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Abstract Preserving topological properties of objects during reduction procedures is an
important issue in the field of discrete image analysis. Suchprocedures are generally based
on the notion ofsimple point, the exclusive use of which may result in the appearance of
“topological artifacts”. This limitation leads to consider a more general category of ob-
jects, thesimple sets, which also enable topology-preserving image reduction. Astudy of
2-dimensional simple sets in 2-dimensional spaces has beenproposed recently. This arti-
cle is devoted to the study of 2-dimensional simple sets in spaces of higher dimension (i.e.
n-dimensional spaces,n ≥ 3). In particular, several properties ofminimal simple sets (i.e.
which do not strictly include any other simple sets) are proposed, leading to a characterisa-
tion theorem. It is also proved that the removal of a 2-dimensional simple set from an object
can be performed by only considering theminimalones, thus authorising the development
of efficient thinning algorithms.

Keywords Digital topology · Thinning · Topology preservation· Simple sets· Cubical
complexes· n-dimensional spaces

1 Introduction

The preservation of topological properties is fundamentalin many applications of image
analysis. Consequently, an intensive effort has been conducted for more than 40 years [1,
2] to develop topology-preserving methods enabling to process discrete binary images, es-
sentially to perform skeletonisation, homotopic reduction, or segmentation. Most of these
methods are based on the well known notion ofsimple point[3].

Since the definition of thedeletable elementsof a 2-dimensional binary image by Rosen-
feld [4] in 1970, efforts have been directed towards local characterisations ofsimple points in
2-, 3- and 4-dimensional spaces [5–8] together with more accurate definitions of simplicity.

Some (less frequent) studies have also been devoted to the more general notion ofsimple
sets. Given a discrete binary objectX, a simple set is a partS ⊂ X which - similarly to simple
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Université de Strasbourg, LSIIT, UMR CNRS 7005, Parc d’Innovation, Bd S. Brant, BP 10413, 67412 Illkirch
Cedex, France
E-mail: passat@unistra.fr, loic.mazo@unistra.fr



2

points - can be removed fromX, providing a resultX \ S having the same topology (i.e. the
same homotopy type) asX. The study of simple sets has, in particular, been motivatedby
the existence of sets composed only of simple points but which are not simple, as pointed
out by Rosenfeld [4].

Based on this consideration, the only simple sets studied for a long time have been
those composed only of (parallely [9] or sequentially [10,11]) simple points. The exclusive
focus on such simple sets can be explained by the fact that Ronse proved [12] in 1986
that in a 2-dimensional digital image (i.e. an image defined onZ2, equipped with a (4, 8)-
or (8, 4)-adjacency framework), any simple set can be removed bysuccessiveremoval of
simple points. Afterwards, remained for a long time the hopeof extending this theorem to
higher dimensions [13]. Unfortunately, it was recently proved [14] that there exist simple
sets in 3-dimensional spaces composed only of non-simple points, emphasising the fact that
the exclusive use of the notion of simple point is insufficient to enable the development of
robust topology-preserving reduction procedures.

This unexpected result has led to start new studies [15,16] on simple sets without sim-
ple points, in the framework of cubical complexes [17] (which enables to retrieve the main
concepts of digital topology inZn, but also to model a larger class of discrete cubical ob-
jects). In this context, an extension of Ronse’s theorem to 2-dimensional pseudomanifolds
has already been established [16].

In this article, we present a complete study of 2-dimensional simple sets inn-dimensional
cubical spaces (n ≥ 3), motivated in particular by the fact that Ronse’s theoremcannot be
generalised to spaces of such dimensions (as it will be shownin Section 3). We prove sev-
eral properties on 2-dimensionalminimal simple sets(i.e. simple sets which do not strictly
include any other simple sets) and we finally establish a characterisation of these objects.
We also prove that the detection and removal of a 2-dimensional simple set from an object
can be performed by only considering theminimal ones, thus authorising to further develop
new efficient thinning algorithms.

The sequel of this article is organised as follows. Section 2recalls background notions
related to cubical complexes and simple sets. Sections 3 to 5contain the main contribution of
this article. They present new results related to 2-dimensional simple sets inn-dimensional
spaces, in particular necessary properties of 2-dimensional minimal simple sets (Section 3),
a characterisation of such sets (Section 4), and a proof of non-deterministic decomposition
of 2-dimensional simple sets into a sequence of minimal ones(Section 5). Section 6 sum-
marises the contributions of the article and describes further works. Proofs of the proposi-
tions and theorems can be found in Appendix B (some of these proofs are based on results es-
tablished in previous works and auxiliary propositions which are provided in Appendix A).
A more technical discussion on a connectedness property of 2-dimensional minimal simple
sets related to the dimension of their embedding space is proposed in Appendix C.

2 Cubical complexes and simple sets

This section provides the minimal set of background notionsrequired to make this paper
self-included. More details can be founde.g.in [8,15].

2.1 Basic notions

Let Z be the set of integers. LetF1
0 = {{a} | a ∈ Z} andF1

1 = {{a, a+ 1} | a ∈ Z}. Let n ≥ 1.
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Let f ⊂ Zn. If f is the Cartesian product ofm elements ofF1
1 andn − m elements of

F1
0, we say thatf is a face or an m-face(of Zn), m is the dimensionof f , and we write

dim( f ) = m. We denote byFn the set composed of all faces ofZn.
Let f ∈ Fn be a face. We set̂f = {g ∈ Fn | g ⊆ f }, and f̂ ∗ = f̂ \ { f } (see Fig. 1). Any

g ∈ f̂ is a face of f (or of f̂ ).

Fig. 1 Left: three facesfi (i ∈ [0, 2]) of dimensioni, respectively. Middle:f̂i . Right: f̂ ∗i . In black (dots and
lines): 0 and 1-faces, respectively; in grey: 2-faces.

Let F ⊂ Fn be a finite set of faces. We setF− =
⋃

f∈F f̂ (see Fig. 2).
Let F ⊂ Fn be a set of faces. Letf ∈ F be a face. We setstar( f , F) = {g ∈ F | f ⊆ g}

andstar∗( f , F) = star( f , F) \ { f } (see Fig. 2).

ff

Fig. 2 Left: a set of facesF. Middle: the closureF− of F. Right: star( f , F−), for the 0-facef ∈ F−.

Let F ⊂ Fn be a finite set of faces. We say thatF is acell or anm-cell if there exists an
m-face f ∈ F such thatF = f̂ . We say thatF is a (cubical) complex(in Fn) if for any f ∈ F,
we havef̂ ⊆ F, i.e., if F = F−. If F is a complex inFn, we writeF � Fn.

