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In the domain of urban planning and management, it may be necessary to map the territory

at di erent scales corresponding each to a semantic level. Three semantic levels are identi ed:
(1) the object level, for mapping urban elements (buildings, etc.), (2) the  block level, for
mapping homogeneous patterns of urban elements, and (3) the area level, for mapping urban
fabrics de ned as sets of homogeneous patterns. Some of these levels are directly linked to
speci ¢ satellite images presenting ad hoc resolutions (namely Medium Spatial Resolution
{MSR{ images for the area level, and High Spatial Resolution {HSR{ images for the object
level); in such cases, a straightforward mapping can be performed by clustering the data. By
opposition, classical clustering techniques do not enable to extract directly the intermediate
semantic level. The purpose of this article is to propose a methodology enabling to generate
a clustering at this level. The proposed approach is, in particular, based on the segmentation
and unsupervised, region-based and joined clustering of two images representing a same scene
at MSR and HSR. The method has been applied to dierent and heterogeneous datasets
composed of HSR images at 2.5 m and MSR images at 10 m and 20 m. Qualitative validations
by an expert, and quantitative ones by comparison to other existing methods, tend to em-
phasise the soundness and e ciency of this methodology, thus justifying further developments.

Keywords: Clustering, multiresolution analysis, object-based, urban mapping.

1. Introduction

1.1 Context

In the domain of urban planning and management, it may be necessary to map the
territory at di erent scales corresponding each to a semantic level. To map urban
areas from 1:100000 to 1:25000 {enabling, for instance, to specify the density of
an urban fabric, etc. (Table 1, left column){ images at a medium spatial resolution
(MSR - 30 to 5 meters, Fig. 1(a, b)) are available. For the mapping of areas at
a scale of 1:5000 enabling to deal with urban objects {e.g., individual houses,
gardens, roads, etc. (Table 1, right column){ with their material ( e.g.,, houses with
orange tile roof), images at high spatial resolution (HSR - 3 to 1 meter(s), Fig. 1(c))
have been proposed since the end of the 90's.

For the intermediate scale of 1:10000 enabling to analyse urban blocks, which
can be de ned by the minimal cycles closed by communication ways (Fig. 2), there
does not exist any land cover/land use product. For this analysis, corresponding
to a semantic level calledblock level (Table 1, centre column), MSR images have
a too coarse spatial resolution (Fig. 2(a)) while HSR ones have a too ne spatial
resolution (Fig. 2(b)). Consequently, the classes induced by these urban blocks
cannot be obtained by a straightforward classi cation process from either or both

Corresponding author. Email: ckurtz@unistra.fr
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(&) 1 pixel=20m 20m (b) 1 pixel =10 m 10 m

Figure 1. Satellite images representing the same geographical area (960 m 650 m) with di erent reso-
lutions. (a,b) MSR images. (c) HSR image. © CNES 2009 { Kalideos, Isle-Reunion database.

Table 1. Typologies and levels used by end-users to map urban areas at di erent scales.

1:100, 000-1:25, 000 1:10, 000 1:5, 000
Urban areas level Urban blocks level Urban objects level
~ Building/roofs:
- red tile roofs

- light grey residential roofs
- light commercial roofs

" Vegetation:

- green vegetation

- non-photosynthetic vegetation

Transportation areas:

- streets

- parking lots

Water surfaces:

- rivers

- natural water bodies

Bare soil

Shadows

“ Continuous urban blocks
" Discontinuous urban blocks
- Individual urban blocks
- Collective urban blocks
" Industrial urban blocks ~
~ Urban vegetation
" Forest
~ Agricultural zones
" Water surfaces
" Roads

High-density urban fabric
Low-density urban fabric
Industrial areas

Forest zones

Agricultural zones

Water surfaces

Bare soil

P S
>

>

MSR or HSR images. Then, it is necessary to develop hew methodological tools
to consider urban areas at this intermediate semantic level by using the available
data (the MSR and HSR ones) in an original fashion. In particular, their complete
analysis (.e., both segmentation and classi cation) can be complementary and
possibly provide information related to the semantic level of urban blocks.

1.2 Multiresolution image analysis: a state of the art

Multi-image per-pixel approaches In the context of multiresolution approaches
(consisting of simultaneous MSR/HSR analysis), di erent methods have been pro-
posed. A rst approach (fusion approach) consists in combining all the descriptions
of the objects associated to the di erent resolutions into a unique image at the
highest resolution (Chibani 2005, Changet al. 2007). However, due to thecurse of
dimensionality (Bellman 1961), most of the classical distance-based algorithms are
not su cient to correctly analyse objects having a large number of attributes: the
distances between these objects are not su ciently di erent to correctly determine
the nearest ones. In addition, with the increase of the spectral dimensionality, some
problems can appear, like the Hughes phenomenon (Hughes 1968), characterised
by the fact that classi er performances decrease when the data dimensionality
increases.

An alternative solution aims at nding a consensus of classi cations of the images.
In (Forestier et al. 2008), a framework is proposed to produce a unied result
which represents a consensus among unsupervised classi cations of di erent images.
However, it requires to generate the same number of classes for all the images, which
is generally not relevant for MSR and HSR ones. In (Wemmertet al. 2009), some of
the authors describe an approach that uses simultaneously two images at di erent
spatial resolutions, and for which each classi cation does not necessarily have the
same number of clusters. This method consists in performing a per-pixel clustering
on both images. For each of them, regions are built. Then, regions from the image
at the highest resolution are characterised using the clustering of the image at the
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(a) Urban blocks on a MSR image. (b) Urban blocks on an HSR image.

Figure 2. Urban blocks represented at di erent resolutions. The sensed area covers a surface of 1, 200 m
600 m.

lowest resolution (each region of a clustered image is characterised according to
its clusters composition in the other one). These regions are nally clustered using
these compositions.

This method has produced promising results. Nevertheless, it directly (and only)
works on per-pixel classi cations, which is a serious weakness for dealing with the
issue of the semantic gapi(e., the lack of concordance between low-level informa-
tion automatically extracted from the images and high-level information analysed
by experts (Smeulderset al. 2000)). Moreover, with HSR images the de nition
of a pure \urban" spectral class is necessarily done by incorporating pixels of
other non-urban classes (Meseet al. 2000). This spectral heterogeneity induces
the well known salt-and-pepper e ect during the application of traditional per-
pixel approaches. Furthermore, the limitation to spectral information during these
processes disadvantages the recognition of clusters corresponding to the semantic
classes (Caprioli and Tarantino 2003, Marangozt al. 2004).

Mono-image region-based approaches To reduce the problems related to per-
pixel approaches, new methods usingbject-based(also calledregion-based strate-
gies, are being developed (Herolet al. 2002, Benzet al. 2004, Baatzet al. 2008).
Such methods perform a segmentation pre-processing step to partition the HSR
image into homogeneous regions (also callembjects). Then, in a second step, these
regions are gathered according to elementary characteristics like spectral and ge-
ometrical properties and, possibly, spatial relationships (contextual texture, topo-
logical relations) in order to perform an (unsupervised) region-based classi cation
(Herold et al. 2003, Carleer and Wol 2006). An overview of object-based methods
dealing with remote sensing images is presented in (Blaschke 2010).

