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Abstract Preserving topological properties of objects during reiducprocedures is an
important issue in the field of discrete image analysis. Suwobedures are generally based
on the notion ofsimple point the exclusive use of which may result in the appearance of
“topological artifacts”. This limitation leads to consida more general category of ob-
jects, thesimple setswhich also enable topology-preserving image reductiostudy of
2-dimensional simple sets in 2-dimensional spaces has fregosed recently. This arti-
cle is devoted to the study of 2-dimensional simple sets @&tap of higher dimensioné.
n-dimensional spaces, > 3). In particular, several properties ofinimal simple setsi(e.
which do not strictly include any other simple sets) are pesal, leading to a characterisa-
tion theorem. Itis also proved that the removal of a 2-dineared simple set from an object
can be performed by only considering thgnimal ones, thus authorising the development
of efficient thinning algorithms.

Keywords Digital topology - Thinning - Topology preservation Simple sets Cubical
complexes n-dimensional spaces

1 Introduction

The preservation of topological properties is fundameirtahany applications of image
analysis. Consequently, an intensifog has been conducted for more than 40 years [1,
2] to develop topology-preserving methods enabling to @ssdliscrete binary images, es-
sentially to perform skeletonisation, homotopic reduttior segmentation. Most of these
methods are based on the well known notiosiafiple point3].
Since the definition of thdeletable elements a 2-dimensional binary image by Rosen-
feld [4] in 1970, eforts have been directed towards local characterisatiosisgdle points in
2-, 3- and 4-dimensional spaces [5-8] together with morerate definitions of simplicity.
Some (less frequent) studies have also been devoted to tieegerweral notion ofimple
sets Given a discrete binary objekt a simple setis a paB c X which - similarly to simple
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points - can be removed frod, providing a resuliX \ S having the same topology.€. the
same homotopy type) as. The study of simple sets has, in particular, been motivaied
the existence of sets composed only of simple points butlwaie not simple, as pointed
out by Rosenfeld [4].

Based on this consideration, the only simple sets studiec flong time have been
those composed only of (parallely [9] or sequentially [11J) kimple points. The exclusive
focus on such simple sets can be explained by the fact thaseRproved [12] in 1986
that in a 2-dimensional digital imaged. an image defined of?, equipped with a (48)-
or (8,4)-adjacency framework), any simple set can be removeduogessiveemoval of
simple points. Afterwards, remained for a long time the hopextending this theorem to
higher dimensions [13]. Unfortunately, it was recently y@d [14] that there exist simple
sets in 3-dimensional spaces composed only of non-simptesp@mphasising the fact that
the exclusive use of the notion of simple point is ifisient to enable the development of
robust topology-preserving reduction procedures.

This unexpected result has led to start new studies [15,46jrple sets without sim-
ple points, in the framework of cubical complexes [17] (Whenables to retrieve the main
concepts of digital topology iZ", but also to model a larger class of discrete cubical ob-
jects). In this context, an extension of Ronse’s theoremdin#nsional pseudomanifolds
has already been established [16].

Inthis article, we present a complete study of 2-dimendisinaple sets im-dimensional
cubical spacesn(> 3), motivated in particular by the fact that Ronse’s theormamnot be
generalised to spaces of such dimensions (as it will be st@ection 3). We prove sev-
eral properties on 2-dimensionalinimal simple seté.e. simple sets which do not strictly
include any other simple sets) and we finally establish aactarisation of these objects.
We also prove that the detection and removal of a 2-dimeasgimple set from an object
can be performed by only considering timénimal onesthus authorising to further develop
new dficient thinning algorithms.

The sequel of this article is organised as follows. Sectioac2lls background notions
related to cubical complexes and simple sets. Sections 8datain the main contribution of
this article. They present new results related to 2-dinmradisimple sets in-dimensional
spaces, in particular necessary properties of 2-dimeakimimimal simple sets (Section 3),
a characterisation of such sets (Section 4), and a proof rfdederministic decomposition
of 2-dimensional simple sets into a sequence of minimal ¢8estion 5). Section 6 sum-
marises the contributions of the article and describei@urivorks. Proofs of the proposi-
tions and theorems can be found in Appendix B (some of thesdgpare based on results es-
tablished in previous works and auxiliary propositions ethare provided in Appendix A).
A more technical discussion on a connectedness propertydofhigznsional minimal simple
sets related to the dimension of their embedding space pped in Appendix C.

2 Cubical complexes and simple sets

This section provides the minimal set of background noti@tgiired to make this paper
self-included. More details can be fouedy.in [8, 15].

2.1 Basic notions

LetZ be the set of integers. LE% ={{a}|aeZ} andF} ={{a,a+1}|acZ}. Letn> 1.



Let f c Z". If f is the Cartesian product ofi elements off} andn — m elements of
F(l) we say thatf is aface or anm-face(of Z"), mis the dimensionof f, and we write
dim(f) = m. We denote by" the set composed of all faces@f.

Let f e F"be aface. We set = {ge F" | g C f},andf* = f \ {f} (see Fig. 1). Any
g e f is aface of f(or of f).

Fig. 1 Left: three faces; (i € [0, 2]) of dimensioni, respectively. Middle;. Right: ﬁ*. In black (dots and
lines): 0 and 1-faces, respectively; in grey: 2-faces.

Let F c F" be a finite set of faces. We st = ;¢ f (see Fig. 2).
Let F c F" be a set of faces. Ldt € F be a face. We sedtar(f,F) = {ge F | f C g}
andstar'(f, F) = star(f, F) \ {f} (see Fig. 2).
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Fig. 2 Left: a set of face$. Middle: the closuré=~ of F. Right: star(f, F~), for the O-facef € F~.

]

Let F c F" be a finite set of faces. We say ttais acell or anm-cellif there exists an
mfacef € F such thafr = f. We say thafF is a (cubical) complex(in F") if for any f € F,
we havef C F,i.e, if F = F~. If F is a complex irf", we write F < F".