Let F � Fn be a complex. Any subsetG ⊆ F which is also a complex is asubcomplex
of F (see Fig. 3). IfG is a subcomplex ofF, we writeG � F. If G � F andG , F, we write
G ≺ F.

Let F ⊂ Fn be a finite set of faces. Letf ∈ F be a face. The facef is a facetof F if
there is nog ∈ F such thatf ∈ ĝ∗. We denote byF+ the set composed of all facets ofF (see
Fig. 3).

Let F � Fn be a complex. LetG � F be a subcomplex ofF. If G+ ⊆ F+, we say thatG
is aprincipal subcomplex of F, and we writeG ⊑ F (see Fig. 4). IfG ⊑ F andG , F, we
write G ⊏ F.

Let F � Fn be a complex such thatF , ∅. Thedimensionof F is defined by dim(F) =
max{dim( f ) | f ∈ F+}. We say thatF is anm-complexif dim(F) = m. We say thatF is a
pure complexif for all f ∈ F+, we have dim(f ) = dim(F).

Definition 1 Let n ≥ 1. Let F � Fn be a cubical complex. LetG � F be a subcomplex of
F. We setF ⊘ G = (F+ \G+)−. The setF ⊘ G is a complex which is thedetachment of G
from F (see Fig. 4).
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Fig. 3 Left: a complexF. Middle: a subcomplexG of F (G � F). Right: the setF+ ⊆ F of the facets ofF.

Definition 2 Let n ≥ 1. LetF � Fn be a cubical complex. LetG � F be a subcomplex ofF.
Theattachment of G to Fis the complex defined byAtt(G, F) = G∩ (F ⊘ G) (see Fig. 4).

Fig. 4 From left to right: a complexF, a principal subcomplexG of F (G ⊑ F), the detachment ofG from
F, the attachment ofG to F.

2.2 Topology in cubical complexes

Let F ⊂ Fn be a finite set of faces such thatF , ∅. A sequence of faces (fi)s
i=0 (s ≥ 0)

is a path in F (from f0 to fs) if for all i ∈ [0, s− 1], either fi is a face of fi+1 or fi+1 is a
face of fi (with fi , fi+1 ∈ F). If k = min{dim( fi) | i ∈ [0, s]}, we also say that (fi)s

i=0 is a
k-path (in F). We say thatF is k-connectedif, for any facetsf , g ∈ F+, there is ak-path
in F from f to g. Let G ⊆ F be a subset ofF. We say thatG is ak-connected component
of F if G is k-connected and is maximal for this property (i.e., we haveH = G whenever
G ⊆ H ⊆ F andH is k-connected). Note that, in particular, ak-connected componentG
of a complexF is a principal subcomplex ofF, i.e. G ⊑ F. We denote byCk[F] the set of
all k-connected components ofF. We say thatF is connected(resp.strongly connected) if
F is 0-connected (resp. 1-connected), and we noteC[F] for C0[F]. The number of distinct
connected components ofF is denoted by|C[F]| (more generally, the notation|X| will be
used to denote the cardinal of any finite setX).

Collapsing is a topological operation on complexes that preserves homotopy type.

Definition 3 Let n ≥ 1. Let F � Fn be a cubical complex. Letf ∈ F. If g ∈ f̂ ∗ is such that
f is the only face ofF which strictly includesg, then we say thatg is a free face for F, that
f is aborder face for F, and that the pair (f , g) is a free pair for F (see Fig. 5). If (f , g) is a
free pair forF, we say that the complexF \ { f , g} is anelementary collapse of F.

Property 1 Let n ≥ 1. Let F � Fn be a cubical complex. If (f , g) is a free pair forF, then
f ∈ F+ and dim(f ) = dim(g) + 1.
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Fig. 5 Left: a complexF. Middle: the border faces forF. Right: the free faces forF. Any pair (f , g) such
that f is in the middle subfigure andg ⊂ f is in the right subfigure is a free pair forF.

Definition 4 Let n ≥ 1. LetF � Fn be a cubical complex. LetG � F be a subcomplex ofF.
We say thatF collapses onto G, and we noteF ց G, if there exists a sequence of complexes
〈Fi〉

t
i=0 (t ≥ 0) such thatF0 = F, Ft = G, andFi is an elementary collapse ofFi−1 for all

i ∈ [1, t] (in particular, ifG is a 0-cell, we say thatF is collapsible). The sequence〈Fi〉
t
i=0 is

a collapse sequence from F to G(see Fig. 6). We will also call collapse sequence fromF to
G, the sequence〈( fi , gi)〉ti=1 of free pairs verifyingFi = Fi−1 \ { fi , gi} for all i ∈ [1, t].

Fig. 6 From left to right: a collapse sequence fromF to a subcomplexG � F.

Let F � Fn be a cubical complex. TheEuler characteristicof F, writtenχ(F), is defined
byχ(F) =

∑n
i=0(−1)i .νi , whereνi is the number ofi-faces ofF for i ∈ [0, n]. From Property 1,

it is easy to check that the collapse operation preserves theEuler characteristic. Moreover,
it may be easily proved that the connectedness is also preserved by this operation (seee.g.
[16]).

Property 2 Let n ≥ 1. LetF,G � Fn be cubical complexes. IfF ց G, then:

– χ(F) = χ(G) ;
– |C[F]| = |C[G]| .

2.3 Simple sets

Intuitively, a cellG � F is called simple if there is a topology-preserving deformation of
the complexF over itself onto the relative complement ofG in F. The following definition
of simple cells, based on the collapse operation, can be seenas a discrete counterpart of the
one given by Kong in [6].

Definition 5 Let n ≥ 1. Let F � Fn be a cubical complex. Letf ∈ F be a face ofF. The
cell f̂ is a simple cell forF if F ց F ⊘ f̂ .
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Proposition 1 ([6]) Let n≥ 1. Let F � Fn be a cubical complex. Let f∈ F+ be a facet of
F such thatdim( f ) = 2. Then f̂ is a simple cell for F if and only ifC[Att( f̂ , F)] = 1 and
χ(Att( f̂ , F)) = 1.

Definition 5, proposed for simple cells, naturally extends to subcomplexesG � F which
contain an arbitrary number of facets, leading to the notionof simple set.

Definition 6 Let n ≥ 1. Let F � Fn be a cubical complex. LetG � F be a subcomplex of
F. We say thatG is simple for Fif F ց F ⊘ G. Such a subcomplexG is called asimple set
for F (or ak-dimensional simple set for F, if dim(G) = k).

The notion of attachment leads to the following local characterisation of simple sets.