In the context of urban areas analysis, a region-based method extracting simul-
taneously information at the object and area levels has been proposed in (Jacquin
et al. 2008). In this multiscale framework, a segmentation process is applied itera-
tively on an HSR image to produce partitions with di erent levels of details. Then,
according to its level of details, a partition is used to extract urban areas or urban
objects. The same kind of framework has been developed in (Corbaret al. 2008)
to enhance the mapping of hydrological soil surface. In a di erent way, a hybrid
multilevel pixel/region-based method dealing only with HSR images has been pro-
posed in (Bruzzone and Carlin 2006). The aim of this method is to classify each
pixel of the image by merging the spectral and the spatial context information.
This spatial context of the pixel is obtained by studying simultaneously several
levels of segmentation of the HSR image. For each resulting region of each segmen-
tation, spatial features are computed. Then, for each pixel of the considered image,
a vector is de ned. Such vector combines the radiometric values of the pixel and
its spatial features associated to its corresponding regions at the di erent levels of
segmentation.
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Region-based approaches provide promising tools to analyse urbanised territory
from HSR images in terms of simple urban objects (individual buildings, road seg-
ments, road intersections, cars, etc.). However, these methods are not adapted to
extract directly composite objects, like urban blocks (by considering that urban
blocks are composed by sets of simple urban objects in HSR imagery). A major
issue to deal with composite objects through HSR images consists in grouping
several individual objects in order to construct more complex ones corresponding
to a higher semantic level. In (Barnsley and Barr 1997) a graph-based, structural
pattern recognition system that might be used to infer broad categories of urban
land use from HSR images is presented. This system has been considered to anal-
yse discrete land cover parcels by taking into account the structural properties and
the relations between simple objects. Such relations are modelled through a graph
of linked regions (called XRAG { eXtended Relational Attribute Graph). Prelim-
inary tests performed using this framework on land cover parcels generated from
digital (vector) map data have suggested that certain categories of urban semantic
classes can be distinguished in terms of their structural compositions. In a more
recent work (Guo et al. 2008), the authors have proposed an approach to classify
complex objects. First, HSR images are segmented by a method which preserves
the semantics of real-world objects. The resulting regions are then classi ed with a
fuzzy classi cation process. Finally, these clustered regions are gathered by using
hyperclique patterns to form more complex objects (Industrial buildings, Baseball
eld, etc.). Another method, similar to the last one but using spatial relationships
and hierarchical segmentation, can be found in (Akcay and Aksoy 2008). In this
article, a framework which aims at detecting complex objects in HSR images by
combining spectral with structural information (exploited by using hierarchical
image segmentation) is presented. Given the observation that di erent structures
appear more clearly at di erent scales in di erent spectral bands, a new algorithm
is described. This method is dedicated to unsupervised grouping of candidate seg-
ments belonging to multiple hierarchical segmentations. The idea is to nd coherent
sets of segments which can correspond to more complex objects. Then, the auto-
matic labelling of the segments is done by computing the similarity of its feature
distribution to the distribution of the learnt object models. However, one of the
weaknesses of these methods is to omit the information contained in other images
(of the studied area) at di erent spatial resolutions.

1.3 Purpose

To conclude on this synthetic state of the art, there exist two main categories of
methods dealing with multiresolution analysis in the context of the mapping of
urban blocks. The rst one consists in simultaneously extracting information from
both MSR and HSR images in a per-pixel fashion. The second one, mainly intro-
duced to x the problems induced by per-pixel strategies (the semantic gap and
the limitation to spectral information during the clustering process), is based on a
region-based methodology. However it led to techniques enabling to only process
HSR images, without any use of other images with di erent spatial resolutions (by
opposition to the per-pixel approaches).

Based on these considerations, the purpose of the work presented in this article
is to propose a method which combines the advantages o ered by the (per-pixel)
multi-image analysis and the e ciency of the (mono-image) region-based frame-
works for a block levelanalysis in the context of the mapping of urban areas. In
this method, the spatial context of the urban objects and the semantic relation-
ships of these last ones between the available resolutions are used to enhance the
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simultaneous analysis of both MSR and HSR images. It is inspired from the work
proposed in (Wemmertet al. 2009). However, it is based on a quite di erent way to
perform multiresolution analysis. Indeed, in (Wemmert et al. 2009) the analysis is
carried out (on a per-pixel fashion) by studying the composition of the highest res-
olution data in terms of clusters in the lowest resolution one, while in the method
developed hereafter, the opposite strategy aims at studying the composition of the
lowest resolution regions in terms of clusters in the image at the highest resolution.
This new way to perform multiresolution analysis permits, in particular, to per-
form the re nement of nal HSR clusters into more speci ¢ subclusters matching
with hidden land cover classes.

The sequel of this article is organised as follows. In Section 2, the proposed
methodology is fully described in both \visual" and \formal" fashions. Section 3
gathers experiments enabling to assess the e ciency of the proposed approach in
the context of urban analysis, in particular by comparison with other methods.
Finally, conclusions and perspectives will be found in Section 4.

2. Methodology

The methodology described in this section is devoted to the simultaneous analysis
of two images of the same scene (namely an urban area) generated at distinct
resolutions (see owchart in Fig. 3). In the standard case, these two resolutions are

the MSR and the HSR ones.

Step 1: The two images are rst independently segmented by a at-zone
merging process (Step 1 in Fig. 3; Subsection 2.2).

Step 2: The HSR segmented image is clustered using the pixel radiometric
average of the regions (right side of Step 2 in Fig. 3; Subsection 2.3). Then
the composition of each region from the MSR image in terms of clusters of
the HSR one is computed (left side of Step 2 in Fig. 3; Subsection 2.3).

Step 3: Based on the composition of these regions, a clustering of the MSR
segmented image is performed (Step 3 in Fig. 3; Subsection 2.4): by opposition
to a \classical" clustering, this one aims at de ning \semantic" clusters and
no longer \radiometric" ones.

Step 4: The global composition of these clusters, in terms of clusters of
the highest resolution image, is then computed (right upon side of Step 4 in
Fig. 3; Subsection 2.5). Thus, these classes have an intermediate level which
can correspond to the semantic block level. Finally, regions of the HSR image
are embedded in the MSR image data space in order to assign them to a class
of the intermediate level (see-, - and ® of Step 4 in Fig. 3; Subsection 2.5).

The main idea of this method is to fuse the information provided by the analysis
of the high spatial resolution regions with the low resolution semantic clustering to
obtain a nal clustering result corresponding to the urban blocks level. Moreover,
another advantage o ered by multiresolution analysis iscluster re nement . The
idea is that the information obtained by analysing simultaneously two di erent res-
olutions (HSR and MSR) can be used to improve HSR classi cation results (at the
urban objects semantic level) by discovering hidden HSR subclusters (Subsection
2.6).
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Figure 3. The proposed multiresolution method: inputs are composed of MSR and HSR images and the
method provides as output a clustering of the HSR segmented image at the urban blocks semantic level.
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Figure 4. A correspondence map 2 1 between two image functions 12 and | 1. In this example, =2,
and a pixel in 11 then corresponds to 4 pixels in | 2.

2.1 Input/output

Let E =[0;dx 1] [0;dy 1] N2 E is the discrete partition (broadly speaking,
the \square grid") of the scene being observed. Let, = [O;vy, 1] N, W is a
discrete sampling of the intensities observed for the spectral band considered for
the observation. A (mono-value) imagel y, is de ned as a function

|bI E ! Vb
X=(xy) 7' (X)=v

which to each point (i.e., tcdaach pixel) x of the observed scene, associates a spectral
intensity v. Now, let V = f):l Vp with Vp =[0;vpm 1] Nforall b2 [1;s], V

is an agglomeration of several spectral bands. A (multivalue) image is de ned as

a function

| E ! VQ
X=(xy) 7' (xX)=v= "1y Ip(X)

wherelp : E !V, is a monovalue image for allb 2 [1;s]. Broadly speaking, a
multivalue image is the agglomeration of several mono-value images.

The method takes as input two multivalue images: a MSR imagel 1 : E1 1 V1
and an HSR imagel 2 : E?! V? of the same scene (witiE' = [0;d; 1] [O;dj
11,E?=[0;0df 1] [0;d7 1I). We recall that {for a same scene{ the higher the
value of d?, d'y’ is, the higher the resolution of the image is. In particular, in the
current context, we necessarily havedy; dj < dZ; d3.

We set = di=d} = dZ=df; 2 N . The coe cient  characterises the \di erence”
of resolution between the two (MSR and HSR) images. Note that a pointx 2 E?®
then \physically" corresponds to a set composed of points in E? (indeed the
point x 2 E* and the points of E2 match the same region). In order to model
the correspondence between the points of two such imagds' and | 2, we de ne
the two correspondence maps

w2 EY P (E?)
X =(xy) 7! (xy)+[0; 1P

21 1 . E? ! E?l

x=(xy) 7t (k=iy= ) 2N

where P(E?) = fX  EZ?gis the set of all the subsets ofE2. The map 2 1
indicates in which pixel of the MSR image a point of HSR one lies, while the map

11 2 indicates which set of pixels of the HSR image corresponds to a (single)
pixel of the MSR one. Figure 4 exempli es the correspondence mapy 1.

The method provides as output a clustering of the scene at an intermediate
semantic level {.e., a level corresponding to a resolution between the ones df!
and | 2) which corresponds, in the considered applicative context, to the block
level. This clustering is modelled by a label imageR : E2! [1;k][f?g which,
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to each point x of the scene (at the highest resolution), associates a class value
R (x) among the k possible ones, or possibly the undetermined valu@ (in the case
where no intermediate semantics has been assigned to this point).

2.2 Step 1 - Segmentation

A segmentation of an imagel : E ! V is a partition S = fS;glL; of E; broadly
speaking, the scene visualised ih is \decomposed" into n distinct parts S;, which
are supposed to present speci ¢ semantic properties. In the context of this work,
we can assume that each partS; is connected w.r.t. a chosen adjacency; we will
denote S; as aregion. To any segmented imagd , we then associate a region image
Ir :E ! [1;n] de ned such that for all x 2 E, x 2 Si.x): Ir can be seen as a

the imagel .