Let F < F" be a complex. Any subs& C F which is also a complex is subcomplex
of F (see Fig. 3). IiG is a subcomplex of, we writeG < F. If G < F andG # F, we write
G<F.

Let F c F" be a finite set of faces. Ldt € F be a face. The facé is afacetof F if
there is nag € F such thatf € §*. We denote by* the set composed of all facetslBf(see
Fig. 3).

Let F < F" be a complex. LeG < F be a subcomplex df. If G* € F*, we say thaG
is aprincipal subcomplex of Fand we writeG C F (see Fig. 4). IiG C F andG # F, we
writeGC F.

Let F < F" be a complex such th& # 0. Thedimensiorof F is defined by dimif) =
maxdim(f) | f € F*}. We say thaf is anm-complexf dim(F) = m. We say thaf is a
pure complexf for all f € F*, we have dim{) = dim(F).

Definition 1 Letn > 1. LetF < F" be a cubical complex. L&t < F be a subcomplex of
F.We setF © G = (F* \ G*)". The sef- ®© G is a complex which is thdetachment of G
from F (see Fig. 4).
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Fig. 3 Left: a complexF. Middle: a subcomple of F (G < F). Right: the seF* c F of the facets of.

Definition 2 Letn > 1. LetF < F" be a cubical complex. L& < F be a subcomplex df.
Theattachment of G to ks the complex defined b&tt(G, F) = G n (F © G) (see Fig. 4).

- " .

Fig. 4 From left to right: a complexr, a principal subcomple of F (G C F), the detachment d& from
F, the attachment db to F.

2.2 Topology in cubical complexes

Let F c F" be a finite set of faces such that# 0. A sequence of facesif’ ; (s = 0)
is apath in F (from § to fy) if for all i € [0, s— 1], eitherf; is a face offi,; or fi;; isa
face of fi (with f, fi,1 € F). If k = min{dim(f;) | i € [0, 5]}, we also say thatf()> , is a
k-path (in F). We say thaf- is k-connectedf, for any facetsf,g € F*, there is &-path
in F from f to g. LetG C F be a subset of. We say that is ak-connected component
of F if G is k-connected and is maximal for this propertye( we haveH = G whenever
G C H ¢ F andH is k-connected). Note that, in particularkeconnected compone@
of a complexF is a principal subcomplex df, i.e. GC F. We denote byC[F] the set of
all k-connected components Bf We say thaf is connectedresp.strongly connectexdif
F is 0-connected (resp. 1-connected), and we aptg for Co[F]. The number of distinct
connected components Bfis denoted byC[F]| (more generally, the notatigX| will be
used to denote the cardinal of any finite Xt

Collapsing is a topological operation on complexes thasgmees homotopy type.

Definition 3 Letn > 1. LetF < F" be a cubical complex. Lete F. If g e f* is such that
f is the only face of which strictly includes, then we say thaj is afree face for F, that
f is aborder face for F and that the pairf( g) is afree pair for F (see Fig. 5). If ,g) isa
free pair forF, we say that the compldx \ {f, g} is anelementary collapse of .F

Property 1 Letn > 1. LetF < F" be a cubical complex. Iff¢ g) is a free pair forF, then
f e F* and dim{f) = dim(g) + 1.
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Fig. 5 Left: a complexF. Middle: the border faces fdF. Right: the free faces foF. Any pair (f, g) such
that f is in the middle subfigure arglc f is in the right subfigure is a free pair fér.

Definition 4 Letn > 1. LetF < F" be a cubical complex. L& < F be a subcomplex d¥.
We say thaf collapses onto Gand we notd \ G, if there exists a sequence of complexes
(FiYl_o (t > 0) such thafy = F, F; = G, andF; is an elementary collapse &_; for all

i € [1,1] (in particular, ifG is a 0-cell, we say thdt is collapsiblg. The sequencér)!_; is
acollapse sequence from F to(Gee Fig. 6). We will also call collapse sequence fierio

G, the sequenc{f;, gi)>i‘:l of free pairs verifyingrF; = Fi_1 \ {fj, gi} for all i € [1,1].

— —
" " - 2

Fig. 6 From left to right: a collapse sequence frénto a subcomples < F.

Let F < F" be a cubical complex. Theuler characteristiof F, written y(F), is defined
by x(F) = i”:o(—l)‘.vi, wherey; is the number oi-faces ofF fori € [0, n]. From Property 1,
it is easy to check that the collapse operation preservekulex characteristic. Moreover,
it may be easily proved that the connectedness is also pegbéy this operation (semg.
[16]).

Property 2 Letn > 1. LetF,G < F" be cubical complexes. F \, G, then:

- x(F) =x(G);
— IC[F]I = ICIG]I .

2.3 Simple sets

Intuitively, a cellG < F is called simple if there is a topology-preserving deforigratof
the complexF over itself onto the relative complement@fin F. The following definition
of simple cells, based on the collapse operation, can beaseamliscrete counterpart of the
one given by Kong in [6].

Definition 5 Letn > 1. LetF < F" be a cubical complex. Let € F be a face of. The
cell f is a simple cell folF if F \, F © f.



Proposition 1 ([6]) Let n> 1. Let F < F" be a cubical complex. Let ¢ F* be a facet of
F such thatdim(f) = 2. Thenf is a simple cell for F if and only i€[Att(f,F)] = 1 and
x(Att(f,F)) = 1.

Definition 5, proposed for simple cells, naturally extermisubcomplexe& < F which
contain an arbitrary number of facets, leading to the notibsimple set

Definition 6 Letn > 1. LetF < F" be a cubical complex. L&t < F be a subcomplex of
F. We say thaG is simple for Fif F N\, F © G. Such a subcomple& is called asimple set
for F (or ak-dimensional simple set for, ¥ dim(G) = k).