Proposition 2 ([18]) Let n≥ 1. Let F � Fn be a cubical complex. Let G� F be a subcom-
plex of F. The complex G is simple for F if and only if Gց Att(G, F).

Remark 1Without loss of generality, the study of the simple setsG of a complexF can be
restricted to those verifying (∅ ⊏) G ⊏ F (see [15] for a full justification). From now on, we
will always implicitly consider that a simple set verifies these properties.

We introduce now the notion ofminimal simple sets, which correspond to simple sets
that do not strictly include any other simple sets.

Definition 7 Let n ≥ 1. Let F � Fn be a cubical complex. LetG ⊑ F be a principal
subcomplex ofF. The complexG is a (k-dimensional) minimal simple set for Fif G is a
(k-dimensional) simple set forF andG is minimal (w.r.t.⊑) for this property (i.e.∀H ⊑ G,
H is simple forF ⇒ H = G).

The notion of minimal simple set may be useful from both theoretical and algorithmic
points of view since (i) the existence of a simple set necessarily implies the existence of
at least one minimal simple set, and (ii ) by definition, a minimal simple set is necessarily
easier (or, at least, not harder) to characterise than a “general” simple set. In particular,
we can hope that in several cases (depending on the dimension(s) of Fn and/or of F, for
instance), the study of minimal simple sets could be sufficient to deal with the problem of
detachinganysimple set from a complex.

3 Properties of 2-D minimal simple sets

3.1 Existence

In [16], it has been proved that inF2, all the minimal simple sets (and in particular those of
dimension 2) are cells.

Proposition 3 ([16]) Let F � F2 be a cubical complex. Let G⊏ F be a minimal simple set
for F. Then|G+| = 1, i.e.G is a simple cell for F.

However, this property is no longer true inFn (n ≥ 3), as stated by the following propo-
sition.

Proposition 4 Let n ≥ 3. There exist F� Fn and G⊏ F such thatdim(G) = 2, |G+| > 1
and G is a minimal simple set for F.

In order to prove this proposition, it is sufficient to build a complexF � Fn (n ≥ 3) and a
subcomplexG ⊏ F of dimension 2 such thatG is a minimal simple set forF while |G+| > 1.
An example of such complexesF andG is provided in Fig. 7. Note that since a complex
F � F3 can be embedded inFn for anyn > 3, the proof can be restricted to the casen = 3.
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Fig. 7 A (pure) 2-dimensional complexF � F3 including a minimal simple setG which is not a cell (in
medium and light grey). See Subsection B.1 for a full description.

3.2 Basic properties

3.2.1 Connectedness

In [15], it has been proved that a minimal simple set is necessarily connected. The following
property of 2-dimensional minimal simple sets is then a specific case of this result.

Proposition 5 ([15]) Let n ≥ 3. Let F � Fn be a cubical complex. Let G⊏ F be a2-
dimensional minimal simple set for F. Then|C[G]| = 1, i.e.G is connected.

From Prop. 2 and Property 2, we immediately derive the following result.

Proposition 6 Let n≥ 3. Let F � Fn be a cubical complex. Let G⊏ F be a2-dimensional
minimal simple set for F. Then|C[Att(G, F)]| = 1, i.e. Att(G, F) is connected.

Remark 2For the same reasons, we also haveχ(Att(G, F)) = χ(G).

3.2.2 Purity

In [15], it has been proved: (i) that a (minimal) simple set cannot contain any 0-facet, and(ii )
that a minimal simple set contains a 1-facet if and only if it is a simple 1-cell. The following
proposition is a straightforward consequence of these results.

Proposition 7 Let n≥ 3. Let F � Fn be a cubical complex. Let G⊏ F be a2-dimensional
minimal simple set for F. Then,∀ f ∈ F+, dim( f ) = 2, i.e.G is pure.

3.2.3 Strong connectedness

The following proposition states that a 2-dimensional minimal simple set is not only con-
nected but alsostronglyconnected.

Proposition 8 Let n≥ 3. Let F � Fn be a cubical complex. Let G⊏ F be a2-dimensional
minimal simple set for F. Then,|C1[G]| = 1, i.e.G is strongly connected.

3.3 Initial facet

In this subsection, we focus on the first facets removed during the collapse sequences en-
abling to detach 2-dimensional minimal simple setswhich are not simple cells. Such facets,
calledinitial facetspresent several important properties, especially relatedto the attachment
of the 2-dimensional minimal simple sets.
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Definition 8 Let n ≥ 3. Let F � Fn be a cubical complex. LetG ⊏ F be a 2-dimensional
minimal simple set forF such that|G+| ≥ 2. We say thatf ∈ G+ is aninitial facet of G(in
F) if there exists a collapse sequence〈( fi , gi)〉ti=1 (t ≥ 1) from F to F ⊘ G such thatf = f1.

3.3.1 Possible configurations

Note that, from Prop. 7, an initial facet is necessarily a 2-face. Moreover, as stated by the
following proposition, an initial facet can only present very few configurations w.r.t. its
attachment.

Proposition 9 Let n≥ 3. Let F � Fn be a cubical complex. Let G⊏ F be a2-dimensional
minimal simple set for F such that|G+| ≥ 2. Let f ∈ G+ be an initial facet of G. Then
dim(Att( f̂ , F)) = 1 and |C[Att( f̂ , F)]| = 2.

Remark 3The attachmentAtt( f̂ , F) of the cell f̂ generated by an initial facetf of G nec-
essarily corresponds to one of the three configurations (up to rotations and symmetries)
illustrated in Fig. 8. The reader may easily check that thesethree configurations are the only
ones presenting the required properties.

3.3.2 Uniqueness

The following proposition states that the attachment of a 2-dimensional minimal simple set
G is a cell, all the faces of which are included in a same unique facet ofG.

Proposition 10 Let n≥ 3. Let F� Fn be a cubical complex. Let G⊏ F be a2-dimensional
minimal simple set for F such that|G+| ≥ 2. Let f ∈ G+ be an initial facet of G. Then:

(i) ∃g ∈ F,Att(G, F) = ĝ∧ ĝ ∈ C[Att( f̂ , F)] ,
i.e. Att(G, F) is a cell which is a connected component of Att( f̂ , F);

(ii) ∀k ∈ G+, k , f ⇒ k̂∩ Att(G, F) = ∅ ,
i.e. f is the only facet of G including faces of Att(G, F).

From this proposition, we straightforwardly derive the uniqueness of the initial facet of
a 2-dimensional minimal simple set.