Two main approaches are generally considered for the segmentation of satellite
images: watershed segmentation (Vincent and Soille 1991) and \region-growing"
segmentation (Crosset al. 1988). Recent studies (Meinel and Neubert 2004, Car-
leer et al. 2005) devoted to the comparison of these two kinds of segmentation
techniques (especially in the case of HSR images) have emphasised the fact that
region-growing approaches tend to outperform watershed ones.

Based on these studies (corroborated by preliminary experiments), it has been
chosen to use a region-growing method to perform segmentation of both images.
Such a method is initialised with a trivial partition of the image, and iteratively
merges elements of this partition, chosen as the pairs of adjacent regions minimising
a given evaluation function f . -

The initial partition S™ = fS;g'; considered here is composed of the at
zones of the image. This choice is computationally less expensive than a partition
composed by all the singleton sets of the image pixels. Moreover it guarantees that
the constant regions are preserved in the segmentation result.

The merging process joins regions by considering the Region Adjacency Graph
(RAG) formed by the image at zones. The one used in this work (Baatz and Schape
2000) is guided by two main criteria: colour and shape. They enable to optimise
the regions spectral homogeneity and spatial complexity. The ratio between both
criteria depends on the desired output.

The evaluation function f used here is called heterogeneity function. It corre-
sponds to the increase of heterogeneityi.€., the \di erence”) between the region
X 1.2 susceptible to be formed and the two adjacent regionsX ; and X ) candidate
to this fusion

f = Weolour Neolour + Wshape Nshape 1)

where Weolour ; Wshape are weights (which verify Weoiour ; Wshape 0 and Wegjour +
Wshape = 1). The spectral heterogeneity hcgoyr COrresponds to the increase of
variance between the one of the regiorX 1.2 and the sum of the ones of the re-
gions X1 and X,. The shape heterogeneity hshape is @ value that describes the
improvement of the shape w.r.t. smoothness and compactness of an object shape
(see (Baatz and Schape 2000) for more details related to the de nition of ).

During the iterative merging process,f is computed for each couple of adjacent
regions of S¢U"eNt " Then, the couples of regions which minimise the evaluation
function f are merged into (larger) ones.

Prior to the potential fusion of two adjacent regions, the resulting increase of
heterogeneityf is computed. If it exceeds a given threshold (called \scale param-
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eter") determined by the user, then no further fusion occurs and the segmentation
ends.

This segmentation process is applied independently to both input images$ * and
| 2 to obtain the segmented imagesl Flz and | er (Step 1 in Fig. 3). The partition
corresponding tol & (resp. 1 3) is called S (resp. S2) and the number of elements
in this set is denoted byn? (resp. n?).

2.3 Step 2 - Initial clustering and composition computation

Initial clustering of the HSR segmented image Let S = fSig; be a segmenta-
tionof animagel :E! V,andlgr:E! [1;n] be the associated region image. A
clustering of | into k classes is provided by the de nition of amapC: [1;n]! [1;K]
which, to each one of then regionsS;, associates one of thé QJS';\sseSC(i). A clus-
ter K; induced by such a clustering is then de ned byKi = ,c 1ig S, i-e.,
by gathering all the regions S; which correspond to a same class. The set of thke
clusters of | is noted K = fKigk, . Similarly to the case of segmentation, to any
clustered imagel , we associate a cluster imagéc : E ! [1;k] de ned such that
forall x 2 E, x 2 K|_(x); I c can be seen as a synthetic image (with the false
colours 1;2;:::;k) induced by the clustering of the imagel . Note in particular
that | ¢ is straightforwardly de ned as the composition of the region image and its
clustering, i.e., Ic = C IR.

In this step, a clustering is performed on the segmented (HSR) imagé3, using
the radiometric values of the pixels ofE2. This leads to the generation of a cluster
imagel 2 : E2 ! [1;k?] (right side of Step 2 in Fig. 3).

Regions composition computation of the MSR segmented image Letl¢c:E!
[1; K] be a cluster image. Thecomposition histogram of | ¢, noted H, . is de ned

by

Hi. [ K]! N
i 70l Mg 2)
Note that a composition histogram is nothing but a classical histogram, except
that the \real" values of | are replaced here by \symbolic" ones (corresponding to
its clusters).
The composition histogram of | ¢ associated to a subseX E, notedH,_ x Is
de ned by

HIC;X Z[l;k]]! N
i 7 Mg\ X (3)

It corresponds to the composition histogram ofl ¢, restricted to the set X; in
particular, we obviously have H, .. = H, ..

Once the HSR imagel é has been classi ed, it becomes possible to determine the
composition of each regionX of the MSR imagel Fle (i.e., eachX 2 S1) w.r.t. the
cluster imagel (2: This composition is actually de ned as the composition histogram
Hiz, ., ,x) (left side of Step 2 in Fig. 3) de ned by

Hlé;l! 2(X)|[11k2]]| S N
i 7 ox w200\ (18) Hfig) (4)
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Broadly speaking, this composition histogram associates to each labélof the clus-
tered HSR image, the number of pixels which have the label and which correspond
to a pixel of the considered segmented regioX of the MSR image.

2.4 Step 3 - Intermediate clustering of the MSR image

The previous step provides, for each segmented regiod 2 S* of the MSR image

| 1, its composition in terms of classes of the clustering of the HSR imagé 2,
under the form of a composition histogram (left side of Step 2 in Fig. 3). Then, it
becomes possible to compute a clustering of the regions 8ft = inlgi”:l1 based on
the value of these regions in the space of composition histograms. This clustering
C: [1;n'] ! [1;k] enables to gather regions presenting similar characteristics
w.r.t. the \objects" composing them. This leads, in particular, to the identi cation

of local and frequent associations of structures identi ed in the HSR image, forming
meta-structures at a coarser resolution.

This process provides a cluster image & : E1 ! [1;k] associated to the MSR
image| * (Step 3 in Fig. 3) which is indirectly based on the radiometric values ofl *
(thanks to the initial segmentation 1 }) and directly based on the implicit semantics
of the HSR imagel 2 (thanks to its clustering | &2, modelling the composition of
the regions of the MSR imagel 1). This cluster image gathers information related
to both MSR and HSR images, but at a medium level. Consequently, the resulting
classes can potentially be close to the ones de ned for block level analysis.

2.5 Step 4 - Final clustering of the HSR image

Similarly to the computation of the composition histogram for the regions of the
segmentationS* of the MSR imagel 1, it is possible to compute the composition
histogram for the k clusters obtained from the classi cation C described in the
previous section, in terms of classes of the classi catiorhé of the HSR imagel 2.
Such composition histograms provide information related to the way the classes of
C are formed by the classes ofé obtained at the highest resolution (right upon
side of Step 4 in Fig. 3). Formally, these histograms are de ned, for 2 [1;Kk] as
Hiz, ., L2) (i), following the same de nition as proposed in Eq. 4.

In order to simplify these histograms, and in particular to remove \semantic
noise", a threshold  (dened by (v)= vifv t and 0 otherwise) is applied on
them, thus removing the values corresponding to HSR classes having a non-relevant
contribution. The nal pruned composition histograms, noted H,;;, are then de-
ned as Hizi = « Hyz, ., ,2) tig)- Experimentally, it has been observed
that choosingt close to the mean of the histogram valuesi(e., j(13) (fig)j=k?),
provided satisfying results.

