correspondence, the continuous binary imageXR has the same topology as

the discrete binary imageX, considered in a(26, 6)-adjacency framework (i.e. the 26-adjacency for the

“object part” of X, and the6-adjacency for the “background part”) [22]. The(26, 6)-adjacency is used

throughout the paper. Notice however that the methodological framework is –by definition– not sensitive

to the adjacency duality. Indeed, warping a binary image using the (6,26)-adjacency can be obtained

by warping the complement of the binary image (zero becomes one and one becomes zero) using the

(26, 6)-adjacency. We denote byC[X] (resp.C[XR]) the set of all the connected components (CCs) of

X (resp.XR), i.e. both object CCs (OCCs) and background CCs (BCCs). There exists a straightforward

bijection between the CCs ofC[XR] and those ofC[X], which associates to each connected component

K ∈ C[XR] its discrete analogue (namelyK∩EX
Z

) in C[X]. In such conditions, it is possible to consider

the computation of the distanced only on the continuous representation of the considered images.

B. Cost function

SinceTR and MR are assumed to be topologically equivalent, there exists a bijection φ : C[TR] →

C[MR] between the CCs ofTR andMR. We definecXR
: EX

R
→ C[XR] as the function that associates

to each pointv the CC in which it lies.

Let v ∈ ET
R

. The point-to-set distanceρTR
(h(v),MR) can be defined as:

ρTR
(h(v),MR) = min

{x|cMR
(x)=φ(cTR

(v))}
‖x − h(v)‖ . (2)

This represents the distance betweenh(v) and the CCφ(cTR
(v)) of MR which is associated to the CC

of TR containingv. Note that, ifφ(cTR
(v)) is equal tocMR

(h(v)), i.e. if v andh(v) belong to equivalent

CCs ofMR andTR, thenρTR
(h(v),MR) = 0. The computation ofρTR

is illustrated in a2-D case in Fig.

2.

From this point-to-set distance definition, we can derive a set-to-set distance betweenMR and the

image ofTR by h as:

d(TR,MR, h) =
∫

v∈ET

R

ρTR
(h(v),MR).dv (i)

≈
∑

v∈ET

Z

ρTR
(h(v),MR) (ii)

(3)

We can notice that the distanced(TR,MR, h) may not be defined for a result obtained with the nearest

neighbor interpolation since its computation requires a one-to-one mappingφ between the CCs ofM

and those ofT . However, by setting (even if it is not the case) that object points and background points

belong to the same OCC, and to the same BCC, respectively, theresult obtained with the nearest neighbor

interpolation enables to vanish the cost function under approximation of Eq. 3(ii).
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v1 v2 v3

v4 v5

v6

a

b

c

first object
connected component

second object
connected component

background
connected component

Fig. 2. Computation ofρTR
(h(.), MR) for 6 points. The imageMR is composed of two OCCs and one BCC. For instance,

ρTR
(h(v2), MR) = 0 sincev2 andh(v2) belong to equivalent CCs. However, sincev6 belongs to the second OCC ofTR whereas

h(v6) belongs to the BCC ofMR, we haveρTR
(h(v6), MR) = b, namely, the distance betweenh(v6) and the second OCC of

MR.

0 0

0 0

0 0

0

0 1

1

21

3211

+
0

CDM(h(v)) = mins∈N4(h(v)) CDM(s) + ||h(v) − s||

CDM(h(v)) = 1 + ||h(v) − sopt||

h(v)
sopt

of MR

of MZ

Object sample

Background sample

Object continuous representation

Background continuous representation

Sample of chamfer distance map CDM(s)

}

}

Fig. 3. Evaluation of the chamfer distance mapCDM at a non-discrete positionh(v) (in 2D case for the sake of clarity).

Notice that the chamfer distance map is computed on a grid translated by a vector[1/2, 1/2] with respect to the sampling grid

of imageM , so thatCDM(s) corresponds to the distance toward the surface of the continuous representationMR.

The distanced(TR,MR, h) does not exactly correspond to the distance betweenMR ◦ h andTR but

actually to the distance betweenMR andTR◦h
−1. This choice is motivated by the fact that the computation

of ρTR
is done using distance maps inMR. As MR does not evolve, the distance maps only need to be

computed once for each CC. It would not be the case by considering a distance betweenTR andMR ◦h

since the distance maps should have been computed inTR and thus should have been updated whenever

TR is modified during the transformation scheme.