Proposition 11 Let n≥ 3. Let F� Fn be a cubical complex. Let G⊏ F be a2-dimensional
minimal simple set for F such that|G+| ≥ 2. Then G has exactly one initial facet.

Props. 10 and 11 motivate the following extension of Definition 8

Definition 9 Let n ≥ 3. Let F � Fn be a cubical complex. LetG ⊏ F be a 2-dimensional
minimal simple set forF such that|G+| ≥ 2. In addition to Definition 8, we also say thatf
is the initial facet ofG (in F) if f is the (only) facet ofG such thatf̂ intersects (and actually
includes)Att(G, F). The cell f̂ ⊏ G is calledthe initial cell of G.

Remark 4From Prop. 10, the initial facet is the only facetf of G including faces ofAtt(G, F).
Consequently, the attachment of the initial cellf̂ corresponds to one of the three configura-
tions (up to rotations and symmetries) illustrated in Fig. 9.
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3.4 Composition

The following proposition describes the composition of a 2-dimensional minimal simple set,
especially w.r.t. the properties of its facets.

Proposition 12 Let n≥ 3. Let F� Fn be a cubical complex. Let G⊏ F be a2-dimensional
minimal simple set for F such that|G+| ≥ 2. Then G+ is composed of:

– 1 facet f such thatdim(Att( f̂ , F)) = 1 and |C[Att( f̂ , F)]| = 2 (i.e. the initial facet);
– |G+| − 1 (> 0) facets gi (i ∈ [1, |G+ | − 1]) such that Att(ĝi ,G) = ĝi

∗ .

In particular, except the initial facet, G contains no border faces for G (anda fortiori for F).

4 Characterisation of 2-D minimal simple sets

The properties stated in the previous section provide necessary conditions for defining a 2-
dimensional set as being a minimal simple one. We provide hereafter a set ofnecessary and
sufficientconditions, then enabling to characterise a 2-dimensionalminimal simple set.

Theorem 1 Let n≥ 3. Let F � Fn be a cubical complex. Let G⊏ F be a principal subcom-
plex of F such thatdim(G) = 2 and |G+| ≥ 2. Then, G is a minimal simple set for F if and
only if all the following conditions hold:

(i) |C[Att(G, F)]| = 1 ,
i.e. Att(G, F) is connected;

(ii) ∃! f ∈ G+, f̂ ∗ , Att( f̂ , F) ,
i.e.G has exactly one border face in F;

(iii) ∃! f ∈ G+, f̂ ∗ ∩ Att(G, F) , ∅ ,
i.e. there exists exactly one facet of G that includes faces of Att(G, F);

(a) (b) (c)

Fig. 8 The three possible configurations (up to rotations and symmetries) for the attachmentAtt( f̂ , F) of
the cell f̂ generated by an initial facetf (in grey) of a 2-dimensional minimal simple setG for F. Full
lines and disks:Att( f̂ , F); dot lines and empty disks:̂f ∗ \ Att( f̂ , F). The 2-dimensional minimal simple set
illustrated in Fig. 7 and described in Subsection B.1 has an initial facet (in medium grey) which corresponds to
configuration (a). The other two configurations can be easilyobtained from the same example by elementary
rotations and translations ofA− andK− (see definitions in Subsection B.1).

(a) (b) (c)

Fig. 9 The three possible configurations (up to rotations and symmetries) for the attachment of the initial cell
f̂ of a 2-dimensional minimal simple setG for F. In grey (full lines and disks):Att( f̂ ,G); in black (full lines
and disks):Att(G, F); in black (dot lines and empty disks):̂f ∗ \ Att( f̂ , F).
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(iv) ∃ f ∈ G, dim( f ) = 0∧Gց f̂ ,
i.e.G is collapsible.

Remark 5Alternative versions of the previous characterisation canbe obtained by substi-
tuting the following condition to condition (i):

(i′) Att(G, F) is a 0-cell or a 1-cell;

or the following three conditions to condition (iv):

(iv′) G is connected;
(v′) χ(G) = 1;

(vi′) Gց H with dim(H) = 1.

In order to illustrate the minimality of this characterisation, we provide in Fig. 10 some
counter-examples (i.e. somenon-simpleor non-minimalsimple sets) for which exactly one
of the conditions of Theorem 1 is not verified.

(a) (b) (c)

(d) (e)

Fig. 10 Examples of subcomplexesG ⊏ F � F3 which do not satisfy all the conditions of Theorem 1. In
light, medium and dark grey:F; in light and medium grey:G; in medium grey: border face(s) ofG. (a) G
verifies conditions (ii ), (iii ) and (iv) but not condition (i) (Att(G, F) is not connected). AsG is connected,
G 6ց Att(G, F): G is not simple. (b)G verifies conditions (i), (iii ) and (iv) but not condition (ii ) (G has two
border faces). Obviously,G is not minimal. (c)G verifies conditions (i), (ii ) and (iv) but not condition (iii ) (4
principal cells ofG intersectAtt(G, F)). The medium grey cell is obviously a simple cell forF: G is simple
but not minimal. (d)G verifies conditions (i), (ii ) and (iii ) but not condition (iv) (G is not collapsible since
it has a tunnel). We have 0= χ(G) , χ(Att(G, F)) = 1, thenG 6ց Att(G, F): G is not simple. (e)G verifies
conditions (i), (ii ), (iii ), (iv’), and (v’) but not condition (vi’). In particular, the light-grey part ofG is a dunce
hat [19], which cannot be modified by any collapse operation.Then,G 6ց Att(G, F): G is not simple. Note
that in (a) and (c), the light grey part ofF is equal to the complexL− defined in Appendix B.1.
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5 Confluence property of 2-D simple sets

The following theorem guarantees that any simple set of dimension lower or equal to 2 can
be detached by iterative detachment of minimal simple sets.Note that this property does
not depend on the order of the detachments. It can thus lead tothe development ofnon-
deterministicalgorithms, justifying the importance of the study of (2-dimensional) minimal
simple sets.

Theorem 2 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple set for F
such thatdim(G) ≤ 2. If G is not a minimal simple set, then:

(i) ∃H ⊏ G such that H is a minimal simple set for F;
(ii) ∀H ⊏ G such that H is a minimal simple set for F, G⊘ H is a simple set for F ⊘ H.

Remark 6This theorem extends (i) the result proposed in [15] which states that any 1-
dimensional simple set inFn can be removed by iterative (and non-deterministic) detachment
of simple 1-cells, and (ii ) the result proposed in [16] which states that any simple setfor a
complex embedded in a 2-dimensional (pseudo)manifold inFn can be removed by iterative
(and non-deterministic) detachment of simple cells.