Then, the regions of the HSR segmented image are embedded in the MSR image
data space in order to assign them a class of the intermediate level (see, -
and ® of Step 4 in Fig. 3). The idea consists in assigning to each region of the
segmentation S? of the HSR imagel 2, a label of a cluster ofK provided by the
classi cation C. To this end, for each segmented HSR regioX; 2 S2, we compute
its composition in terms of MSR/HSR classes ofl ¢ (provided by the classi cation
C, see Step 3 in Fig. 3). Thes@? histograms are then actually de ned, fori 2 [1;n?]
asHj:. , ,x?) (see Eq. 3). From these composition histograms, we are then able
to nd, for each HSR segmented regionX; 2 S?2, its main composition in terms of
classes ofl é {the intermediate clustering of the MSR image (see- of Step 4 in
Fig. 3). In other words, for each segmented regioX; of the HSR image, we search
what is the class of the main cluster ofK which composesX; in | (1: We denote by
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K Xi 2 K this cluster. It is de ned, for each region X; as

Kiix = K& where tmay = artgz[rpgfo 11 (Dd (5)

Here, tmax iS the main class which composes(; in 1. We call p its majority
percentage (we have, in particularp = H, 1. ,, ,(x,)(tmax)5Xi]). Given a\majority
threshold" sma 2 [0; 1], two cases can occur:

P <Sma | X is not embeddable : this means that the classtmax is not
\su ciently majoritary”, i.e., that X; is not correctly correlated (from a spa-
tial point of view) to a semantic area at the MSR resolution. We consider that
this is due to a problem in the segmentation process (in the MSR and/or the
HSR image). We then assign the class labe? to X;.
P sSma | Xjis embeddable : from the composition histogram Hz k.,
of the cluster K¢, . (which indicates what are the classes at the HSR resolu-
tion which mainly compose the clusterKy,, ), we getv = Hzx, _ (C3(i)),
namely the contribution, in this composition histogram, of the class corre-
sponding to the region X; at the HSR resolution. Then, two cases can occur:
b v=0]| X;isunclassiable at an intermediate semantic level: this
means that the class of the HSR regionX; is not coherent with the
HSR classes which should (mainly, w.r.t. the threshold ) compose the
\MSR" cluster KX . We consider that this is due to a problem in the
classi cation process. We then assign the class labé&l to X;.
b v>0]| X;isclassiable atan intermediate semantic level (see- of
Step 4 in Fig. 3). We then assign the class label th); to X; (see® of
Step 4 in Fig. 3).

A possible supplementary step consists in forcinginclassi able regions to belong
to a class label of the intermediate level by considering their neighbour regions.
First, for each unclassi able region X; 2 S?, we get the labelj of its class in| (23
(the label of X; in HSR clustering). Then, we search what is the main class label
of all the neighbours ofX; in C. Let K X1, 2 K be the cluster corresponding to this
class label. 'fH|g;K X (j) > 0, then X; takes the class label ofK i, . Otherwise,

X keeps the class labe?P .

2.6 Addendum: Cluster re nement

Another advantage o ered by multiresolution analysis is the possibility to per-
form HSR cluster re nement. Indeed, the composition of MSR clusters in terms of
clusters in HSR image, enable to split HSR clusters into more speci ¢ ones. For
example, aVegetation cluster extracted from the HSR image and taking part in the
composition of di erent MSR clusters (Industrial area, High-density urban fabric)
extracted from the MSR image could be split into two distinct HSR clusters (In-
dustrial vegetation cluster and Urban vegetation clustel). The analysis of the MSR
image gives contextual information during the analysis of the HSR one. Figure 5
illustrates this cluster re nement framework. The four steps necessary to perform
cluster re nement are described bellow. Note that the described methodology is
devoted to the simultaneous analysis of two imagesl(* and | 2) of the same urban
scene generated at distinct resolutions.

Step A - Segmentation  The two images are rst segmented (independently)
by the previous method. Let bel Fle and | er the resulting segmented images
(Step A in Fig. 5). This rst step is similar to the Step 1 in Subsection 2.2.
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Figure 5. Cluster re nement: discovering hidden HSR subclusters. In this case, data inputs are composed
of MSR and HSR images and the re nement method provides as output a clustering result of the HSR
segmented image at the semantic level of urban objects.

Step B - Initial clustering The region imagelé (resp. | er) is classied,
based on the photometric values of the pixels oE® (resp. E?), in its own
semantic level (Urban Area levelvs. Urban Object level) (see Step B in Fig. 5).
The resulting cluster images are denoted by 2 and | 2.

Step C - Composition computation of MSR clusters Oncel i and 13
have been classi ed, it becomes possible to determine the composition of each
cluster K of I 2 w.r.t. the cluster image | 2 (see Step C in Fig. 5).

Step D - Discovering new HSR clusters Finally, based on the com-
position of these MSR clusters, HSR clusters could be split into specialised
clusters: if an HSR cluster takes part in more than one MSR cluster histogram,
this HSR cluster is split into di erent HSR subclusters (see Step D in Fig. 5).
More formally, we split Ki 2 Kz if 9j1 6 j2 with Hyz. | 1) 1¢tj.g) (1) >S
and Hyz: ., 1) (fj.g) () > s wheres is a parameter set by the user. The
split subclusters are calledK ;, and Kji,. The number of resulting clusters in
the HSR segmented image is denoted b2

ref -
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This HSR re nement method provides as output a clustering result of the HSR
segmented image at the semantic level of urban objects. This clustering is modelled
by a label imageR : E2 ! [1;kZ; ] which, to each point x of the scene (at the

highest resolution), associates a class valuR (x) among the kr2ef possible ones.

3. Experiments and results

This section describes the experiments carried out with the proposed multiresolu-
tion framework in the context of clustering of urban patterns extracted from MSR
and HSR images. Subsection 3.1 presents the data which were used to perform the
method. Experiments and parametrisation are described in Subsection 3.2. The
results of the multiresolution method devoted to analyse urban blocks are then
presented and analysed in Subsection 3.3. Finally, some of the results obtained
with the proposed cluster re nement method and their qualitative validations by

an expert are showed in Subsection 3.4.

3.1 Material

Experiments have been performed on two sets of images calle8trasbourg
dataset and Toulouse dataset.

The Strasbourg dataset is composed by three multispectral images with dif-
ferent spatial resolutions (2.8 m, 10 m and 20 m) acquired by theQuickBird |,
Spot -5 and Spot -4 satellites (respectively in May 2001, August 2002 and July
2001). The Spot -5 and Spot -4 multispectral images (Fig. 6(a, b)) have three
spectral bands (green, red, near-infrared). TheQuickBird multispectral image
(Fig. 6(c)) is available in four spectral bands (blue, green, red and near-infrared).
All the data are georeferenced in the same local cartographic projection (Lambert
). These images present a part (1, 500 m 2, 100 m) of the urban area of Stras-
bourg (France) which is a typical suburban area with water surfaces (in black,
centre of the image), forest area (in red, bottom left of the image), industrial areas
(in grey, upper right of the image), individual or collective housing blocks (in red,
black and white textured on the MSR image, in red, blue and white textured in the
HSR image), agricultural zones with di erent spectral responses due to the seasons
(bare soil at the end of spring on the HSR image can appear in red in summer on
the MSR image).

The Toulouse dataset is composed by three multispectral image'swith approx-
imately the same spatial resolutions as above (2.5 m, 10 m and 20 m). The HSR
image (2.5 m) was acquired by theSpot -5 satellite in September 2003 (Fig. 7(c)).
This image is a result of a fusion between the panchromatic image at 2.5 m and XS
bands at 5 m. The resulting HSR image has four spectral bands (green, blue, red,
near-infrared). The MSR images (20 m and 10 m) were simulated from the HSR
one by a degradation process (Fig. 7(a, b)). This degradation process transforms
HSR images into MSR ones by simulating the \physical" properties of such sensors.
These images are georeferenced in the same local cartographic projection (Lambert
[11) and present a part (1, 600 m 2, 100 m) corresponding to the South West of
the city of Toulouse (France) which is also a typical suburban area.

1The authors would like to acknowledge the support of the Centre National d'  Etudes Spatiales (CNES)
which provided the images of the Toulouse dataset. We are grateful to Jordi Inglada for his assistance in
providing and processing these data.
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o R
(@) MSR - multispectral Spot -4 © CNES (Isis (b) MSR - multispectral Spot -5 © CNES (Isis
program). Image at 20 m. program). Image at 10 m.

(d) Zoom (750 m 525 m) on North
(c) HSR - multispectral QuickBird © Digital- West part of (a, b, c).
Globe Inc. Image at 2.8 m.

Figure 6. Data of the Strasbourg dataset. These images present an extract (1, 500 m 2, 100 m) of
the urban area of Strasbourg (France).

3.2 Experiments and parametrisation

To evaluate the multiresolution method (devoted to analyse urban blocks), we have
carried out experiments with di erent con gurations and parameters:

(i) to study the in uence of the initial segmentations on the nal result, we
have run the segmentation algorithm with di erent scale parameters (Step
1 of the process, Subsection 3.3.2);

(i) to study the in uence of the number of clusters in both classi cations, we
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(@) MSR - multispectral simulated image de- (b) MSR - multispectral simulated image de-
graded from the HSR Spot -5 © CNES. Image graded from the HSR Spot -5 © CNES. Image
at 20 m. at 10 m.

(d) Zoom (800 m 550 m) on

(c) HSR - multispectral THX Spot -5 © CNES. Centre East part of (a, b, c).

Image at 2.5 m.