The term ρTR
(h(v),MR) is approximated by considering the chamfer distance map inM to the

CC φ(cTR
(v)) since it provides a very satisfying approximation of the Euclidian distance map with

a very low algorithmic cost. Evaluation of the chamfer distance map (CDM ) at a non-discrete position
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h(v) is then done as follows (see Fig. 3): ifh(v) does not belong toφ(cTR
(v)), CDM(h(v)) is set

to mins∈N8(h(v)) CDM(s) + ||h(v) − s||, N8(h(v)) being the 8 nearest neighbor voxels ofh(v), else

CDM(h(v)) is set to0. Notice that the chamfer distance map should be computed carefully in order to

represent distance to the boundaries of the continuous CC and not to the discrete CCφ(cTR
(v)) ∩ EM

Z
.

One solution is to compute the chamfer map on a grid whose points are located on the surface of the

CCs of MR. Such a grid can be obtained by translating the former one from the vector[1/2, 1/2, 1/2]

(see Fig. 3). Notice that the chamfer distance maps need onlyto be computed once for each CC.

C. Topology handling

The cost function has been defined from the continuous representation of the images. However, we

consider hereafter only their discrete representations. As in the continuous case, we denote bycX : EX
Z

→

C[X] the function that associates to each pointv the CC in which it lies.

To constrainT to remain topologically equivalent toM during the deformation process,T is initialized

to M and is then modified by iterative removal/addition of simplepoints. Changing the value of a simple

point v in T requires to determine its new corresponding CC to compute the cost function. This can

be done unambiguously, sincev is a simple point, and is then adjacent to exactly one OCC (in the 26-

neighborhood) and one BCC (in the6-neighborhood). For instance, in Fig. 2, if the value of the simple

point v1 of T is modified, the CC associated tov1 will be the first OCC (cT (v1) will then be modified

in consequence). The functioncT is stored and updated throughout the algorithm.

The value of a simple point inT is modified only if it decreases the cost function. To this end, it is

sufficient to compute, for each simple pointv, the “benefit” to modify its value. This benefit is defined

by:

b(v, T,MR, h) = d(TR,MR, h) − d(T ′
R
,MR, h)

= ρTR
(h(v),MR) − ρT ′

R
(h(v),MR) ,

(4)

whereT ′ is the image obtained fromT by modifying the value atv.

An important property of the benefit function is that, when modifying a simple pointv in T to obtain

a new imageT ′, we have:

b(x, T,MR, h) = b(x, T ′,MR, h) , (5)

for all simple pointsx 6= v of T andT ′, and

b(v, T,MR, h) = −b(v, T ′,MR, h) . (6)
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Consequently, when changing the value ofT at v, there is no need to update the benefit functionb for

points which are simple in both imagesT ′ and T . Notice that the benefit functionb(v, T,MR, h) can

only be evaluated for simple pointsv of T since its computation requires to change the value at voxel

v. In particular, ifv were not a simple point,T ′ andT would possibly not have the same topology, then

it may be impossible to computeρT ′

R
(h(v),MR) sinceφ(cT ′(v)) may not be defined unambiguously.

D. Optimization strategy

The purpose of the optimization strategy is to find an imageT that minimizes the cost function (Eq.

3) while being topologically equivalent toM . Starting fromT = M , T is then modified by iterative

removal/addition of simple points.T is also constrained to remain topologically equivalent toM during

the optimization algorithm. Moreover, in order to minimizethe cost function,i.e. to converge to a

geometrically desired solution, the optimization strategy consists in iteratively modifying the value ofT

at the simple point of highest benefitb until convergence. The implementation is based on an ordered

list L which contains all simple points ofT characterized by a positive benefit value. Ifv0 denotes

the “first” point of L, i.e. the simple point ofT of highest benefit, the value ofT at v0 is modified

(T (v0) = 1 − T (v0)). The ordered list has then to be updated accordingly. Due toEq. 6, v0 must be

removed fromL. Moreover, since there is no need to update the benefit function for points which are

simple in both images,i.e., for the images obtained before and after the modification atv0 (Eq. 5), only

points which became simple or non-simple after the modification at v0 have to be considered to update

L. Modifying the value ofT at v0 may only change the status of the simple points which are in the

26-neighborhood ofv0: points which were not simple and which become simple must beadded inL if

they have a positive benefit value whereas points which were in L and which become non-simple must

be removed fromL. The algorithm ends whenL is empty,i.e. when all points are non-simple or have

a non-positive benefit value. Unfortunately, this strategysuffers from some limitations which led us to

propose two major improvements.

A first limitation of the method is illustrated in Fig. 4. To converge to the desired resultT ′′ (global

minimum) from the current imageT , the label ofv2 has first to be changed to obtainT ′. T ′′ can then

be obtained by modifying the label atv1. However, the process may fail to converge toT ′′ if the first

modification increases the cost function (b(v2, T,MR, h) < 0), leading to refuse this operation, whereas

both modifications may decrease the cost function:b(v1, T
′,MR, h) + b(v2, T,MR, h) > 0.