The notion of attachment leads to the following local chtasation of simple sets.

Proposition 2 ([18]) Let n> 1. Let F < F" be a cubical complex. Let @ F be a subcom-
plex of F. The complex G is simple for F if and only ifG Att(G, F).

Remark 1Without loss of generality, the study of the simple g8tsf a complexF can be
restricted to those verifying)(c) G c F (see [15] for a full justification). From now on, we
will always implicitly consider that a simple set verifiee#e properties.

We introduce now the notion aghinimal simple setswhich correspond to simple sets
that do not strictly include any other simple sets.

Definition 7 Letn > 1. LetF < F" be a cubical complex. Leé6 C F be a principal
subcomplex ofF. The complexG is a(k-dimensional) minimal simple set foriF G is a
(k-dimensional) simple set fdF andG is minimal (w.r.t.C) for this property (.e.VH C G,

H is simple forF = H = G).

The notion of minimal simple set may be useful from both tledioal and algorithmic
points of view sincei] the existence of a simple set necessarily implies the endst of
at least one minimal simple set, arid) py definition, a minimal simple set is necessarily
easier (or, at least, not harder) to characterise than aetgé€nsimple set. In particular,
we can hope that in several cases (depending on the dimésismfiF" andor of F, for
instance), the study of minimal simple sets could b@aent to deal with the problem of
detachingany simple set from a complex.

3 Properties of 2-D minimal simple sets
3.1 Existence

In [16], it has been proved that if?, all the minimal simple sets (and in particular those of
dimension 2) are cells.

Proposition 3 ([16]) Let F < F? be a cubical complex. Let & F be a minimal simple set
for F. Then|G*| = 1, i.e.G is a simple cell for F.

However, this property is no longer truelifi (n > 3), as stated by the following propo-
sition.
Proposition 4 Let n > 3. There exist F< F" and G C F such thatdim(G) = 2, |G*| > 1
and G is a minimal simple set for F.

In order to prove this proposition, it is ficient to build a comple¥ < F" (n > 3) and a
subcomplexG c F of dimension 2 such th& is a minimal simple set foF while |G*| > 1.
An example of such complexds andG is provided in Fig. 7. Note that since a complex
F < IF3 can be embedded iff" for anyn > 3, the proof can be restricted to the case 3.



Fig. 7 A (pure) 2-dimensional complek < F2 including a minimal simple seB which is not a cell (in
medium and light grey). See Subsection B.1 for a full desiorip

3.2 Basic properties

3.2.1 Connectedness

In [15], it has been proved that a minimal simple set is neardgsonnected. The following
property of 2-dimensional minimal simple sets is then a gjgezase of this result.

Proposition 5 ([15]) Let n > 3. Let F < F" be a cubical complex. Let @ F be a2-
dimensional minimal simple set for F. ThEhiG]| = 1, i.e. G is connected.

From Prop. 2 and Property 2, we immediately derive the fatgaresult.

Proposition 6 Let n> 3. Let F < F" be a cubical complex. Let @ F be a2-dimensional
minimal simple set for F. The@[At(G, F)]| = 1, i.e. Att(G, F) is connected.

Remark 2For the same reasons, we also hayatt(G, F)) = y(G).
3.2.2 Purity

In [15], it has been provedi)(that a (minimal) simple set cannot contain any O-facet,(@pd
that a minimal simple set contains a 1-facet if and only i§ idisimple 1-cell. The following
proposition is a straightforward consequence of thesdteesu

Proposition 7 Let n> 3. Let F < F" be a cubical complex. Let @ F be a2-dimensional
minimal simple set for F. TheRr,f € F*,dim(f) = 2, i.e.G is pure.

3.2.3 Strong connectedness
The following proposition states that a 2-dimensional miali simple set is not only con-

nected but alsstronglyconnected.

Proposition 8 Let n> 3. Let F < F" be a cubical complex. Let @ F be a2-dimensional
minimal simple set for F. ThefG1[G]| = 1, i.e. G is strongly connected.

3.3 Initial facet

In this subsection, we focus on the first facets removed dutie collapse sequences en-
abling to detach 2-dimensional minimal simple setsch are not simple cellSuch facets,
calledinitial facetspresent several important properties, especially refamtdioe attachment
of the 2-dimensional minimal simple sets.



Definition 8 Letn > 3. LetF < F" be a cubical complex. Lé&b c F be a 2-dimensional
minimal simple set folF such thaiG*| > 2. We say thaf € G is aninitial facet of G(in
F) if there exists a collapse sequen¢§, gi))}:1 (t>1) fromF to F © G such thatf = f;.

3.3.1 Possible configurations

Note that, from Prop. 7, an initial facet is necessarily aa@ef Moreover, as stated by the
following proposition, an initial facet can only presentrydew configurations w.r.t. its
attachment.

Proposition 9 Let n> 3. Let F < F" be a cubical complex. Let & F be a2-dimensional
minimal simple set for F such th#*| > 2. Let f € G* be an initial facet of G. Then
dim(Att(f, F)) = 1 and|C[Att(f, F)]| = 2.

Remark 3The attachmenAtt(f, F) of the cell f generated by an initial facet of G nec-
essarily corresponds to one of the three configurations qumtations and symmetries)
illustrated in Fig. 8. The reader may easily check that thiesee configurations are the only
ones presenting the required properties.

3.3.2 Uniqueness

The following proposition states that the attachment ofdir2ensional minimal simple set
G is a cell, all the faces of which are included in a same uniqoetfofG.

Proposition 10 Let n> 3. Let F < F" be a cubical complex. Let & F be a2-dimensional
minimal simple set for F such thg*| > 2. Let f € G* be an initial facet of G. Then:

(i) Age F,AtG,F) = g A § e C[At(f,F)],

i.e. Att(G, F) is a cell which is a connected component of AtE);
(i) Vke G k# f = knAt(G,F) =0,

i.e. f is the only facet of G including faces of @&t F).