Figure 7. Data of the Toulouse dataset. These images present an extract (1, 600 m 2, 100 m) of the
urban area of Toulouse (France).

have run the algorithm with di erent numbers of clusters in the classi ca-
tions (Steps 2 and 3 of the process, Subsection 3.3.3);

(i) to study the in uence of the spatial resolutions of MSR images on the
nal result, we have run the method with di erent initial con gurations:
(2:8 m=10 m) and (28 m=20 m) for the Strasbourg dataset; (25 m=10 m)
and (2.5 m=20 m) for the Toulouse dataset) (Subsection 3.3.4).

The four steps described in Section 2 (Subsection 2.2 to 2.5) have been performed
as follows.
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Step 1 - Segmentation To nd the best partition for each image according
to the studied area, the segmentation process has been applied on both images
with di erent parameters.

The parameters Weolour ; Wshape (EQ. 1) were respectively set to 0.75 and
0.25. This parameter con guration gives priority to spectral heterogeneity.
For the HSR and MSR images, the scale parameter was successively set
to distinct increasing values (see Table 2) in order to produce segmentations
with di erent levels of details. In the sequel, the number of elements {.e.,
the regions to be classi ed) in the MSR (resp. HSR) partitions is referred as
Rmsr (resp. Rusr)-

Step 2 - Initial clustering and composition computation The initial
classi cations of the HSR segmented image were produced by using the clas-
sical K -means algorithm. Note that any clustering algorithm which can deal
with numerical data could also be used. For this kind of images, the number of
clusters depends on the materials of the urban objects which can appear in the
studied area. In agreement with the experts, we have carried out experiments
with 15, 20, 22 and 25 classes (the number of classes used in each clustering
is denoted by Chsgr). Then, for each experiment, the composition histograms
of the regions from the MSR segmented image (in terms of clusters in HSR
image) have been computed.

Step 3 - Intermediate clustering of the MSR image During this step,
the K -means algorithm was applied on the MSR segmented images using the
composition histograms. Experiments have shown that the method did not
directly nd all the appropriate clusters w.r.t. to the block level. To tackle
this problem, the K -means algorithm has been run with a higher number
of clusters (9, 11, 13 and 15 clusters) notediner - A post-processing step
which consists in applying a hierarchical ascendant clustering algorithm can
then be applied in order to reduce the number of classes (9 classes in the
current application, see Table 1, centre column). This post-processing step is
performed after Step 4 (Subsection 3.3.5).

Step 4 - Final clustering of the HSR image The regions of the HSR
image were embedded in the MSR image data space in order to assign them
to a class of the intermediate level. The majority percentagesys was set to
75% (.e., an HSR region is embeddable in the intermediate level if 75% of
the pixels of the region get the same intermediate label cluster during the
projection).

These four steps were performed on the whole images presented in the previous
subsection with the di erent sets of parameters described above. For a better visu-
alisation, some of the results are only presented on an extract of the studied zone,
corresponding to the North West part of Figure 6 for the Strasbourg dataset
and to the Centre East part of Figure 7 for the Toulouse dataset.

3.3 Results analysis of urban blocks classi cation

3.3.1 Results evaluation.  Results produced by the method have been assessed
by qualitative and gquantitative comparisons with an extract (corresponding to
the North West part for Strasbourg and the Centre East par for Toulouse) of a
groundtruth map from a land-cover/land-use database used for a 1:10,000 mapping.
These extracts of maps (Fig. 8(a, b)) contain 8 thematic classes at the semantic
block level.

We have computed the Kappa index (Tables 3 and 4), which is a measure of
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Table 2. Segmentations parameters and number of regions obtained for the two datasets Strasbourg  and

Toulouse . The threshold is the segmentation parameter. The symbol Rwmsr  (resp. Rusr ) corresponds to the
number of regions in the resulting partitions of the MSR (resp. HSR) image.
Strasbourg dataset

HSR (2.8 m) 20 25 30 40
RHsr 25; 594 19; 752 15; 105 9; 314

MSR (10 m) 10 13 17 20
Rwmsr 8; 785 5;775 3;744 2;854

MSR (20 m) 12 15 20 25
Rmsr 2; 255 1;688 1;067 768

Toulouse dataset

HSR (2.5 m) 20 25 30 40
RHusr 24; 897 19; 006 13; 115 9; 727

MSR (10 m) 10 13 17 20
Rmsr 7,863 4,980 2;482 1;515

MSR (20 m ) 12 15 20 25
Rwmsr 3;084 1;454 728 437

(a) Groundtruth map of the Strasbourg dataset

(BDOCS 2000 CIGAL 2003).

(b) Groundtruth map of the Toulouse dataset.

Industrial urban blocks Collective housing urban blocks
Individual housing urban blocks Water surface

Roads Agricultural zones

Urban vegetation Forest

Figure 8. Groundtruth maps of the studied areas at the semantic block level.

global classi cation accuracy (Congalton 1991). The Kappa takes value in [D1]

and decreases as the classi cation is in disagreement with the groundtruth map.
For instance, a value between 100 and Q81 re ects a \perfect" agreement, a value

between 080 and Q61 indicates a good agreement and so on.

To get an overview of the impact of initial segmentations and classi cations on the
nal image clustering results, the parameters which have been involved to produce
these results have been studied independently, as described below. Note that in
all the presented results, the colours of the clusters were chosen to correspond to
those de ned for the groundtruth map.

3.3.2 Impact of the segmentations. To highlight the in uence of the initial
segmentations on the nal result, the classi cation parameters Cysr (number of
classes in HSR initial clustering) andCinter (number of classes in MSR intermediate
clustering) have been set to 20 and 13 respectively. Only the initial segmentations
have been modi ed (Table 3). These experiments have shown that:

Strasbourg  dataset:

With partitions composed of 9; 314 and 15105 regions from HSR image and
733 and 1 067 regions from MSR image at 20 m (resp. ;854 regions from
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MSR image at 10 m), the classes obtained do not match with the groundtruth
map. Indeed, too many regions from HSR image (resp. MSR images) are too
large to correspond to urban objects (resp. urban blocks). Moreover there are
probably not enough regions to be classi ed.

With 25;594 regions from HSR image and ;255 regions from MSR image at
20 m (resp. 5557 and 8785 regions from MSR image at 10 m), numerous
regions are too small and correspond to parts of urban objects or urban blocks.

With 19; 752 regions from HSR image and ;688 regions from MSR image at
20 m (resp. 3 744 regions from MSR image at 10 m), the number and the sizes
of the regions seem well tted for the classi cation of the images. Indeed, the
visual interpretation of regions con rmed that the extracted regions are close
to the objects of interest. The resulting classes better match those from the
groundtruth map de ned for the urban block analysis. There are also fewer
problems of over/under-segmentation.

For these reasons, the segmentation from the MSR image at 20 m with ;588
regions (resp. 3744 regions for the MSR image at 10 m) and the segmentation
from the HSR image with 19, 752 regions are kept for the next steps.

Toulouse dataset:

In the same way, experiments carried out on theToulouse dataset have shown
that the segmentation from MSR image at 20 m with 1,454 regions (resp. 2482
regions for the MSR image at 10 m) and the segmentation from HSR with 13115
regions seem well tted for the classi cation of the images. Thus, these segmenta-
tions will be kept for the next steps.

To summarise, these rst experiments have shown that the quality of the clus-
tering results is directly linked to the choice of the segmentation parameters. In
order to obtain suitable results of classi cation it is necessary to choose good sets
of parameters. This study have shown that in the two datasets the best con gu-
rations of parameters are quite similar. For the segmentation of an HSR image a
good value of takes range between 25 and 30. For the segmentation of an MSR
image at 20 m, the parameter could be set to 15 whereas for the segmentation
of an MSR image at 10 m the threshold could be set to 17. Consequently, the
results obtained in this study could help the end-user to choose the optimal values
of segmentation parameters.