In order to avoid such deadlock situations, we authorize thepairwise –topology-preserving– value

modification of two neighbor points,v1 andv2, provided that it decreases the cost function. This process
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(a) (b) (c)

T T ′ T ′′

v1

v2

Fig. 4. Illustration of a deadlock situation justifying theusefulness of pairwise topology-preserving modification (see text).

is achieved only whenL is empty, namely, when there is no more simple point with positive benefit.

Under this hypothesis, it can be proven that such voxelsv1 and v2 can be found by considering only

non-simple pointsv1 verifying ρTR
(h(v1),MR) > 0. For such a pointv1, every simple pointsv2 in its

neighborhood are considered as potential candidates for pairwise modification. Each of these voxels is

temporarily changed to obtainT ′. Only voxelsv2 that enablev1 to become a simple point inT ′ are

retained. The modification of the values at voxelsv1 andv2 is then performed if it actually reduces the

cost function,i.e. if b(v1, T
′,MR, h) + b(v2, T,MR, h) > 0. If several pointsv2 verify these conditions,

the voxel which permits to decrease at best the cost functionis chosen. This process may generate new

simple points in the neighborhood of the involved points, enabling to keep deforming the current image

by “classical” simple point modification.

A second improvement aims at avoiding convergence to local minima, which might happen especially

with “large” displacements. The basic idea is to perform transformation in an incremental way by

consideringN + 1 intermediate transformations,h(0), h(1), . . ., h(N), computed fromh such that:


















h(0) = Id

∀j ∈ [0, N − 1], ∀v ∈ ET
Z

, ‖h(j+1)(v) − h(j)(v)‖ < ǫ

h(N) = h ,

(7)

thus leading to small displacements. The optimization scheme described above is achieved by considering

sequentiallyh(1), h(2), . . ., h(N). These transformations enable to guide the discrete dynamical process

to the desired solution. The smallerǫ is, the more the dynamical process is guided, and the better the

convergence properties of the algorithm are. However, it isnot worth using too small values forǫ since

the dynamical process is discrete. In the experiments,ǫ has been set to0.5 which has been shown to

be a relevant choice at the sight of the results reported in Subsection III-C investigating the influence of

ǫ. An easy way to estimate intermediate transformationsh(i) (0 < i < N ) verifying Eq. 7 is to use the
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following linear decomposition:

∀v ∈ ET
Z

, h(i)(v) = v +
i

N
(h(v) − v), (8)

whereN is the smallest integer such that:N ≥ maxv∈ET

Z

‖h(v) − v‖/ǫ.

A global overview of the method is given in Algorithm 1. Notice finally that, since the distance between

T andM ◦ h is enforced to decrease across the iterations, and since there are a finite number of voxels

(and consequently a finite number of binary images), the procedure is ensured to converge. Unfortunately,

there is no guarantee of convergence to the global minimum since the optimization scheme might be

trapped in local minima.

Algorithm 1 Topology-preserving warping of binary images.

Input: M (binary image to warp according toh), h (transformation)

Output:T (warped binary image)

T = M

(h(i))Ni=1 = transformation fields obtained fromh

for h∗ = h(1) to h(N) do

L = list of simple points inT with positive benefitb(v, T,MR, h∗)

repeat

while L 6= ∅ do

v = point of highest benefit inL

T (v) = 1 − T (v) /* switch the value ofv in T */

UpdateL considering the new status of points in the26-neighborhood ofv

end while

while there exist a non-simple pointv1 verifying ρTR
(h∗(v1),MR) > 0 and a pointv2 whose

pairwise modification enables to decrease the cost functiondo

(T (v1), T (v2)) = (1 − T (v1), 1 − T (v2))

UpdateL considering the new status of points in the26-neighborhood ofv1, v2

end while

until L = ∅

end for
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III. VALIDATION

A. Atlas-based segmentation: application to skull segmentation from CT data

One of the main applications of the proposed approach - or similar ones - is atlas-based segmentation

[23]. Such methods rely on a binary modelM : EM
Z

→ {0, 1} of given structures of interest which has

been obtained from the preliminary segmentation of an “anatomical reference” imageR : EM
Z

→ R.

When attempting to detect the same structures of interest ina new imageI : ET
Z

→ R, the first step

consists in estimating a transformationh : ET
R
→ EM

R
by registeringR onto I. The structures of interest

in I, denotedT , are then obtained by transformingM according toh.