From this proposition, we straightforwardly derive thequreness of the initial facet of
a 2-dimensional minimal simple set.

Proposition 11 Let n> 3. Let F < F" be a cubical complex. Let & F be a2-dimensional
minimal simple set for F such thigs*| > 2. Then G has exactly one initial facet.

Props. 10 and 11 motivate the following extension of Defnit8

Definition 9 Letn > 3. LetF < F" be a cubical complex. L&s C F be a 2-dimensional
minimal simple set foF such thaiG*| > 2. In addition to Definition 8, we also say that

is theinitial facet of G (in F) if f is the (only) facet ofs such thatf intersects (and actually
includes)Att(G, F). The cellf = G is calledthe initial cell of G.

Remark 4 From Prop. 10, the initial facet is the only fadetf G including faces oAtt(G, F).
Consequently, the attachment of the initial dettorresponds to one of the three configura-
tions (up to rotations and symmetries) illustrated in Fig. 9



3.4 Composition

The following proposition describes the composition of@iensional minimal simple set,
especially w.r.t. the properties of its facets.

Proposition 12 Letn> 3. Let F < F" be a cubical complex. Let & F be a2-dimensional
minimal simple set for F such thg*| > 2. Then G is composed of:

— 1facet f such thatim(Att(f, F)) = 1 and|C[Att(f, F)]| = 2 (i.e. the initial facet);
— |G*| =1 (> 0) facets g (i € [1,|G*| - 1]) such that AttGi, G) = §*

In particular, except the initial facet, G contains no bordiaces for G (anda fortiori for F).

4 Characterisation of 2-D minimal simple sets

The properties stated in the previous section provide macgsonditions for defining a 2-
dimensional set as being a minimal simple one. We providedftar a set ofecessary and
syficientconditions, then enabling to characterise a 2-dimensioraiimal simple set.

Theorem 1 Letn> 3. Let F < F" be a cubical complex. Let & F be a principal subcom-
plex of F such thatim(G) = 2 and|G*| > 2. Then, G is a minimal simple set for F if and
only if all the following conditions hold:

(i) ICIA(G,F)]| =1,
i.e. Att(G, F) is connected;
@iy A eG*, f*#At(f,F),
i.e.G has exactly one border face in F;
(iy AfeGH, f*NAHG,F)£0,
i.e.there exists exactly one facet of G that includes faces ¢BAR);

Fig. 8 The three possible configurations (up to rotations and sytmiesg for the attachmenétt(f, F) of

the cell f generated by an initial facett (in grey) of a 2-dimensional minimal simple s&tfor F. Full
lines and disksAtt(f, F); dot lines and empty disks* \ Att(f, F). The 2-dimensional minimal simple set
illustrated in Fig. 7 and described in Subsection B.1 hasitialifacet (in medium grey) which corresponds to
configuration (a). The other two configurations can be eaditpined from the same example by elementary
rotations and translations & andK~ (see definitions in Subsection B.1).

Fig. 9 The three possible configurations (up to rotations and sytniesgfor the attachment of the initial cell
f of a 2-dimensional minimal simple sétfor F. In grey (full lines and disks)Att(f, G); in black (full lines
and disks)Att(G, F); in black (dot lines and empty disksh* \ Att(f, F).
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(iv) 3f € G,dim(f)=0AG\, f,
i.e.G is collapsible.

Remark 5Alternative versions of the previous characterisation loarobtained by substi-
tuting the following condition to condition’}¢

(") Att(G,F)is a O-cell or a 1-cell;
or the following three conditions to conditioiv):
(iv’) Gis connected,;

V) x@) =1;
(V') G\, H with dim(H) = 1.

In order to illustrate the minimality of this characterigex, we provide in Fig. 10 some
counter-exampled.é. somenon-simpleor non-minimalsimple sets) for which exactly one
of the conditions of Theorem 1 is not verified.

@ (b) (©

(d) (e)

Fig. 10 Examples of subcomplexéd c F < F° which do not satisfy all the conditions of Theorem 1. In
light, medium and dark greyF; in light and medium greyG; in medium grey: border face(s) @&. (a) G
verifies conditionsi{), (iii) and {v) but not condition i) (Att(G, F) is not connected). A& is connected,
G A Att(G, F): G is not simple. (b)G verifies conditionsi{, (iii) and {v) but not condition if) (G has two
border faces). Obviousl¥ is not minimal. (c)G verifies conditionsiy, (i) and {v) but not condition i{i) (4
principal cells ofG intersectAtt(G, F)). The medium grey cell is obviously a simple cell fer G is simple
but not minimal. (d)G verifies conditionsi, (i) and {ii) but not condition i) (G is not collapsible since
it has a tunnel). We have 8 y(G) # x(Att(G, F)) = 1, thenG ‘A, Att(G, F): G is not simple. (e)G verifies
conditions {), (i), (iii), (iv’), and (/) but not condition ¢i"). In particular, the light-grey part o6 is a dunce
hat [19], which cannot be modified by any collapse operafidren,G A, At{(G, F): G is not simple. Note
that in (a) and (c), the light grey part &fis equal to the complek™ defined in Appendix B.1.
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5 Confluence property of 2-D simple sets

The following theorem guarantees that any simple set of dgiom lower or equal to 2 can
be detached by iterative detachment of minimal simple $éd$e that this property does
not depend on the order of the detachments. It can thus letteetdevelopment ofion-
deterministicalgorithms, justifying the importance of the study of (2Zrdinsional) minimal
simple sets.

Theorem 2 Let n> 1. Let F < F" be a cubical complex. Let @ F be a simple set for F
such thatdim(G) < 2. If G is not a minimal simple set, then:

(i) AH c G such that H is a minimal simple set for F;
(i) YH c G such that H is a minimal simple set for F,&H is a simple set for E H.