3.3.3  Impact of the initial classi cations. To study the in uence of the initial
classi cations on the clustering result, we have set theCysr and Ciner parameters
to di erent values. For each experiment on the two partitions obtained previously
(Subsection 3.3.2), the Kappa index has been computed (Table 4). From this table,
one can see that both parameters have an actual in uence:

Strasbourg  dataset:

ChHsr: If the number of HSR clusters is too small Chsg = 15), some HSR
clusters seem to be irrelevant (probably due to the low number of clusters).
This leads to the construction of incorrect intermediate clusters. For instance,
some Agricultural zones belong to the same cluster as Water surfaces (Fig. 9(a,
e)). However, if the number of HSR clusters is too high Cysg = 25), local and
frequent associations of HSR structures (Step 3 of the method) are di cult to
identify (probably since an insu cient number of MSR regions have a similar
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Table 3. Impact of the initial segmentations of HSR and MSR images on the nal clustering result. The
Kappa values for the di erent experiments are presented on the Strasbourg  and the Toulouse datasets. The
best values obtained are depicted in red.
Strasbourg  dataset
h h h h h h hHSR Image Image at 2.8 m
MSR Image hhn Rusk =9:314 | Rusk =15:105 | Rusk =19:752 | Rusr = 25594
£ Rmsr =733 0:7981 0:7939 0:7897 0:7762
I Rmsr =1;067 0:8004 0:8054 0:8044 0:7895
g Rmsr =1;688 0:8105 0:8097 0:8118 0:8081
E Rmsr =2;255 0:7905 0:7956 0:8023 0:7932
£ Rmsr =2;854 0:7673 0:7767 0:7845 0:7627
S Rmsr =3;744 0:7726 0:7824 0:7904 0:7786
Z Rmsr =5;775 0:7710 0:7813 0:7883 0:7797
E Rmsr =8;785 0:7643 0:7744 0:7797 0:7619
Toulouse dataset
h h h h h h hHS;R Image Image at 2.5 m
MSR Image h'hhn Rusk =9:;727 | Rusr =13;115 | Rusg =19;006 | Rpysr =24 ;897
£ Rmsr =437 0:7345 0:7421 0:7413 0:7384
5 Rmsr =728 0 :7462 0:7513 0:7491 0:7433
Z Rmsr =1;454 0:7613 0:7689 0:7656 0:7598
E Rmsr = 3,084 0:7512 0:7603 0:7564 0:7519
£ Rmsr =1;515 0:7232 0:7298 0:7224 0:7186
S Rmsr =2;482 0:7326 0:7359 0:7351 0:7313
Z Rmsr =4;980 0:7263 0:7285 0:7287 0:7231
E Rmsr =7 ;863 0:7114 0:7196 0:7167 0:7138

composition in terms of HSR clusters) (Fig. 9(h)). The best results have been
obtained for Cysr = 22 (Fig. 9(c, d, g)) and Cuysr = 20 (Fig. 9(b, f)).

Cinter : If the number of intermediate clusters is too low (Ciner = 9), some
nal clusters do not match with the semantic classes (probably because these
clusters gather too many di erent HSR objects) (Fig. 9(e)). With Ciner = 15,
the number of intermediate clusters is probably too high. The clusters seem
to be too \specialised" and do not match with the groundtruth map. The best
results were obtained with Cier = 13 for the MSR image at 20 m (Fig. 9(c))
and with Ciner = 11 for the MSR image at 10 m (Fig. 9(q)).

Toulouse dataset:

In the same way, experiments carried out on theToulouse dataset have shown
that the Cysgr parameter have a direct in uence on the nal clustering results.

If Cysr is too low, many clusters from the HSR classi ed image seem to be in-
appropriate to classify the scene to the urban objects level (probably due to the
low number of clusters). For example, some Forest zones belong to the same clus-
ter as housing surfaces (Fig. 10(a, €)). When the number of HSR clusters is too
high (Chsr = 25), the same problem as in the Strasbourg  dataset appears
(Fig. 10(h)). The best results have been obtained fortCysg = 22 (Fig. 10(c, d, g))
and Cysr = 20 (Fig. 10(b, f)). Concerning the impact of the parameter Cir , the
same kinds of observations (as in theéStrasbourg  dataset) can be made. When
the number of intermediate clusters is too low Cineer = 9), some of the nal clus-
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ters of the clustering results do not match with the semantic classes. For instance,
the collective housing blocks are sometimes in the same cluster as the individ-
ual housing blocks (Fig. 10(a, €)). With Ciner = 15, the number of intermediate
clusters is probably too high. The same problem as in theStrasbourg  dataset
appears. The best results were obtained withCiner = 13 for the MSR image at
20 m (Fig. 10(c)) and with Ciner = 11 for the MSR image at 10 m (Fig. 10(f)).

To summarise, this study has demonstrated that the relevance of the block level
clustering results is directly associated to the choice of the classi cation parameters.
Moreover, this last one has shown that the optimal classi cation parameters are
quite similar for the two studied datasets. Indeed, the best classi cation parameters
were found when the number of clusters in the HSR image took range between 20
and 22 and when the number of clusters in the intermediate clustering result was set
to 13 with the MSR image at 20 m (see Fig. 9(c) and Fig. 10(c)) and set to 11 with
the MSR image at 10 m (see Fig. 9(g) and Fig. 10(f)). With these con gurations,
urban areas could be classi ed at an intermediate level whose resulting clusters
correctly match with those de ned by experts for an analysis of the urban blocks.
To conclude on this study, the best number of clusters in the HSR image can be
found by the expert knowledge (by analysing the number of materials composing
the urban objects which can appear in the studied area) whereas the optimal
number of clusters in the intermediate clustering can not be discovered directly.
The end-user has to try dierent values of this parameter. However, the set of
possible suitable values folCir has been signi cantly reduced (5 values {from 11
to 15).

3.3.4  Impact of the spatial resolution of the MSR image. To study the in u-
ence of the spatial resolutions of MSR images on the nal result, we have applied
the method on the two datasets with di erent spatial con gurations:

(2:8 m=10 m) and (28 m=20 m) for the Strasbourg dataset;
(2:5 m=10 m) and (25 m=20 m) for the Toulouse dataset.

The Kappa index has been computed for each experiment with the two con gu-
rations (see Tables 3, 4) and the numerical results shown higher scores when the
MSR image at 20 m is used. Indeed, most of the experiments carried out on the
Strasbourg dataset (resp.Toulouse dataset) have shown that the con guration
(2:8 m=20 m) (resp. (25 m=20 m)) provides better results than the con guration
(2:8 m=10 m) (resp. (25 m=10 m)).

Moreover, from a visual comparison between resulting cluster images (see
Fig. 9(c, g) and Fig. 10(c, f)), we can see that nal clusters obtained with the
spatial con guration (2 :8 m[or 25 m]=20 m) match with more semantic classes
than those obtained with the spatial con guration (2 :8 m[or 25 m]=10 m). The
gap between these results is probably due to the possibility to extract the urban
objects from the MSR image at 10 m (the urban blocks of the studied areas are
too heterogeneous to be extracted from this image). The spatial resolutions of an
HSR image at 2.8 m (or 2.5 m) and an MSR image at 10 m are too close for using
our method to classify urban blocks on the studied datasets.

Concerning not embeddable regions (white clusters on Fig. 9 and 10 {labé? in
Step 4 of the method in Subsection 2.5), experiments have shown that this problem
is more perceptible when the spatial con guration (28 m[or 25 m]=10 m) is used.
Indeed, experiments have shown that 22% of the regions of the HSR image are
unclassi able in the nal result when the image at 10 m is used whereas only 15%
of the regions of the HSR image are unclassi able when the image at 20 m is used.
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(HSR image at 2.8 m / MSR image at 20 m)

(@ Chsr =15; Cinter =11. (b) Chsr =20; Cinter =13.

(€) Chsr =22; Cinter =13. (d) Chsr =22; Cinter =15.

(HSR image at 2.8 m / MSR image at 10 m)

(e) Cusr =15; Cinter =09. (f) Chsr =20; Cinter =11.

(@ Chsr =22; Cinter =11. (h) Chsr =25; Cinter =15.

21

Figure 9. Block level classi cation results on the  Strasbourg dataset. Note that the white cluster gathers

not embeddable regions (label ? { Step 4 of the method in Subsection 2.5).
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(HSR image at 2.5 m / MSR image at 20 m)

(@ Chsr =15; Cinter =09. (b) Chsr =20; Cinter

(¢) Chsr =22; Cinter =13. (d) Chsr =22; Cinter
(HSR image at 2.5 m / MSR image at 10 m)

() Chsr =15; Cinter =9. (f) Chsr =20; Cinter

(@) Chsr =22; Cinter =11. (h) Chsr =25; Cinter

Figure 10. Block level classi cation results on the Toulouse dataset. Note that the white cluster gathers

not embeddable regions (label ? { Step 4 of the method in Subsection 2.5).
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Table 4. Impact of the initial classi cations of HSR and MSR images on the nal clustering result. The
Kappa values for the di erent experiments are presented on the Strasbourg  and the Toulouse datasets. The

best values obtained are depicted in red.