Following this methodological framework, skull segmentation then consists in deforming a pre-processed

skull templateM associated to a reference CT imageR. The skull template considered in this work has

been created from a CT imageR according to the following paradigm. First, a segmentationhas been

carried out by performing a simple thresholding onR. This first rough segmentation has been modified by

an expert: he removed the parts which did not present any interest for the desired applications (essentially

structures located on its inferior side), he improved the quality of the segmentation and checked finally

that the image was composed of one OCC. Then, a hole-closing algorithm [10] was applied in order

(i) to remove (i.e. to fill) the cavities, and(ii) to localize the handles, thus enabling to preserve (resp.

to fill) the ones corresponding (resp. not corresponding) torelevant anatomical structures. It has to be

noticed that the erroneous handles were generally one voxel-thick and located in thin structures. The

template is composed of one connected component, and has no cavity. However, it presents ten handles

(its Euler characteristic is equal to−9) corresponding to specific anatomical structures (e.g. foramen

magnum, zygomatic arches, optic canals, external auditorymeatus, etc., see Fig. 5) leading to a complex

topology. From a geometrical point of view, this template iscomposed of “surfacic structures” of varying

thicknesses (from several millimeters/voxels) to one millimeter (then leading to one voxel-thin surfaces,

and justifying the use of the26-adjacency for its topological modeling), for instance near the eyes and

the nose.

The segmentation of a new imageI is obtained by warping the templateM according to a3-D

transformationh estimated by registeringR onto I. Since the discrete topological properties of the

segmentation are expected to be the same than those ofM , the use of a topology-preserving warping is

here of great interest.

It has to be noticed that the proposed segmentation strategyrequires(i) to compute a correct deforma-

tion field h, and(ii) to correctly deformM according toh. In the proposed experiments, the deformation
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Fig. 5. Skull template used in the proposed application. Left, middle: front and profile view of the template. Right: template

visualized with its topological skeleton.

E0 E1 E2 E3 dmax b0 b1 b2

N 100 0 0 0 0 1.33 ± 0.59 109 ± 51.0 150 ± 71.0

L 99.8742 0.0865 0.0393 0 0.99 1.06 ± 0.25 24.8 ± 8.00 7.20 ± 2.80

B 99.5248 0.2357 0.2386 0.0009 30.98 1.00 ± 0.00 10.0 ± 0.00 0.00 ± 0.00

P 99.9944 0.0043 0.0013 10−5 1.86 1.00 ± 0.00 10.0 ± 0.00 0.00 ± 0.00

TABLE I

COMPARISON ACCORDING TO GEOMETRICAL(Ei, AND dmax) AND TOPOLOGICAL (bi) CRITERIA OF THE PROPOSED

METHOD (P ) WITH THE NEAREST NEIGHBOR INTERPOLATION(N ), THE LINEAR INTERPOLATION WITH THRESHOLDING

(L), AND THE METHOD PROPOSED IN[20] (B). E0: RATIO (%) OF POINTSv FOR WHICHρTR
(h(v), MR) = 0, E1 FOR

WHICH 0 < ρTR
(h(v), MR) ≤ 0.5, E2 FOR WHICH0.5 < ρTR

(h(v), MR) ≤ 1, AND E3 FOR WHICHρTR
(h(v), MR) > 1 (ρTR

IS GIVEN IN VOXEL ); dmax: MAXIMAL VALUE OF ρTR
(h(v), MR) FOR THE15 CASES; b0 (RESP. b1 , b2): NUMBER OF OBJECT

CONNECTED COMPONENTS(RESP. HANDLES, CAVITIES).

field h has been estimated using the continuous topology-preserving registration strategy described in [24]

(h is a complex transformation modeled using first order B-spline functions with approximately 750 000

parameters).

Four methods have been considered to deformM according toh: the proposed method (P ), the nearest

neighbor interpolation (N ), the linear interpolation followed by a thresholding at value 0.5 (L), and the

method proposed in [20] (B). All these methods have been applied on a database composedof 15 isotropic

2563 CT images of millimetric resolution. Segmentation resultsare strongly related to the accuracy of

the estimation ofh. Consequently, the methods are not compared here in terms ofsegmentation accuracy,

but in terms of topological and geometrical adequacy of their result w.r.t.h.
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deadlocks caused by topological constraints erroneous hole

Fig. 6. Segmentation results obtained with the method of [20] (B, left), the proposed method (P , middle) and the nearest

neighbor interpolation (N , right) (see text). Note that the surfaces are visually noisy since thereal discrete results are visualized

here without any post-processing operation such as mesh generation.