Remark 6 This theorem extends)(the result proposed in [15] which states that any 1-
dimensional simple set i’ can be removed by iterative (and non-deterministic) detesstt

of simple 1-cells, andii() the result proposed in [16] which states that any simpléset
complex embedded in a 2-dimensional (pseudo)manifolef’ ican be removed by iterative
(and non-deterministic) detachment of simple cells.

Remark 7 This proposition cannot be generalised to ddnE& 3 (anda fortiori dim(G) >
3). In particular {) is still obviously true (from the very definition of a minirsimple set),
but (i) is false, as illustrated by classical counter-examples s the Bing's house [20] or
less classical ones [15].

6 Conclusion

From Theorem 1, we are now able to characteai$¢he minimal simple sets of dimension
2, independently of the dimension of their embedding spi&tm@eover, from Theorem 2
we also know thaany simple set of dimension 2 can be fully detached from a complex
iterative (and non-deterministic) detachment of minimaide sets.

Based on these two results, it becomes possible to devegbmtotyy-preserving reduc-
tion algorithms providing principal subcomplex@sof complexesF < F" which no longer
include any 1-dimensional and 2-dimensional simple sets.

From an applicative point of view, further works will now cgist in proposing such
efficient algorithms (which could be used, for instance, toroj#e the computation of the
homology of geometrically complex objects [21-23]). Intparar, the main purpose will
be to simultaneously reach the optimum time and space #igud complexities. From a
theoretical point of view, the next step will be the study wiirfimal) simple sets of higher
dimensions (already initiated in [14]).

A Auxiliary properties
Proposition 13 ([15])Let n> 1. Let F < F" be a cubical complex. Let @ F be a simple set for F. Let
H £ G be a strict principal subcomplex of G. If fit, F) € Att(G, F), then:

(i) Hisasimple set for F;
(i) G ©Hisasimple setfor B H.
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Proposition 14 ([15])Letn> 1. Let F < F" be a cubical complex. Let & F be a minimal simple set for
F. Then, there exists at most ofidace f € G such that stai(f, F) is not connected an@[star*(f, F)] n
C[star*(f,G)] # 0 (i.e. star*(f, F) has a connected component included in G). If f exists, thehave
Att(G, F) = {f}, and star(f, G) is connected.

The following proposition is a particular case of a propiositestablished in [15].

Proposition 15 (From [15]) Let n> 1. Let F < F" be a cubical complex. Let @ F be a simple set for F.
Then,YH £ G such that AH, F) is a0-cell:

(i) Hisasimple set for F;
(i) G ©Hisasimple setfor © H.

The proposition below is an easy consequence of a lemmédiskgsbin [15] which proves, in particular,
that a collapse operation on a compkexannot “remove” a path iff from f € F to f, passing exactly once
through a 1-facet ofF.

Proposition 16 (From [15]) Let n > 1. Let F < F" be a cubical complex. Let & F be a simple set
for F such that G contains &-facet fe F*. Let G, C, be the connected components of &} containing
respectively g g», theO-faces of f. Then €+ Cp and for any connected subcomplexH=\{f}, HNC; =0
orHNC, =0.

Proposition 17 ([24])Let n> 1. Let F < F" be a cubical complex. Let G F be a subcomplex of F. If
F N\ G then there exists decreasingollapse sequeno(eéfi,gi»}:l (t>1) from F to G,i.e. a sequence such
thatVi € [1,t — 1], dim(f;) > dim(fi;1).

Proposition 18 Letn> 1. Let F < F" be a cubical complex. Let a belaface of F such that F\ {a} (i.e. F
is collapsible). Then, for ald-face be F, F \ {b}.

Proof If dim(F) = 0, the result is obvious. If dinf{) > 1 then, from Prop. 17, there exists a 1-complex
containing the same 0O-faces Bsand such thaF \, G andG \ {a}. From Property 2, we havg(G) =
x({a}) = L and|C[G]| = IC[{a}]| = 1. Itis known that a connected 1-compl&xsuch thaf(G) = 1 collapses
onto any of its O-faces. Hence the result holds.

Proposition 19 Let n > 1. Let F < F" be a cubical complex. Ldtf,g) be a free pair for F such that
dim(f) < 2. Let((fi,gi»i‘=l (t > 1) be a collapse sequence of F such thag € {f;, g; }le_ Then, there exists
a collapse sequencéf/, g)i_; of F such tha(f;,g;) = (f.g) and{fi.gi}l_; = {f/. gi’}Ll.

Proof Leta € [1,t] such thatf, = f (« exists asf € F* andf € {fi, g; }Ll)-

Case 1g, = g. As the pair {,,g,) is free forF, by moving it at the beginning of the collapse sequence, we
are obviously done.

Case 29, # g. Letg € [1,t] such thatg € {fg, gg}. Note that sincef(, g) is a free pair for, we necessarily
havea < gandg = fz. Thus, from Property 1, dinf = 2 (otherwise dimf) = 1 and dim) = dim(g)-1 =
dim(f) - 2 < 0). LetFy = F\ {f.g}*,, G = ({fi,gi}{_,)” andH = {fi.gi}}__, ;. Note that by construction,
G C F is simple forF, andH™ © F; is simple forF;. Since collapse operations in distinct connected
components of a complex are fully independent, we can seppitbout loss of generality th& is connected
and, by Property 2, thatt(G, F) is connected. Lét, hy be the two O-faces @. LetCy, Cy be the connected
components oH ™ \ {g} containingh; andhy, respectively. By Prop. 16, we know that + C, and it follows
from the connectedness Att(G, F) that Att(G, F)nCy = 0 or At{(G, F)nC; = 0. Without loss of generality,
we can consider thatt(G, F)NC, = 0. Therefore C,U§) C F; and the connected componentfdf\ {g, g, }
containingh; is included inC,. Leta; be the O-face ofi; belonging toC,. From Prop. 15, we deduce that
C2 U §is simple forFy, and thus collapses ontg, while C; collapses ontd@tt(H™, F1). Then,C collapses
ontohy. Moreover, from Prop. 1&; collapses ontay”Hence, we can remové,, g,}UH from F1 U{f,, 0, }
with a sequence of elementary collapses by removing)( C \ {a2}, (Qa, 82) andCy \ Att(H™, F1) in this
order. The result then follows from Caseri.
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B Proofs