Remark 7This proposition cannot be generalised to dim(G) = 3 (anda fortiori dim(G) >
3). In particular (i) is still obviously true (from the very definition of a minimal simple set),
but (ii ) is false, as illustrated by classical counter-examples such as the Bing’s house [20] or
less classical ones [15].

6 Conclusion

From Theorem 1, we are now able to characteriseall the minimal simple sets of dimension
2, independently of the dimension of their embedding space.Moreover, from Theorem 2
we also know thatanysimple set of dimension 2 can be fully detached from a complexby
iterative (and non-deterministic) detachment of minimal simple sets.

Based on these two results, it becomes possible to develop topology-preserving reduc-
tion algorithms providing principal subcomplexesG of complexesF � Fn which no longer
include any 1-dimensional and 2-dimensional simple sets.

From an applicative point of view, further works will now consist in proposing such
efficient algorithms (which could be used, for instance, to optimise the computation of the
homology of geometrically complex objects [21–23]). In particular, the main purpose will
be to simultaneously reach the optimum time and space algorithmic complexities. From a
theoretical point of view, the next step will be the study of (minimal) simple sets of higher
dimensions (already initiated in [14]).

A Auxiliary properties

Proposition 13 ([15]) Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple set for F. Let
H ⊏ G be a strict principal subcomplex of G. If Att(H, F) ⊆ Att(G, F), then:

(i) H is a simple set for F;
(ii) G ⊘ H is a simple set for F ⊘ H.
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Proposition 14 ([15])Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a minimal simple set for
F. Then, there exists at most one0-face f ∈ G such that star∗( f , F) is not connected andC[star∗( f , F)] ∩
C[star∗( f ,G)] , ∅ (i.e. star∗( f , F) has a connected component included in G). If f exists, then wehave
Att(G, F) = { f }, and star∗( f ,G) is connected.

The following proposition is a particular case of a proposition established in [15].

Proposition 15 (From [15]) Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple set for F.
Then,∀H ⊏ G such that Att(H, F) is a 0-cell:

(i) H is a simple set for F;
(ii) G ⊘ H is a simple set for F ⊘ H.

The proposition below is an easy consequence of a lemma established in [15] which proves, in particular,
that a collapse operation on a complexF cannot “remove” a path inF from f ∈ F to f , passing exactly once
through a 1-facet ofF.

Proposition 16 (From [15]) Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple set
for F such that G contains a1-facet f ∈ F+. Let C1,C2 be the connected components of G\ { f } containing
respectively g1, g2, the0-faces of f . Then C1 , C2 and for any connected subcomplex H� F\{ f }, H∩C1 = ∅

or H ∩C2 = ∅.

Proposition 17 ([24]) Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a subcomplex of F. If
F ց G then there exists adecreasingcollapse sequence〈( fi ,gi )〉ti=1 (t ≥ 1) from F to G,i.e. a sequence such
that∀i ∈ [1, t − 1], dim( fi ) ≥ dim( fi+1).

Proposition 18 Let n≥ 1. Let F � Fn be a cubical complex. Let a be a0-face of F such that Fց {a} (i.e. F
is collapsible). Then, for all0-face b∈ F, F ց {b}.

Proof If dim(F) = 0, the result is obvious. If dim(F) ≥ 1 then, from Prop. 17, there exists a 1-complexG
containing the same 0-faces asF, and such thatF ց G andG ց {a}. From Property 2, we haveχ(G) =
χ({a}) = 1 and|C[G]| = |C[{a}]| = 1. It is known that a connected 1-complexG such thatχ(G) = 1 collapses
onto any of its 0-faces. Hence the result holds.�

Proposition 19 Let n ≥ 1. Let F � Fn be a cubical complex. Let( f , g) be a free pair for F such that
dim( f ) ≤ 2. Let 〈( fi ,gi )〉ti=1 (t ≥ 1) be a collapse sequence of F such that f, g ∈ { fi ,gi }

t
i=1. Then, there exists

a collapse sequence〈( f ′i ,g
′
i )〉

t
i=1 of F such that( f ′1, g

′
1) = ( f , g) and{ fi , gi }

t
i=1 = { f

′
i , g
′
i }

t
i=1.

Proof Let α ∈ [1, t] such thatfα = f (α exists asf ∈ F+ and f ∈ { fi , gi }
t
i=1).

Case 1: gα = g. As the pair (fα, gα) is free forF, by moving it at the beginning of the collapse sequence, we
are obviously done.
Case 2: gα , g. Let β ∈ [1, t] such thatg ∈ { fβ, gβ}. Note that since (f , g) is a free pair forF, we necessarily
haveα < β andg = fβ. Thus, from Property 1, dim(f ) = 2 (otherwise dim(f ) = 1 and dim(gβ) = dim(g)−1 =
dim( f ) − 2 < 0). Let F1 = F \ { fi , gi }

α
i=1, G = ({ fi , gi }

t
i=1)− andH = { fi ,gi }

t
i=α+1. Note that by construction,

G ⊏ F is simple forF, and H− ⊏ F1 is simple for F1. Since collapse operations in distinct connected
components of a complex are fully independent, we can suppose without loss of generality thatG is connected
and, by Property 2, thatAtt(G, F) is connected. Leth1, h2 be the two 0-faces of ˆg. LetC1,C2 be the connected
components ofH− \ {g} containingh1 andh2, respectively. By Prop. 16, we know thatC1 , C2 and it follows
from the connectedness ofAtt(G, F) thatAtt(G, F)∩C1 = ∅ or Att(G, F)∩C2 = ∅. Without loss of generality,
we can consider thatAtt(G, F)∩C2 = ∅. Therefore (C2∪ ĝ) ⊑ F1 and the connected component off̂ ∗ \ {g,gα}
containingh2 is included inC2. Let a2 be the 0-face of ˆgα belonging toC2. From Prop. 15, we deduce that
C2 ∪ ĝ is simple forF1, and thus collapses ontôh1, while C1 collapses ontoAtt(H−, F1). Then,C2 collapses
ontoĥ2. Moreover, from Prop. 18,C2 collapses onto ˆa2. Hence, we can remove{ fα, gα}∪H from F1∪{ fα ,gα}
with a sequence of elementary collapses by removing (f , g), C2 \ {a2}, (gα,a2) andC1 \ Att(H−, F1) in this
order. The result then follows from Case 1.�
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B Proofs