B. Results

In order to assess the quality of the methods from a topological point of view, the Betti numbersbi

(i ∈ [0, 2]) are computed for the15 resultsT obtained for each method (see Table. I).

The Betti numbers are defined as the ranks of the different homology groups of an object [25]. In3-D,

b0, b1, and b2 correspond to the number of OCCs, the number of handles, and the number of cavities

(or equivalently the number of BCCs−1), respectively. It can be observed thatP and B are the only

methods guaranteeing topology preservation: the topologyis strongly altered withN andL, leading to

connected component splittings, handle and cavity generations, etc. For instance, the methodN generates

an average number of150 undesired cavities in the segmentation result.

From a geometrical point of view, a quantitative comparisonis provided by computingρTR
for each

method (ρTR
is given in voxel). This computation requires a one-to-one mappingφ between the CCs

of M and those ofT , which is not ensured for the methodsN and L. SinceM is composed here of

exactly one OCC and one BCC, this limitation can be easily overcome: voxelsv for which T (v) = 1 are

associated with the OCC, and the other ones to the BCC. Table Iprovides for each method the ratios

of points for whichρTR
= 0 (E0), 0 < ρTR

≤ 0.5 (E1), 0.5 < ρTR
≤ 1 (E2), andρTR

> 1 (E3), and the

maximal distancedmax defined as the maximal value ofρTR
for the 15 cases.

As expected,ρTR
(h(v),MR) = 0 for all voxelsv when considering theN method (see Section II-B).

The results obtained with theP and theL methods show that more points are well located using the

P method (E0 = 99.9944% withP , and only 99.8742% withL). However, since topology preservation

induces here geometric constraints, the ratio of points forwhich ρTR
> 1 is equal to10−5% with P (and

0 with L). This ratio is still very low forP and corresponds to 26 voxels on the 15 considered cases.
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Note finally that the maximal distancedmax is a little bit higher (but still low) for the proposed method

(dmax=1.86 forP and 0.99 forL). More precisely, with respect to the methodP , the maximal values of

ρTR
(h(v),MR) for the 15 images are, from the lowest to the highest:0.80, 0.84, 0.85, 0.93, 0.93, 0.97,

0.97, 0.98, 1.02, 1.62, 1.62, 1.74, 1.79, 1.84, 1.86. Thus, we can conclude that the geometrical adequacy

of the results is quite similar forP , N and L, but among these three methods, onlyP can correctly

handle topology.

As mentioned in Section I,B enables to preserve the topology but may fail to converge to the

geometrically desired solution. This is illustrated by thefact thatdmax is equal to30.98 for B (moreover,

the maximal values ofρTR
(h(v),MR) for the 15 images are, from the lowest to the highest:1.9, 3.4,

3.7, 4.4, 4.9, 6.5, 6.6, 10.7, 12.4, 15.5, 15.6, 17.4, 21.9, 26 and30.98). Furthermore, the valuesEi show

that B is hardly accurate. One could argue that such a claim is biased since quantification of the results

is based on the proposed cost function. However, as very goodresults are obtained with theN andL

approaches, this cost function can reasonably be considered as meaningful.

The above analysis emphasizes thatP outperforms the existing –topology-preserving– method while

still leading to satisfactory geometrical adequacy of the results, similar to those obtained for non topology-

preserving methods. The conclusions of this study are illustrated by Fig. 6, which presents a typical result

for B, P andN . An erroneous handle appears withN (remember that “standard” methods do not preserve

the topology) whereasB does not converge to the geometrically desired solution, which results in the

apparition of two artifacts. Such artifacts, which are verysimilar to lumps[26] (lumps are topological

artifacts, generally presenting a complex shape, which canappear during topology-preserving monotonic

transformation of binary objects ofZ
n for n ≥ 3 ) are consequences of topological deadlocks that occurred

during the estimation of the digital homeomorphismhd (h is approximated by a digital homeomorphism

hd, see Section I), thus preventing to converge to the desired solution.

C. Influence of the different steps of the proposed approach

As it has been mentioned in Subsection II-D, the introduction of pairwise modifications, and the

decomposition of the transformation into small displacements are two steps which are required to achieve

good convergence properties. To investigate how critical are these two points, three new experiments

have been carried out. We denote byPWM the pairwise modification step and bySD the use of small

displacement, namely, the fact to consider sequentially the intermediate deformation fieldsh(1), h(2), . . .,

h(N) estimated fromh. Three different methods,P1, P2, andP3, are derived from the proposed method

P as follows: thePWM and theSD steps are not used inP1. Only thePWM step is used inP2 and only
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the SD step is used inP3. These three methods have been applied on the aforementioned database. The

geometrical adequacy of the results obtained withP , P1, P2, andP3 are provided in Table II. Criteria

related to topology are not presented here since all these methods preserve the topology.