B.1 Proof of Proposition 4

The proof is proposed far = 3. It is a fortiori true forn > 3. The proposed complex is the one illustrated in
Fig. 7. LetF < F° be the (pure) 2-dimensional complex generated by the setrafipal facesF* = KUAUL,
with:

K (in dark grey in Fig. 7)= {{3}x{0, 1} x{-1,0}, {4} x{0, 1} x {1, 0}, {3, 4} x {0} x {1, O}, {3, 4} x {1} x {-1, 0}};
A (in medium grey in Fig. 7): {{2,3} x {1,2} x {0}};

L (in light grey in Fig. 7)= {{0} x {0, 1} x {0, 1}, {0} x {1, 2} x {0, 1}, {0} x {2, 3} x {0, 1}, {1} x {1, 2} x {0, 1}, {1} X
{1,2) x {1,2},{2} x {0,1} x {0,1}, {2} x {1,2} x {0, 1}, {2} x {2,3} x {1,2},{3} x {1,2} x {1,2},{3} x {2, 3} X
0,1}, {3} x{2,3} x {1, 2},{0, 1} x {0} x {0, 1}, {0, 1} x {3} x {0, 1}, {1, 2} x {0} x {0, 1}, {1, 2} x {1} x {0, 1}, {1, 2} x
1)x{1, 2}, {1, 2} x{2}x{0, 1}, {1, 2} x{2} x{1, 2}, {1, 2} x {3} x{0, 1}, {2, 3} x {1} x{1, 2}, {2, 3} x {2} {0, 1}, {2, 3} x
3} x {0,1},{2,3} x {3} x {1,2},{0, 1} x {0,1} x {0},{0,1} x {0, 1} x {1},{0, 1} x {1,2} x {0},{0,1} x {1,2} x
1},{0, 1} x {2, 3} x {0}, {0, 1} x {2, 3} x {1}, {1, 2} x {0, 1} x {0}, {1, 2} x {0, 1} x {1}, {1, 2} x {1, 2} x {2}, {1, 2} X
{2,3) x{0},{1,2} x {2,3} x {1}, {2, 3} x {1, 2} x {1}, {2, 3} x {1, 2} x {2}, {2, 3} x {2, 3} x {0}, {2, 3} x {2, 3} x {2}}.
Let S be a collapse sequence frdfto K~ (such a collapse sequence exists; some of its steps areledan
Fig. 11). LetG = (F* \ K)™ = (AU L)” c F. By constructionf \, F © G, thenG is a simple set foF. Let
us suppose th& is not minimal. Then, there exists a subcompitéx: G such thatH is simple forF. Since
H* c G*, we haveF © G(= K7) c F © H. As F is connected an& \, F © H, from Property 2F © H
is also connected. By constructio;” is a connected component Bf® A~ = (K U L)™. Then, we must
haveA™ € F © H (otherwise K~ = F © H € F © A™: contradiction). ThusH £ L. As F is pure, there
does not exist any border 1-face kn Moreover,F has no border face belonging tto(the obvious proof, by
observation ofF, is left to the reader). Then, there does not exist any free farF in L~, anda fortiori
in H, which is then not simple: contradiction. Consequeryis a minimal simple set foF < F3 while
G*=39+ 1.0

b NElymtEi
m Wb W W

@ (b) © ©)

(€) ® © (h)

Fig. 11 From (a) to (h): some steps of a collapse sequence FdfFig. 7) toK~ (h) (see text).

B.2 Proof of Proposition 8

The proof is obvious ifG*| = 1. We now suppose thi*| > 2. Let us suppose that there exi&tg G, C G
such thatG = G1 U Gy and dimG;1 N Gy) = 0.
— If G1N G, C Att(G, F) thenAtt(G, F) € Att(G, F), and from Prop. 133, is simple forF, in contradic-
tion with the minimality ofG.
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- If G1 NGy ¢ At(G, F), then there exists a O-fade € G; N G, such thatf ¢ Att(G, F). But, then,
star*(f, F) is not connected and any connected componeastaf(f, F) is also a connected component
of star*(f,G). Thus, from Prop. 14, we hawtt(G, F) = {f}: contradiction.

Consequently, there are no principal subcompl&gss, = G such thatG = G; UG, and dimG;NG) = 0
It easily follows thaiG is strongly connectedx

B.3 Proof of Proposition 9

Sincef is nota connected componentff{otherwise, f is also a connected componeni&fin contradiction
with Prop. 5) Att(f, F) has at least one connected component. Moreover, siisce border 2-face foF andf

is not simple forF (otherwiseG would not be m|n|maI)Att(f F) has at least two connected components. But,
from Prop. 14 Att(f, F) has at most one connected component of dimension 0, whikbsrimpossible the
existence of more than two connected component&\ftif, F). Then,Att(f, F) has exactly two connected
components, one of which is necessarily of dimension 1.