B.1 Proof of Proposition 4

The proof is proposed forn = 3. It is a fortiori true forn > 3. The proposed complex is the one illustrated in
Fig. 7. LetF � F3 be the (pure) 2-dimensional complex generated by the set of principal facesF+ = K∪A∪L,
with:
K (in dark grey in Fig. 7)= {{3}×{0,1}×{−1,0}, {4}×{0,1}×{−1, 0}, {3, 4}×{0}×{−1,0}, {3, 4}×{1}×{−1,0}};
A (in medium grey in Fig. 7)= {{2,3} × {1, 2} × {0}};
L (in light grey in Fig. 7)= {{0}× {0,1}× {0, 1}, {0}× {1, 2}× {0,1}, {0}× {2, 3}× {0, 1}, {1}× {1, 2}× {0, 1}, {1}×
{1, 2} × {1, 2}, {2} × {0,1} × {0,1}, {2} × {1, 2} × {0, 1}, {2} × {2,3} × {1,2}, {3} × {1, 2} × {1, 2}, {3} × {2, 3} ×
{0, 1}, {3} × {2, 3} × {1, 2}, {0, 1} × {0} × {0, 1}, {0,1} × {3} × {0, 1}, {1,2} × {0} × {0, 1}, {1,2} × {1} × {0, 1}, {1,2} ×
{1}×{1, 2}, {1,2}×{2}×{0, 1}, {1, 2}×{2}×{1, 2}, {1, 2}×{3}×{0, 1}, {2, 3}×{1}×{1, 2}, {2, 3}×{2}×{0, 1}, {2,3}×
{3} × {0, 1}, {2,3} × {3} × {1,2}, {0, 1} × {0, 1} × {0}, {0,1} × {0,1} × {1}, {0, 1} × {1, 2} × {0}, {0,1} × {1, 2} ×
{1}, {0, 1} × {2,3} × {0}, {0, 1} × {2, 3} × {1}, {1,2} × {0, 1} × {0}, {1, 2} × {0,1} × {1}, {1, 2} × {1, 2} × {2}, {1, 2} ×
{2, 3} × {0}, {1, 2} × {2, 3} × {1}, {2,3} × {1,2} × {1}, {2, 3} × {1, 2} × {2}, {2, 3} × {2, 3} × {0}, {2,3} × {2,3} × {2}}.
Let S be a collapse sequence fromF to K− (such a collapse sequence exists; some of its steps are provided in
Fig. 11). LetG = (F+ \ K)− = (A∪ L)− ⊏ F. By construction,F ց F ⊘ G, thenG is a simple set forF. Let
us suppose thatG is not minimal. Then, there exists a subcomplexH ⊏ G such thatH is simple forF. Since
H+ ⊂ G+, we haveF ⊘ G(= K−) ⊏ F ⊘ H. As F is connected andF ց F ⊘ H, from Property 2,F ⊘ H
is also connected. By construction,K− is a connected component ofF ⊘ A− = (K ∪ L)−. Then, we must
haveA− ⊑ F ⊘ H (otherwise,K− ⊏ F ⊘ H ⊑ F ⊘ A−: contradiction). Thus,H ⊑ L−. As F is pure, there
does not exist any border 1-face inF. Moreover,F has no border face belonging toL (the obvious proof, by
observation ofF, is left to the reader). Then, there does not exist any free face for F in L−, anda fortiori
in H, which is then not simple: contradiction. Consequently,G is a minimal simple set forF � F3 while
|G+ | = 39, 1.�

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11 From (a) to (h): some steps of a collapse sequence fromF (Fig. 7) toK− (h) (see text).

B.2 Proof of Proposition 8

The proof is obvious if|G+ | = 1. We now suppose that|G+ | ≥ 2. Let us suppose that there existsG1,G2 ⊏ G
such thatG = G1 ∪G2 and dim(G1 ∩G2) = 0.

– If G1∩G2 ⊆ Att(G, F) thenAtt(G1, F) ⊆ Att(G, F), and from Prop. 13,G1 is simple forF, in contradic-
tion with the minimality ofG.
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– If G1 ∩ G2 * Att(G, F), then there exists a 0-facef ∈ G1 ∩ G2 such thatf < Att(G, F). But, then,
star∗( f , F) is not connected and any connected component ofstar∗( f , F) is also a connected component
of star∗( f ,G). Thus, from Prop. 14, we haveAtt(G, F) = { f }: contradiction.

Consequently, there are no principal subcomplexesG1,G2 ⊏ G such thatG = G1∪G2 and dim(G1∩G2) = 0.
It easily follows thatG is strongly connected.�

B.3 Proof of Proposition 9

Since f̂ is not a connected component ofF (otherwise,f̂ is also a connected component ofG, in contradiction
with Prop. 5),Att( f̂ , F) has at least one connected component. Moreover, sincef is a border 2-face forF and f̂
is not simple forF (otherwiseG would not be minimal),Att( f̂ , F) has at least two connected components. But,
from Prop. 14,Att( f̂ , F) has at most one connected component of dimension 0, which makes impossible the
existence of more than two connected components forAtt( f̂ , F). Then,Att( f̂ , F) has exactly two connected
components, one of which is necessarily of dimension 1.�

B.4 Proof of Proposition 10

If Att( f̂ , F) has a 0-dimensional connected component (i.e. f corresponds to configurations (a) or (b) of
Fig. 8) then (i) and (ii ) directly follow from Prop. 14. We now suppose thatAtt( f̂ , F) has two 1-dimensional
connected components (i.e. f corresponds to configuration (c) of Fig. 8). Let〈( fi ,gi )〉ti=1 (t ≥ 1) be a collapse
sequence fromF to F ⊘ G such thatf1 = f . We setF1 = F \ { f1, g1} andG1 = ({ fi , gi }

t
i=2)−. Obviously,

G1 ⊏ F1 is simple forF1. Let h be the only 1-face of̂f \ {g1} free for F, h1, h2 be the two 0-faces of̂h, and
b1 be the 1-face off̂ \ {g1,h} including h1. Let C1,C2 be the connected components ofG1 \ {h} containing
h1 andh2, respectively. Ash is a facet ofG1, from Prop. 16, we haveC1 , C2 and we can suppose without
loss of generality thatAtt(G, F) ∩C2 = ∅. Then,C2 ∪ ĥ ⊏ F1 and, from Prop. 15, we deduce thatC2 ∪ ĥ is
simple forF1. Consequently,C2 ∪ f̂ is simple forF, and the minimality ofG implies thatC2 ∪ f̂ = G. As
C1 ∩G+1 = ∅ we haveAtt(G, F) = b̂1, then (i) holds. AsC1 , C2, h1 is not included in any face ofG+ \ { f }.
From Prop. 19, by exchangingg1 andh, the same can be said for the other 0-face ofb1, hence (ii ) holds.�

B.5 Proof of Proposition 12

Let f ∈ G+ be the initial facet ofG. By definition,|G+ | ≥ 2. Let us suppose that there exists a (2-)facetg ∈ G+

(g , f ) such thatAtt(ĝi ,G) , ĝi
∗. From Prop. 19, there exists a collapse sequenceS = 〈( fi , gi )〉ti=1 (t ≥ 1)

from F to F ⊘ G such thatf1 = g, andg is then an initial facet ofG, in contradiction with Prop. 11. Then, for
all facetsg ∈ G+ such thatg , f , we haveAtt(ĝi ,G) = ĝi

∗. �

B.6 Proof of Theorem 1 (“⇒” side)

We suppose thatG is a minimal minimal simple set forF. Then, (i), (ii ), and (iii ) are proved by Props. 6, 12,
and 10, respectively. Moreover, (iv) easily derives from Props. 2 and 10.�

B.7 Proof of Theorem 1 (“⇐” side)

We suppose thatG satisfies conditions (i) to (iv).
Proof of simpleness.
Case 1: dim(Att(G, F)) = 0. From (i), there exists a 0-faceg ∈ G such thatAtt(G, F) = ĝ. From (iv) and
Prop. 18,Gց ĝ = Att(G, F). Then, from Prop. 2,G is simple forF.
Case 2: dim(Att(G, F)) = 1. From (iii ) there exists exactly one facet ofG that includes faces ofAtt(G, F). Let
f ∈ G+ be this facet. Then,Att(G, F) � f̂ ∗, and as dim(Att(G, F)) = 1, we have dim(̂f ) = 2. Moreover, from
(iv), we know thatG is connected, and then we haveAtt(G, F) , f̂ ∗ (otherwise, there would exist at least two
facets ofG that include faces ofAtt(G, F)). Then, from (i), we deduce that there exists two distinct 0-faces
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h1, h2 ∈ Att(G, F) which are free forAtt(G, F). Let b1, b2 ∈ f̂ \ Att(G, F) be the 1-faces such thath1 ⊂ b1
andh2 ⊂ b2. Still from (iii ), we haveAtt( f̂ ,G) ∩ Att( f̂ , F ⊘ G ∪ f̂ ) = ∅, and thenb1,b2 are necessarily
free for F. From (iv) and Property 2, we deduce thatG is connected, and thenAtt( f̂ ,G) , ∅ (in particular,
this implies thatb1 , b2). If dim(Att( f̂ ,G)) = 0, we deduce from (ii ) that no facet ofG (except f ) can
be removed by a collapse sequence, in contradiction with (iv). Then, dim(Att( f̂ ,G)) = 1. Consequently the
only possible configuration for̂f verifiesC[Att( f̂ , F)] = {ĝ, ĥ} whereg, h are distinct 1-faces of̂f ∗ (note that
this configuration will actually correspond to configuration (c) in Fig. 8). In particular, and without loss of
generality, we can suppose thath1, h2 ∈ ĝ. Let S = 〈( fi , gi )〉ti=1 (t ≥ 1) be a collapse sequence fromG to
{h1} (such a collapse sequence exists from (iv) and Prop. 18). From Prop. 19, we can suppose without loss of
generality that (f1, g1) = ( f , b1), and then we necessarily have (ft ,gt) = (g, h2). In particular,〈( fi , gi )〉t−1

i=1 is
then a collapse sequence fromG to ĝ.
In every cases,Gց ĝ = Att(G, F) and thenG is simple forF.
Proof of minimality.
Let H ⊑ G be a principal subcomplex ofG, simple forF. Let F1 be the connected component ofF including
G. We have in particularF1 ց F1 ⊘ G andF1 ց F1 ⊘ H. Then, from Property 2,F1 ⊘ G andF1 ⊘ H are
connected. The complexH contains at least one border facef for F (otherwise, it could not be detached).
Then f ∈ H, andF1 ⊘ G ⊆ F1 ⊘ H ⊆ F1 ⊘ f̂ . But, from (ii ) and (iii ), f is the only facet ofG including
faces ofF1 ⊘ G. Thus,F1 ⊘ G is a connected component ofF1 ⊘ f̂ . Then, asF1 ⊘ H is connected and
F1 ⊘ G ⊆ F1 ⊘ H, we obtainF1 ⊘ G = F1 ⊘ H. Finally, sinceG andH are principal subcomplexes ofF, we
haveG = H. �

B.8 Proof of Remark 5

Proof of (i), (ii ), (iii ), (iv) ⇔ (i’ ), (ii ), (iii ), (iv). From Prop. 10, the attachment of a 2-dimensional minimal
simple set is a 0-cell or a 1-cell. Conversely, if the attachment is a cell then it is connected.
Proof of (iv) ⇔ (iv’ ), (v’), (vi’ ). If G is collapsible, then from Property 2,χ(G) = 1 andG is connected, and
from Prop. 17, it can be collapsed onto a 1-subcomplexH by using a decreasing collapse sequence fromG to
one of its 0-cells. Conversely, ifG verifiesχ(G) = 1,G is connected andGց H with dim(H) = 1 then, from
Property 2,χ(H) = 1 andH is connected, and it is then known thatH is collapsible. It follows thatG is also
collapsible.�

B.9 Proof of Theorem 2

The proof of (i) easily follows from the definitions. LetH ⊏ G such thatH is a minimal simple set forF.
Let S = 〈( fi ,gi )〉ti=1 (t ≥ 1) be a collapse sequence fromF to F ⊘ G, andS′ = 〈( f ′i ,g

′
i )〉

s
i=1 (s ≥ 1) be a

collapse sequence fromF to F ⊘ H. We obviously have{ f ′i , g
′
i }

s
i=1 ⊂ { fi ,gi }

t
i=1 (in particular,s < t). Hence,

by induction from Prop. 19, we can build a new collapse sequence fromF to F ⊘ G, the firsts free pairs of
which are those ofS′. It follows thatF ⊘ H ց F ⊘ G = (F ⊘ H) ⊘ (G ⊘ H). Hence (ii ) holds.�

C A strong connectedness property valid only inF3

As the attachment of the initial cell̂f of a 2-dimensional minimal simple setG to this simple set is connected,
it easily follows thatG ⊘ f̂ is also connected, but it may happen thatG ⊘ f̂ looses the strong connectedness
property ofG. However, inF3, the space is not “large enough” to enableG ⊘ f̂ to become non-strongly
connected. This property of strong connectedness preservation can present an algorithmic interest for the de-
velopment of topology-preserving reduction procedures based on the detachment of (2-dimensional) minimal
simple sets, and especially for their optimisation in dimension 3.