E0 E1 E2 E3 dmax

P 99.9944 0.0043 0.0013 10−5 1.86

P1 99.9326 0.0122 0.0216 0.0336 15.06

P2 99.9522 0.0098 0.0157 0.0223 13.01

P3 99.9757 0.0027 0.0035 0.0181 18.57

TABLE II

COMPARISON ACCORDING TO GEOMETRICAL(Ei, AND dmax) CRITERIA OF THE PROPOSED METHOD(P ), WITH P1, P2 ,

AND P3 (SEE TEXT). THE CRITERIA ARE THE SAME THAN THOSE USED INTABLE I.

We can first notice that results are much less satisfactory without thePWM and theSD steps (P1)

when compared with the original method (P ). Indeed, the ratio of points for whichρTR
> 1, anddmax

have largely increased (E3 = 0.0336% for P1 v.s. 10−5% for P , and dmax = 15.06 for P1 v.s. 1.86

for P ). Moreover, with theP1 approach, topological deadlocks can be observed in all images since the

maximal values ofρTR
(h(v),MR) for the 15 images range from8.87 to 15.06. These results show clearly

the great importance of thePWM and of theSD steps.

One can then notice that the results obtained usingP2 andP3 are improved compared to those obtained

using P1. However, even if the ratio of points for whichρTR
> 1 has decreased usingP2 andP3 with

respect toP1, it remains largely greater than the one obtained withP . Moreover, topological deadlocks

are observed withP2 andP3 for each considered image: the maximal values ofρTR
(h(v),MR) for the

15 images range from5.09 to 15.06 for P2 and from7.98 to 18.57 for P3. These results emphasize the

fact that thePWM and theSD steps are both required to obtain good results. This is not a surprising

conclusion since thePWM step aims at escaping from local minima or from deadlock situations which

may appear during the dynamical scheme while theSD step aims at avoiding deadlock situations by

guiding the discrete dynamical process.

The influence of the parameterǫ used for decomposing the transformation is also investigated. Four

different values are used:ǫ = 0.25 (Pǫ=0.25), ǫ = 0.5 (P=Pǫ=0.5), ǫ = 1 (Pǫ=1), and ǫ = 5 (Pǫ=5).

Results are given in Table III.

Results obtained forPǫ=0.25 and for Pǫ=0.5 are very similar, while those obtained forǫ = 1 are
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E0 E1 E2 E3 dmax

Pǫ=0.25 99.9980 0.0015 0.0005 10−5 1.86

Pǫ=0.5 99.9944 0.0043 0.0013 10−5 1.86

Pǫ=1 99.9977 0.0016 0.0006 0.0001 4.76

Pǫ=5 99.9897 0.0028 0.0023 0.0052 18.59

TABLE III

COMPARISON ACCORDING TO GEOMETRICAL(Ei, AND dmax) CRITERIA OF THE PROPOSED METHOD WITH DIFFERENT

VALUES OF ǫ : Pǫ=0.25 , P = Pǫ=0.5 , Pǫ=1, Pǫ=5 (SEE TEXT). THE CRITERIA ARE THE SAME THAN THOSE USED INTABLE I.

slightly deteriorated:E3 = 0.0001% forPǫ=1 v.s. 10−5% for Pǫ=0.5, and dmax = 4.76 for Pǫ=1 v.s.

1.86 for Pǫ=0.5. More precisely, results are largely deteriorated for onlyone image whereas results are

relatively satisfactory for the others. Indeed, the maximal values ofρTR
(h(v),MR) for the 15 images

are, from the lowest to the highest:0.80, 0.93, 1.03, 1.17, 1.36, 1.47, 1.53, 1.60, 1.62, 1.69, 1.79, 1.82,

2.27, 2.58 and4.76. On the contrary, whenǫ is set to5, some topological deadlocks appear in most of

the images: the maximal values ofρTR
(h(v),MR) for the 15 images range from 2.01 to 18.59, and the

maximal value ofρTR
(h(v),MR) is greater than 10 for six cases.

At the sight of these results, the settingǫ = 0.5 appears to be a relevant choice.

IV. D ISCUSSION

The previous section highlights the good performance of theproposed method. However, as for any

method based on a dynamic scheme, which attempts to minimizean energy function, there is always a

risk to converge to a local minimum. Indeed, it is possible todesignad hocexamples leading the method

to converge to such a local minimum.