B.4 Proof of Proposition 10

If Att(f, F) has a O-dimensional connected componéset (f corresponds to configurations (a) or (b) of
Fig. 8) then () and {i) directly follow from Prop. 14. We now suppose tht(f, F) has two 1-dimensional
connected componentse f corresponds to configuration (c) of Fig. 8). l((ef.,g.))I _, (t> 1) be acollapse
sequence fronf to F © G such thatf; = f. We setF; = F \ {f1,01} andG1 = ({ f.,g. ) ObV|oust,
Gy c Fy is simple forF;. Leth be the only 1-face of \ {01} free forF, hy, hp be the two 0-faces df, and
by be the 1-face of \ { g1, h} including hy. Let Cq, C;, be the connected components@f \ {h} containing
hy andhy, respectively. Asis a facet 0fGy, from Prop. 16, we hav€; # C; and we can suppose without
loss of generality thattt(G, F) n C; = 0. Then,Cz U h = F; and, from Prop. 15, we deduce ti@t U his
simple forF;. ConsequentlyC, U f is simple forF, and the minimality of implies thatC, U f = G. As
C1 NG = 0 we haveAty(G, F) = by, then {) holds. AsC; # Cy, hy is not included in any face &* \ {f}.
From Prop. 19, by exchangirgg andh, the same can be said for the other 0-face;ohence if) holds.o

B.5 Proof of Proposition 12

Let f € G* be the initial facet 0o6G. By definition,|G*| > 2. Let us suppose that there exists a (2-)facetG*
(g # f) such thatAtt(G;, G) # G*. From Prop. 19, there exists a collapse sequeéhee((fi, g))l_; (t > 1)
from F to F © G such thatf; = g, andg is then an initial facet oG, in contradiction with Prop. 11. Then, for
all facetsg € G* such thag # f, we haveAtt(Gi,G) = §*. o

B.6 Proof of Theorem 1 & side)

We suppose thds is a minimal minimal simple set fdf. Then, (), (ii), and {ii) are proved by Props. 6, 12,
and 10, respectively. Moreoveiy) easily derives from Props. 2 and 1.

B.7 Proof of Theorem 1 &” side)

We suppose thds satisfies conditionsto (iv).

Proof of simpleness

Case 1dim(Att(G, F)) = 0. From {), there exists a O-facg € G such thatAtt(G, F) = §. From {v) and
Prop. 18G \, § = Att(G, F). Then, from Prop. 2G is simple forF.

Case 2dim(AtY(G, F)) = 1. From (i ) there exists exactly one facet@fthat includes faces d&t(G, F). Let

f € G* be this facet. ThenAtt(G, F) < *, and as dimitt(G, F)) = 1, we have dim{) = 2. Moreover, from
(iv), we know thatG is connected, and then we ha&#(G, F) # f* (otherwise, there would exist at least two
facets ofG that include faces oAtt(G, F)). Then, from {), we deduce that there exists two distinct O-faces
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hy, hy € At(G, F) which are free forAtt(G, F). Let by, b, € f \ At(G, F) be the 1-faces such thbf c by
andhy c by. Still from (i), we haveAtt(f,G) n Att(f,F ® G u f) = ¢, and thenby, b, are necessarily
free for F. From {v) and Property 2, we deduce thatis connected, and thehtt(f G) # 0 (in particular,
this implies thathy # by). If dim(Att(f,G)) = 0, we deduce fromii( that no facet ofG (exceptf) can
be removed by a collapse sequence, in contradiction wi)h Then, dimAtt(f,G)) = 1. Consequently the
only possible configuration fof verifiesC[Att(f, F)] = {8, h} whereg, h are distinct 1-faces of* (note that
this configuration will actually correspond to configurati¢c) in Fig. 8). In particular, and without loss of
generality, we can suppose thath, € §. LetS = ((fi,gi))i‘=l (t > 1) be a collapse sequence frdto
{h1} (such a collapse sequence exists fraivh énd Prop. 18). From Prop. 19, we can suppose without loss of
generality that {1,91) = (f, b1), and then we necessarily havi, ¢:) = (g, h2). In particular,((fi,gi))i‘j is
then a collapse sequence fr@rto §.

In every cases; \ § = Att(G, F) and therG is simple forF.

Proof of minimality

Let H C G be a principal subcomplex &, simple forF. Let F; be the connected componentffncluding
G. We have in particulaF; \, F1 © G andF; \, F1 © H. Then, from Property 271 © G andF; © H are
connected. The compleA contains at least one border fatdor F (otherwise, it could not be detached).
Thenf e H, andF1 © G ¢ F1 © H ¢ F1 © f. But, from (i) and i), f is the only facet of5 including
faces ofF1 © G. Thus,F1 © G is a connected component Bf © f. Then, asF; © H is connected and
F1 ©G ¢ F1 © H, we obtainF; © G = F1 © H. Finally, sinceG andH are principal subcomplexes &f we
haveG = H.o

B.8 Proof of Remark 5

Proof of (i), (ii), (iii), (iv) < (i), (ii), (iii), (iv). From Prop. 10, the attachment of a 2-dimensional minimal
simple set is a 0-cell or a 1-cell. Conversely, if the attaehtris a cell then it is connected.

Proof of (iv) & (iv'), (V'), (vi"). If G is collapsible, then from Property 2(G) = 1 andG is connected, and
from Prop. 17, it can be collapsed onto a 1-subcompldyy using a decreasing collapse sequence &t
one of its O-cells. Conversely, @ verifiesy(G) = 1, G is connected an@ “\, H with dim(H) = 1 then, from
Property 2(H) = 1 andH is connected, and it is then known thatis collapsible. It follows thaG is also
collapsible.o

B.9 Proof of Theorem 2

The proof of {) easily follows from the definitions. Lddl — G such thatH is a minimal simple set foF.

LetS = ((f.,g.))I ; (t = 1) be a collapse sequence frdfmto F © G, andS’ = {(f/. g, (s= 1) be a
collapse sequence fromto F © H. We obviously havéf/, g/} ; c {f.,g. _, (in particular,s < t). Hence,
by induction from Prop. 19, we can build a new coIIapse seceidrom F to F © G, the firsts free pairs of
which are those o®’. It follows thatF © H \, F © G = (F © H) © (G © H). Hence {{) holds.o0

C A strong connectedness property valid only irff®

As the attachment of the initial cefl of a 2-dimensional minimal simple sBtto this simple set is connected,

it easily follows thatG © fis also connected, but it may happen tBGa® f looses the strong connectedness
property ofG. However, inF3, the space is not “large enough” to enatile® f to become non- strongly
connected. This property of strong connectedness prea&ernean present an algorithmic interest for the de-
velopment of topology-preserving reduction procedureseldaon the detachment of (2-dimensional) minimal
simple sets, and especially for their optimisation in disien 3.