Strasbourg  dataset

h h h h h h HSR Image Image at 2.8 m
MSR Image h hh Cusr =15 Chsr =20 Chsr =22 Chsr =25
£ Cinter =9 0:7717 0:7825 0:7839 0:7648
Q Cinter =11 0:7921 0:7957 0:7972 0:7787
Z Cinter =13 0:8079 0:8080 0:8203 0:7913
g Cinter =15 0 :8047 0:7972 0:8171 0:7894
£ Cinter =9 0:7813 0:8003 0:8018 0:7823
S Cinter =11 0:7975 0:8094 0:8105 0:7897
Z Cinter =13 0:7924 0:7981 0:7969 0:7742
g Cinter =15 0:7893 0:7904 0:7914 0:7698

Toulouse dataset

h h h h hh HSR Image Image at 2.5 m
MSR Image Nhhh[cpn -1 Chsr =20 Chsr =22 Cusr =25
£ Cinter =9 0:7669 0:7687 0:7653 0:7591
8 Cinter =11 0:7794 0:7853 0:7797 0:7734
Z Cinter =13 0:7833 0:7847 0:7859 0:7820
E Cinter =15 0 :7699 0:7744 0:7638 0:7621
c Cinter =9 0:7520 0:7598 0:7564 0:7427
91 Cinter =11 0:7641 0:7682 0:7666 0:7612
Z Cinter =13 0:7638 0:7642 0:7613 0:7594
E Cinter =15 0 :7554 0:7569 0:7552 0:7489

This problem of miscorrespondence between HSR regions and MSR ones tends to
increase when the two input images have spatial resolutions that become too close.
Broadly speaking, larger are MSR regions, easier is to embed HSR regions into
MSR ones.

3.3.5  Post-processing step. As introduced previously, a post-processing step
consisting in a hierarchical ascendant clustering algorithm (using the Euclidean
distance (Cha and Srihari 2002)) was applied on the nal result to reduce the
number of clusters (from 13 (or 11) to 9 clusters).

The visual comparisons between the results obtained and the groundtruth maps
show that urban classes (industrial blocks and housing blocks) are well identi ed.
More especially, the distinction between individual housing and collective blocks is
visible even if some confusions can sometimes appear for instance with the water
surface. This is due to the re ection of this surface in the HSR image (in white
in Fig. 6(c)). For industrial blocks, the extraction is reliable for small industrial
surfaces. However, for large surfaces (in the North and in the South of th&tras-
bourg dataset images), industrial blocks are not recognised due to their hetero-
geneity. Only some surfaces with a high re ectance are identi ed and other ones
are confused with agricultural zones due to their similar re ectance. Other surfaces
such as the forest and urban vegetation are well identi ed with few confusions.

The road class (in black in Fig. 9 and 10) is not directly extracted by the mul-
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(a) Block level clustering result on the Strasbourg dataset.

(b) Block level clustering result on the Toulouse dataset.

Figure 11. Results of block level clustering after post-processing step. These results were carried out on
the con gurations (2 :8 m=20 m) for the Strasbourg dataset and (2:5 m=20 m) for the Toulouse dataset.
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(a) Multiresolution Pixel Method (MPM) carried (b) K -means carried out on (MSR (20 m) HSR
out on (MSR (20 m) ~ HSR (2.8 m)). (2.8 m)) combined image.

Figure 12. Per-pixel clustering results from di erent methods with 8 clusters on the Strasbourg  dataset.

(a) K -means directly carried out on HSR regions (b) De niens Professional on HSR image.
image.

Figure 13. Regions clustering results from di erent methods with 8 clusters on the Strasbourg  dataset

tiresolution method since roads are often enclosed in urban blocks and then do not
create a single intermediate cluster. In fact, the cluster corresponding to roads is
divided into all the histograms. As the road cluster appears very well on the initial
HSR clustering, due to their high elongation, this cluster has been integrated in the
nal clustering. The addition of this class enables to improve the comparison with
the groundtruth. Note that this class contains both roads cluster and agricultural
areas due to the similar re ectance on the HSR image.

This post-processing step was applied on the best results of th&trasbourg
and Toulouse datasets with the spatial con guration (2:8 m[or 25 m]=20 m).
Results are presented on the whole images (Fig. 11(a, b)). In these two examples,
13 clusters were merged into 8 clusters by the post-processing step. Road clusters
(in black) were extracted from initial HSR clustering and superimposed for a better
visualisation. Note that the white cluster gathers not embeddable regions (labeP
{ Step 4 of the method in Subsection 2.5).

3.3.6 Comparative study.  The proposed method has also been assessed by
comparisons with other per-pixel/region-based approaches:

Per-pixel clustering : Previous results were obtained by using the Multires-
olution Pixel Method (MPM) described in (Wemmert et al. 2009) carried
out on the HSR (at 2.8 m) and MSR (at 10 m and 20 m) images of the
Strasbourg and Toulouse datasets with 8 clusters. Figure 12(a) presents
a result obtained by using the MPM method on the HSR (at 2.8 m) and MSR
(at 20 m) images of the Strasbourg  dataset with 8 clusters. Note that the

symbol (MSR ~ HSR) means that the method was applied simultaneously on
the MSR and HSR images. Others results were obtained with theK -means
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Table 5. Kappa values of the di erent experiments with 8 clusters. The symbol (MSR ~ HSR) means that the
method was applied simultaneously on the MSR and HSR images whereas the symbol (MSR HSR) means
that the method was applied on a fusion of the MSR and HSR images.
Dataset
Method Con guration Strasbourg Toulouse
MPM MSR (10 m) ~ HSR 0.7617 0.7312
n MPM MSR (20 m) ~ HSR 0.7826 0.7433
g K-means | MSR (10 m) HSR 0.7201 0.7094
Q& | K-means | MSR (20 m) HSR 0.7219 0.7123
K -means HSR 0.7021 0.6957
o MRM | MSR (10 m) ~ HSR 0.8105 0.7682
_5 MRM MSR (20 m) ~ HSR 0.8203 0.7859
o | K-means HSR 0.7445 0.7215
@ "De niens HSR 0.7325 0.7183

algorithm carried out on an image built by direct fusion of the two images
(to each pixel is associated all the radiometric information from HSR and
MSR images) with 8 clusters. This method was tested for the two datasets.
Figure 12(b) shows a result obtained by using this method on the fusion of
the HSR and MSR (at 20 m) images of theStrasbourg dataset. Note that
the symbol (MSR  HSR) means that the method was applied on a fusion of
the MSR and HSR images. The last \pixel" results were obtained by applying
the K -means algorithm directly on the HSR images of the two datasets with
8 clusters.

Region-based clustering : Some results were obtained by applying theK -
means algorithm with 8 clusters on the HSR images of the two datasets at the
object level using only spectral information { the objects were initially created
by a clustering with 15 clusters. Figure 13(a) presents a result obtained by this
method on the HSR image of theStrasbourg dataset. Others results were
produced by an object-oriented approach (Benzet al. 2004) with De niens
Professional software, using only spectral information. Figure 13(b) shows a
result produced by applying this method on the HSR image of Strasbourg.

Table 5 presents the Kappa values for these experiments and shows that the results
obtained with the proposed Multiresolution Region-based Method (MRM) are bet-
ter {with an adequate choice of parameters{ than those obtained with the Multires-
olution Pixel-based Method (MPM) and outperforms the other ones (region-based
and per-pixel ones).

A visual comparison between the results depicted in Figures 12 and 13 and those
obtained with the proposed method tends to con rm the quantitative results of
Table 5. For instance, they are fewer confusions between (i) water surfaces and in-
dustrial blocks (Fig. 12(a)) or roads and industrial blocks (Fig. 12(b)) and, (ii) agri-
cultural areas and urban blocks (Fig. 12(a)). Moreover, compared to Figure 12(b)
some clusters are more homogeneous (urban blocks, forest surfaces).

3.3.7 Discussion about parametrisation. The multiresolution method pro-
posed in this article provides relevant results on the classi cation of urban blocks.
However, some parameters are needed to e ectively run the proposed algorithm.
They can be classi ed into two categories: parameters which are devoted to \re-
main" parameters, since they naturally depend on the expert knowledge, and pa-
rameters which could/should be (as much as possible) automatically determined.
The rst parameter which could be easily determined by the expert is the consid-
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ered spatial con guration. Indeed, several con gurations of HSR and MSR images
could be used to classify urban blocks and to apply the cluster re nement method.
Experiments have shown that HSR image at 2.8 m or at 2.5 m could be combined
with MSR image at 20 m or at 10 m to obtain suitable clustering results. The
choice of the best con guration depends on the studied area (Subsection 3.3.4). If
the urban blocks are wide (composed by several houses), results will be of higher
guality with a con guration using an MSR image at 20 m whereas if the urban
blocks are narrow, an MSR image at 10 m could be more adapted.