A first example, illustrated in Fig. 7, highlights one deadlock situation of the proposed approach. In

this example, the imageM to warp is composed of two OCCs of one voxel, namely,v1 andv2. Let us

suppose that the considered topology-preserving deformation field h verifiesh(v1) = v2, andh(v2) = v1

(for example,h can be a rotation ofπ radians whose centerS is the middle point betweenv1 andv2).

Three intermediate transformationsh(i) (i ∈ [1, 3]) are then computed fromh. When consideringh(1),

the proposed approach converges fromM to Tres. When consideringh(2) (and,a fortiori, h(3) andh),

there is no simple point with positive benefit value. Consequently, Tres corresponds to a local minimum

which will be the result of the method for this example. The result Tres, although topologically correct
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hh
(3)

h
(2)

h
(1)

M Tres Topt

v1 v2

Fig. 7. Example illustrating a deadlock situation of the proposed approach. From left to right: representation ofh and of

the intermediate transformationsh(i) (i ∈ [1, 3]); M (image to warp),Tres (obtained result), andTopt (desired result). The

proposed approach converges here to a local minimum since the discrete dynamical scheme cannot follow the path providedby

the intermediate transformations, due to topological constraints.

is however geometrically very far from the expected resultTopt. The main reason explaining the failure

of the process is thath(2) is a many-to-one mapping:h(2)(v1) = h(2)(v2). Since the dynamical process

is constrained to preserve topology, voxels cannot be movedaccording toh(2). This is a consequence

of the construction of the intermediate transformationsh(i) proposed in Section II, that may possibly

not preserve topology. We can notice that this limitation also holds in the approach of [20] where the

movement of simple pointvi is guided by choosing the closest6-adjacent neighbor voxelvj along the

direction of the vectorh(vi) − hd(vi) (h is approximated by a digital homeomorphismhd, see Section

I).

In order to illustrate such a phenomenon on a “real” case, letus consider the skull reference image

M used in Section III, and forh, a rotation ofπ radians around an axis parallel to thex-axis and

passing through the middle of the image. Broadly speaking, all points may collapse onto the discrete

line corresponding to this rotation axis during the dynamical scheme. Results obtained with [20] and

the proposed method are illustrated in Fig. 8. As expected, both methods do not converge to the desired

solution. The way in which the methodB fails can be at first sight surprising. The artifacting linesthat

are oriented in the direction of the axis of rotation are in fact a side effect of considering a discrete

deformation field to warp the binary image toward the desiredsolution. For instance, when considering a

voxel v located at a corner of the image, the corresponding continuous deformation vectorh(v) associates

this voxel with the opposite cornerv′ of the image with respect to the axis of rotation. Thus, during

the optimization process and provided there is no topological deadlock, the discrete deformation field

hd(v) to be estimated will successively associate the voxelv with every voxels located on the line

(vv′) until converging tov′. Consequently, the voxelv will be associated sometimes with background
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x

Fig. 8. Results obtained forh corresponding to a rotation ofπ radians with [20] (left), and with the proposed method, by

considering a linear decomposition ofh (middle) and anad hocrotation-based decomposition (right). Results are visualized up

to the rotation ofπ radians, in order to look similar to the left part of Fig. 5.

components and sometimes with object components, thus explaining the emergence of theses kinds of

“spike”. Some of these “spikes” disappear when the discretedeformation succeeds to pass through all

the object components, but some of them remain because of topological deadlocks. Concerning the two

“spikes” that appear with our method, they result from voxels belonging to the chin that get stuck there

because of topological deadlocks.

However, the proposed approach could easily be extended to circumvent this limitation by constraining

each transformationh(i) to be a one-to-one mapping. For example, in this example, theN+1 intermediate

transformations computed fromh could be defined as follows:hi is the rotation ofi.π/N radians around

the rotation axis withN being the smallest integer which enables to verify Eq. 7. Theresult obtained

with a rotation-based decomposition is presented in the right part of Fig. 8 and exactly corresponds to

the expected solution.

In a more general fashion, an efficient way to deal with transformations which are not correctly

modeled by a linear decomposition is to consider the transformation as the composition of several

“elementary” ones:h = h1 ◦h2 ◦ . . . hk, where eachht belongs to a specific class of transformation such

as translations, rotations, scalings, etc. Adapted strategies could then be used to estimate the intermediate

transformations(hi
t)

Nt

i=1 for eachht, such as the one proposed above for axial rotation along a principal

axis which enables, by composition, to model any rotation, or such as the framework presented in [27]

for estimating large deformation diffeomorphisms, which aims at defining a geodesic pathway in the

manifold of diffeomorphisms. It has also to be noticed that the transformation of a whole discrete image
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by (i) a translation by a vector(x, y, z) ∈ Z
3, (ii) a rotation ofk.π/2 (k ∈ Z) along one of the3

principal axes ofZ3, and(iii) a scaling by a factork ∈ N
∗ (i.e. an oversampling), trivially preserve the

topology of the image. Following this remark, a large rotation (e.g., of 5π/6 radians) could be divided

into two rotations: a –possibly large– first one (ofπ radians) preserving the topology, and a small second

one (of−π/6 radians).