Proposition 20 Let F < F3 be a cubical complex. Let & F be a2-dimensional minimal simple set for F
such thatG*| > 2. Let f = G be the initial cell of G. Then ® fis strongly connected.

Proof LetS be a collapse sequence frdfrto F © G. Let (1, go) be the first free pair 08 containing a facet
of G distinct from the initial facetf (note that €, go) is necessarily the second or the third free paiSpf
Obviously,go € Att(f G) andc; is the unique facet d& © f including go. (The reader may refer to Fig. 12
to “visualise” the adjacency relations between thiedént faces considered in this proof.)
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Fig. 12 Configuration of a 2-dimensional minimal simple set in thgghbourhood of its initial facet (see
text).

- If Att(f, G) = {go}, we setE = ¢;. We haveAtt(f,G) < EC G © f andE is strongly connected.

— Otherwise, from Remark 3Att(f,G) = {go, ho}~ wheregy andhg are two distinct 1-faces including a
same O-face. We s&p = go N ho. The cellct containsgo, then it contains two 1-faces includirsg: go
andg; (o1 ¢ f asct # f). Sincef is the only border face fo& (Prop. 12),g; is not free inG. Then,
there exists another 2-ce} # ¢; of G containingg; (and then dierent fromf). The cellc; containssy
sincesy C g1, and a second 1-fage # g1 including so. We haveg; # go asca # Co._ R

— If g2 = hp, then we seE = {c;, cp}~. Obviously,E is strongly connected an&t(f,G) < EC G © f.

— Otherwise, ag) is not a border face foB, there exists a celi; # ¢; of G containingg; (and then
different fromf). The cellc3 containsg, and thensy, and it follows that there exists a second 1-face
g3 € G including sp. We havegs # do, asgo is a free face folG © f, andgs # g1, otherwise
the cellscz andc; would share two 1-facegz = g1 andgz. The subsef of star(s,G © f)
defined byA = {c1, C2, C3, 9o, 01, G2, 93} is strongly connected. Symmetrically, we can define in
star*(sg, G © f) a strongly connected subd&tcontaining four distinct 1-faces (one of them being
ho). However, star*(sp, F3) contains exactly six 1-faces amd B C star* (s, F3). Consequently,
AN B+ 0andE = (AU B)~ is strongly connected and verifiégt(f, G) < EC GO f.

In all the possible cases, we can build a comgiestrongly connected and verifyingtt( f.G)<ECGof.
Let a,b be two (2-)facets oG © f. As G is strongly connected, there exists a 1-patflom ato b in G.
If fis an element ofr, its predecessor and its successoriare then faces oAtt(f,G), and thus ofE.
Consequently, we can modifyin order to obtain a 1-path fromto bin G © f (it is sufficient to replace in
n all the occurrences of the 2-fadeby a well-chosen 1-path ig). ThenG © f is strongly connecteda

Remark 8 This property is no longer true far= 4 (anda fortiori n > 4). InFF4, the complexG = ({f} U B)~
described hereafter (and illustrated in Fig. 13) is a mitisi@ple set, the initial facet of which i§, and
such thatB™ c {(x,y,zt) | X,¥,zt > 0}. Let C be the image oB by the central symmetry w.r.t. the point
(0,0,0,0). The complex{(f}UBUC)~ is a minimal simple set for a well-chosen complexand is no longer
strongly connected after the detachment of its initial ¢ellim(B~ N C~) = 0).

f ={-1,0} x{0,1} x {0} x {O} ;

)

@ (b) ©

Fig. 13 Different views of the (pure) 2-dimensional minimal simple Get ({f} U B)~ < F* described
in Remark 8. (a) Visualisation of the 1-facesBf. (b) Visualisation of the “missing” 2-faces @ (i.e the
2-facesg such thag® < G while g ¢ G*). (c) Visualisation ofG (B in light grey, f in dark grey).
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oOrPrPropRroW

% {0,1},{0, 1} x {0, 1} x {0} x {0}, {0, 1} x {0} x {0, 1} x {0}, {0, 1} x {1} x {0, 1} x {0}, {1}
, 1} % {0} x {1} x {0, 1}, {0} x {0, 1} x {1} x {0, 1}, {0, 1} x {1} x {1} x {0, 1}, {0} x {0, 1} x {1}
L 2% {1}, {0, 1} x {1} x {1, 2} x {1}, {0, 1} % {0, 1} x {2} x {1}, {2} x {0, 1} x {1} x{1, 2}, {1, 2}
{1,2} x{0,1} x {1} x {1},{1, 2} x {0, 1} x {2} x {1},{2} x {1,2} x {1} x {1,2}, {1} x {1, 2}
} X {2} x {1,2} x {1},{1, 2} x {1, 2} x {2} x {1}, {2} x {1, 2} x {0} x {1,1},{1,2} X {1} x {0,1
0,1} x{1},{1,2} x{1,2} x {0} x{1,2} x {0} x {1, 1}, {0, 1} x {1, 2} x {0} x { 1,{0,1
,01} {2 x{0, 1} x {1},{0, 1} x {1} x {0} x {0, 1}, {0} x {1} x {0, 1} x {0, 1}, {1} x {0, 1} x {0
X {1,1},{0} x {0} x {0, 1} x {0, 1}, {0, 1} x {0} x {0} x {0, 1},{0, 1} x { }><{0 Ix{1
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