Proposition 20 Let F � F3 be a cubical complex. Let G⊏ F be a2-dimensional minimal simple set for F
such that|G+ | ≥ 2. Let f̂ ⊏ G be the initial cell of G. Then G ⊘ f̂ is strongly connected.

Proof Let S be a collapse sequence fromF to F ⊘ G. Let (c1,g0) be the first free pair ofS containing a facet
of G distinct from the initial facetf (note that (c1,g0) is necessarily the second or the third free pair ofS).
Obviously,g0 ∈ Att( f̂ ,G) andc1 is the unique facet ofG ⊘ f̂ including g0. (The reader may refer to Fig. 12
to “visualise” the adjacency relations between the different faces considered in this proof.)
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Fig. 12 Configuration of a 2-dimensional minimal simple set in the neighbourhood of its initial facet (see
text).

– If Att( f̂ ,G) = {g0}, we setE = ĉ1. We haveAtt( f̂ ,G) ≺ E ⊑ G ⊘ f̂ andE is strongly connected.
– Otherwise, from Remark 3,Att( f̂ ,G) = {g0,h0}

− whereg0 andh0 are two distinct 1-faces including a
same 0-face. We sets0 = g0 ∩ h0. The cell ˆc1 containsg0, then it contains two 1-faces includings0: g0
andg1 (g1 < f̂ as ˆc1 , f̂ ). Since f is the only border face forG (Prop. 12),g1 is not free inG. Then,
there exists another 2-cell ˆc2 , ĉ1 of G containingg1 (and then different from f̂ ). The cell ˆc2 containss0
sinces0 ⊂ g1, and a second 1-faceg2 , g1 including s0. We haveg2 , g0 asc1 , c2.

– If g2 = h0, then we setE = {c1, c2}
−. Obviously,E is strongly connected andAtt( f̂ ,G) ≺ E ⊑ G ⊘ f̂ .

– Otherwise, asg2 is not a border face forG, there exists a cell ˆc3 , ĉ2 of G containingg2 (and then
different from f̂ ). The cell ˆc3 containsg2 and thens0, and it follows that there exists a second 1-face
g3 ∈ ĉ3 including s0. We haveg3 , g0, asg0 is a free face forG ⊘ f̂ , andg3 , g1, otherwise
the cells ˆc3 and ˆc2 would share two 1-faces:g3 = g1 andg2. The subsetA of star∗(s0,G ⊘ f̂ )
defined byA = {c1, c2, c3, g0, g1, g2, g3} is strongly connected. Symmetrically, we can define in
star∗(s0,G ⊘ f̂ ) a strongly connected subsetB containing four distinct 1-faces (one of them being
h0). However,star∗(s0, F

3) contains exactly six 1-faces andA,B ⊂ star∗(s0, F
3). Consequently,

A∩ B , ∅ andE = (A∪ B)− is strongly connected and verifiesAtt( f̂ ,G) ≺ E ⊑ G ⊘ f̂ .

In all the possible cases, we can build a complexE strongly connected and verifyingAtt( f̂ ,G) ≺ E ⊑ G ⊘ f̂ .
Let a, b be two (2-)facets ofG ⊘ f̂ . As G is strongly connected, there exists a 1-pathπ from a to b in G.
If f is an element ofπ, its predecessor and its successor inπ are then faces ofAtt( f̂ ,G), and thus ofE.
Consequently, we can modifyπ in order to obtain a 1-path froma to b in G ⊘ f̂ (it is sufficient to replace in
π all the occurrences of the 2-facef by a well-chosen 1-path inE). ThenG ⊘ f̂ is strongly connected.�

Remark 8 This property is no longer true forn = 4 (anda fortiori n > 4). InF4, the complexG = ({ f } ∪ B)−

described hereafter (and illustrated in Fig. 13) is a minimal simple set, the initial facet of which isf , and
such thatB− ⊂ {(x, y, z, t) | x, y, z, t ≥ 0}. Let C be the image ofB by the central symmetry w.r.t. the point
(0, 0, 0, 0). The complex ({ f }∪B∪C)− is a minimal simple set for a well-chosen complexF, and is no longer
strongly connected after the detachment of its initial cellf̂ (dim(B− ∩C−) = 0).
f = {−1, 0} × {0, 1} × {0} × {0} ;

(a) (b) (c)

Fig. 13 Different views of the (pure) 2-dimensional minimal simple setG = ({ f } ∪ B)− � F4 described
in Remark 8. (a) Visualisation of the 1-faces ofB−. (b) Visualisation of the “missing” 2-faces inG (i.e the
2-facesg such that ˆg∗ � G while g < G+). (c) Visualisation ofG (B in light grey, f in dark grey).
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B = {{1} × {0, 1} × {0} × {0,1}, {0, 1} × {0,1} × {0} × {0}, {0,1} × {0} × {0, 1} × {0}, {0,1} × {1} × {0, 1} × {0}, {1} ×
{0, 1}× {1}× {0, 1}, {0, 1}× {0}× {1}× {0, 1}, {0}× {0, 1}× {1}× {0, 1}, {0, 1}× {1}× {1}× {0, 1}, {0}× {0, 1}× {1}×
{1, 2}, {0, 1}×{0}×{1, 2}×{1}, {0, 1}×{1}×{1, 2}×{1}, {0, 1}×{0, 1}×{2}×{1}, {2}×{0, 1}×{1}×{1, 2}, {1, 2}×
{0} × {1, 2} × {1}, {1, 2} × {0, 1} × {1} × {1}, {1, 2} × {0, 1} × {2} × {1}, {2} × {1,2} × {1} × {1, 2}, {1} × {1,2} ×
{1} × {1, 2}, {1,2} × {2} × {1,2} × {1}, {1, 2} × {1,2} × {2} × {1}, {2} × {1, 2} × {0} × {1, 1}, {1, 2} × {1} × {0, 1} ×
{1}, {1, 2} × {2} × {0,1} × {1}, {1, 2} × {1,2} × {0} × {1}, {0} × {1,2} × {0} × {1,1}, {0, 1} × {1,2} × {0} × {1}, {0, 1} ×
{1, 2} × {1} × {1}, {0, 1} × {2} × {0, 1} × {1}, {0, 1} × {1} × {0} × {0, 1}, {0} × {1} × {0, 1} × {0, 1}, {1} × {0,1} × {0} ×
{0, 1}, {1} × {0, 1} × {0} × {1, 1}, {0} × {0} × {0, 1} × {0,1}, {0, 1} × {0} × {0} × {0,1}, {0, 1} × {0} × {0,1} × {1}}.
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