Unfortunately, there is however no guarantee that the discrete dynamical process may “follow the

path” generated by the successive one-to-one mappings. In the example depicted in Fig. 9, the image

M is composed of two OCCs and is warped according to a rotation of π radians around the point

O. The sequence of one-to-one mappings(h(i))Ni=1 which verify the properties of Eq. 7 can easily be

O

Fig. 9. Image to warp according to a rotation ofπ radians aroundO. Even if it is possible to find a sequence of one-to-one

mappings(h(i))N
i=1, the dynamical process cannot converge to the desired solution (see text).

computed thanks to the aforementioned strategy. However, the dynamical process, which is discrete by

definition, will not be able to follow the associated path. Indeed, the desired result, which consists, in

“exchanging” the two OCCs and their respective handles, cannot be obtained by adding and/or removing

simple points fromM : (i) the topological complexity of the two OCCs does not enable to“reduce”

them without altering their topology and(ii) the image is not large enough to enable the two OCCs with

their associated handles to move simultaneously towards their respective targets. A solution could be to

enlarge the image by adding voxels on its border. However, despite such considerations, in the general

case, the main difficulty remains the computation of a sequence (h(i))Ni=1 of one-to-one mappings such

that the discrete scheme is able to follow the correspondingpaths. In practice, this estimation will clearly

depend on the topological complexity of the object to warp. For instance, the local Jacobian should be

large in areas where topological properties are complex, and small in areas with “simple” topological

properties. This is clearly a very difficult task, and probably an open problem.

The considerations exposed in this section, although not enabling to solve all the problems induced

by the difficulty to decompose any deformation fields into a sequence of one-to-one mappings, enable
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to efficiently deal with a large class of deformations, and tosignificantly reduce the risk of erroneous

convergence of the proposed method to local minima. Nonetheless, the linear decomposition of the

deformation field has revealed to provide satisfactory results in the context of our application.

Finally, the experiments described throughout the paper were performed on a 2.4 GHz dual-core

Pentium workstation. The overall procedure was implemented in C/C++. On average, approximately half

an hour is required to transform an image of size 256x256x256according to a deformation field. This

may appear computationally expensive compared to standardinterpolation methods such as the nearest

neighbor interpolation which requires a few seconds. However, this time is acceptable compared to the

approximatively 3 hours required in our application to estimate a deformation field from two CT-images.

V. CONCLUSION

A new method for warping a binary image in a discrete topology-preserving fashion according to a

continuous topology-preserving transformation has been proposed. This method is among the first ones

devoted to fuse continuous topology,i.e. the topology related to the actual semantic of the continuous

warped image, with discrete topology,i.e. the topology which can effectively be handled in a digital

image. Experiments have been conducted in the context of atlas-based skull segmentation. Standard

interpolation methods such as nearest-neighbor and linearinterpolation have been shown to alter the

discrete topological properties of the warped images (appearance of handles and cavities). In addition,

the proposed method has been compared with an alternative method of the literature [20] that also ensures

topology preservation and has been shown to geometrically better converge to the desired solution: the

maximal geometrical error observed with the proposed approach has never exceeded 2 mm while the

alternative method has led to error higher that 30 mm for someexperiments. These results emphasize the

interest of the proposed approach which may be of interest for other applications in 3-D medical image

analysis.

Further works will consist in extending this method to labelimages. It can be noticed that some

methods have already been proposed to modify label images while preserving their putative topology

[28], [29], [16], [20]. However:(i) in [29], some simplifying hypotheses are used to enable the handling

of such label models as multicomponent binary ones;(ii) in [16], the considered theoretical framework

is not sufficiently robust to guarantee complete results (the result of the segmentation can possibly lead

to a partial partition of the image,i.e. some points may possibly be unclassified); and(iii) in [28], [20],

the proposed theoretical framework is not compatible with a2-label (i.e. a binary) image, in particular,

it raises several paradoxes related to the Jordan-Brouwer theorem [30]. Note that the correctness of the
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“deformation” part of the method proposed in [20] in the caseof –correctly handled– binary images is

however not affected by the proposed label image modeling. The extension of the method proposed in

this article to the case of label images will first require to develop a sound theoretical framework for

modeling and topology-controlled modification of label images, which is, to our knowledge, still an open

problem.
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