The segmentation parameters (the di erent values of ), which impact on the
level of details in the resulting partitions of the HSR and MSR images, have to
be de ned manually by the end-user. For the HSR image (resp. MSR image),
the expert has to choose parameter values to obtain partitioning results which
match with the urban objects (resp. the urban blocks) of the studied ground scene.
However, the studies carried out in this article could help the experts to nd the
optimal segmentation parameters. Indeed, the range of the possible suitable values
for has been signi cantly reduced (Subsection 3.3.2). Moreover, some possible
solutions to lead to the automation of this process are, in particular, discussed in
the Section 4.

Concerning the number of classes in the HSR segmented images, the classi ca-
tion parameter Cysg could be determined by the expert knowledge. Indeed, for
this kind of images the number of clusters depends on the materials of the urban
objects which can appear in the studied area (see Table 1, left column). For the
classi cation parameter Ciner (which impacts on the number of clusters used in
the MSR segmented image to classify urban blocks), experiments have shown the
di culty of nding best parametric values. Indeed, the choice of this parameter
depends on the studied data (see Table 4). To obtain the best urban blocks clus-
tering results with the proposed method, end-users have to try dierent values
of this parameter. However, the studies carried out in this article could help the
experts to nd the optimal classi cation parameters (Subsection 3.3.3). As for the
segmentation parameter , the set of the possible suitable values foiCiner has
been signi cantly reduced (5 values {from 11 to 15). In further works, we plan
to automate this process by running iteratively the proposed method with di er-
ent values of this parameter. After each iteration, the clustering result could be
evaluated by using some urban blocks examples provided by the expert (extracted
manually from the studied images).

3.4 Results analysis of cluster re nement

To validate cluster re nement method, we have decided to study the re nement of
the HSR vegetation cluster by applying the method on the Strasbourg  dataset
(with the HSR image at 2.8 m and the MSR image at 20 m). To this end, the two
images were segmented; the partitions used for these images were those created
for the block-level clustering method Cuysr = 19;752 andCysg = 1,688, see
Subsection 3.3.2). Then, each segmented image was classi ed in its own semantic
level using the K -means algorithm with a variable number of clusters; in order to
study the in uence of the number of clusters in the HSR and the MSR segmented
images (denoted byChsr and Cysgr ), we have carried out experiments with 15, 17
and 20 clusters for the HSR image and with 5, 7 and 9 clusters for the MSR image.
These values correspond to those used to classify an HSR region image (resp. an
MSR image) to the urban object level (resp. the urban area level) (see Table 1, left
and right columns). The next step was to select (on the clustering results of the
HSR segmented image) the clusters corresponding to the vegetation class. Finally,
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(HSR image at 2.8 m / MSR image at 20 m)

(a) Clustering result with 7 clusters of
the MSR segmented image.

uv

(b) Clustering result with 20 clusters of (c) Urban Vegetation (UV) cluster ex-
the HSR segmented image. tracted from the left image.

Application of Re nement Method

uvl
uv2

uv3
(d) Clustering result of the re nement (e) Urban Vegetation clusters (UV1, UV2,
method on the HSR segmented image. UV3) extracted from the left image.

Figure 14. Re nement method carried out on the Strasbourg dataset with the con guration
(2:8 m=20 m). The \Urban Vegetation" cluster (UV) extracted from the HSR image was split into 3
new HSR \Urban Vegetation" clusters (UV1, UV2, UV3).

the last step was to split the HSR vegetation clusters by using the clustering results
of the MSR segmented images.

Due to the unavailability of a groundtruth map for this kind of land cover, all
the results were assessed visually by the experts. Experiments have shown that:

When the number of HSR clusters is too high Cysg = 23), the HSR veg-
etation resulting clusters are too small to be split in subclusters matching
new concepts (probably due to a too small number of regions in each cluster).
However, if Cysr is too low (Cysg = 15), it becomes di cult to extract an
HSR cluster corresponding to the vegetation since this cluster generally does
not exist (regions corresponding to pieces of vegetation could be in the same
cluster as regions corresponding to others kinds of land cover).

When the number of MSR clusters is too high Cusr = 15), the re nement
method splits the original HSR vegetation cluster into a high number of veg-
etation subclusters. These subclusters are often too numerous. Most of them
are too specialised to be correctly interpreted by the expert. If the number of
MSR clusters is too low Cusr = 5), the resulting HSR subclusters do not
match with any land cover classes. Indeed, ifCysr is too low the cluster-
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ing results of the MSR segmented image are formed by clusters which gather
di erent kinds of region (vegetation, roof, etc.).

Best results were found when the MSR segmented image was classi ed with
7 clusters and the HSR segmented image was classi ed with 20 clusters (see
Fig. 14). In this experiment the HSR urban vegetation cluster (UV, depicted

in dark green in the Fig. 14(b, c)) was split into three subclusters (UV1, UV2,
UV3, depicted in three shades of green in the Fig. 14(d, €)). These new clus-
ters were categorised by the experts as follows: (UV1) Forest cluster, (UV2)
Homogeneous urban vegetation cluster {for instance, large grass areas in col-
lective housing blocks{ and (UV3) Heterogeneous urban vegetation cluster
{for instance, the gardens in the individual housing blocks.

Experiments carried out have shown the e ciency of this new approach which
actually extracts new kinds of hidden information. The HSR cluster re nement
method permits to improve the result of HSR regions classi cation. The new clus-
ters discovered by this method could not be discovered directly by only using the
radiometric values of the pixels of the HSR image. Only a simultaneous multireso-
lution analysis of HSR and MSR images could help the end-users to extract hidden
clusters corresponding to sub-thematic land covers classes.

4. Conclusion and perspectives

The multiresolution method proposed in this article enables to generate clusterings
at a block level, by taking advantage of information provided by images at higher
and lower resolutions. Moreover this methodology combines the possibilities o ered
by the (per-pixel) multi-image analysis and the e ciency of the (mono-image)
region-based frameworks for alock levelanalysis in the context of the mapping of
urban areas.

The proposed method is slightly inspired from previous works by some of the
authors (Wemmert et al. 2009), but it di ers from them since it is no longer based
on a per-pixel approach, but on a region-based one (in this method, the spatial
context of the urban objects and the semantic relationships of these last ones
between the available resolutions are used to enhance the simultaneous analysis
of both MSR and HSR images). Moreover, it is based on a quite di erent way
than (Wemmert et al. 2009) to perform multiresolution analysis. Indeed, in the
previous approach the analysis was carried out by studying the composition of the
highest resolution data in terms of clusters in the lowest resolution one, while in
the method presented in this article, the opposite strategy aims at studying the
composition of the lowest resolution regions in terms of clusters in the image at
the highest resolution. This new way to perform multiresolution analysis enables,
in particular, the re nement of nal HSR clusters into more speci ¢ subclusters
matching with hidden land cover classes.

Experimental results tend to prove that this new framework actually generates
better results that the former one, and also outperform classical K -means) ap-
proaches, as illustrated by quantitative and qualitative validations in the context of
urban area analysis. In particular, it has been used to help experts to obtain infor-
mation from MSR and HSR satellite images for a land cover mapping at 1:100,
thus enabling to discover new knowledge from these kinds of data. Moreover, ex-
periments have shown that the images could arise from di erent satellites (in the
Strasbourg  dataset the HSR image was acquired byQuickBird whereas the
MSR ones were acquired bySpot -4) or from a single sensor (in theToulouse
dataset the MSR images were degraded from &pot -5 HSR image).
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These results are promising and then justify further developments, which may
lead to improvements of the method. The main issue, to be considered in priority,
is to automate the method by determining iteratively the most suitable values of
parameters. Indeed, the method actually requires the setting of some parameters
(related to the segmentation and clustering). While some of them can hardly be
set automatically (e.g., the number of classes, which depends on the kind of ap-
plications), other ones could be computed, for instance, the ones (related to the
heterogeneity function f) enabling to stop the segmentation process. These im-
provements will be devoted to make the current method more ergonomic for their
potential users.

In the long term, some supplementary improvements will also be considered.
Since it can be important to obtain complete clustering results, some solutions will
be proposed to deal with this issue, namely the non-hierarchical structure between
the MSR and HSR segmentations. Some possible ways to tackle this problem could
be: (1) to produce a segmentation of the HSR image as a sub-partition of the MSR
one, or (2) to develop an iterative segmentation/classi cation process using all the
available multiresolution information in order to progressively improve the segmen-
tation results thanks to the classi cation ones. Moreover, it is planned to integrate
the method into the Samarah framework of collaborative clustering (Forestier
et al. 2008) in order to extend the method to make it able to simultaneously deal
with more than two images.
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