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An introduction to simple sets

Nicolas Passata,∗, Loı̈c Mazoa

aUniversité de Strasbourg, LSIIT, UMR CNRS 7005, France

Abstract

Preserving topological properties of objects during thinning procedures is an important is-
sue in the field of image analysis. In this context, we presentan introductory study of the
new notion ofsimple setwhich extends the classical notion of simple point. Similarly to
simple points, simple sets have the property that the homotopy type of the object in which
they lie is not changed when such sets are removed. Simple sets are studied in the frame-
work of cubical complexes which enables, in particular, to model the topology inZn. The
main contributions of this article are: a justification of the study of simple sets (motivated
by the limitations of simple points); a definition of simple sets and of a sub-family of them
calledminimal simple sets; the presentation of general properties of (minimal) simple sets
in n-D spaces, and of more specific properties related to “small dimensions” (these proper-
ties being devoted to be further involved in studies of simple sets in 2, 3 and 4-D spaces).

Key words: Discrete topology, homotopy type preservation, simple sets, cubical
complexes,n-D spaces.

1 Introduction

Topological properties are fundamental in many applications of image analysis, in
particular in research fields where the retrieval and/or preservation of topology of
real complex structures is required.

Topology-preserving operators, like homotopic skeletonisation, are used to trans-
form an object while leaving unchanged its topological characteristics. In discrete
grids (Z2, Z3, or Z4), such transformations can be defined and efficiently imple-
mented thanks to the notion ofsimple point(Kong and Rosenfeld (1989); Bertrand
(1994); Couprie and Bertrand (2009)): intuitively, a pointof an object is called
simple if it can be deleted from this object without alteringits topology. A typical
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topology-preserving transformation based on simple points deletion, that we call
guided homotopic thinning(Davies and Plummer (1981); Couprie et al. (2007)),
may be described as follows. The input data consists of a setX of points in the grid
(called object), and a subsetK ⊂ X (called constraint set). LetX0 = X. At each
iteration i, choose a simple pointxi ∈ Xi \ K according to some criterion (e.g., a
priority function) and setXi+1 = Xi \ {xi}. Continue until reaching a stepn such
that no simple point forXn remains inXn \ K. We call the result of this process a
homotopic skeleton of X constrained by K. Notice that, since several points may
have the same priority, there may exist several homotopic skeletons for a given pair
(X,K).

The most common example of priority function for the choice of xi is a distance
map which associates to each point ofX its distance from the boundary ofX. In
this case, the points which are closest to the boundary are chosen first, resulting in a
skeleton which is “centered” in the original object. In someparticular applications,
the priority function may be obtained through a grey-scale image, for example when
the goal is to segment objects in this image while respectingtopological constraints
(Dokládal et al. (1999)). In the latter case, the order in which points are considered
does not rely on geometrical properties, and may be affected by noise.

One drawback of thinning algorithms that work in the manner we have described is
that the final setXn is not always minimal (Passat et al. (2005)). The problem here
is that even thoughXn contains no simple point outside the constraint setK, it is
still possible forXn \ K to include non-empty subsetsD which have the property
thatXn can be “deformed”, in a sense that will be made precise in Definition 7, onto
the smaller setXn \ D (so thatXn is “homotopy equivalent” in a discrete sense to
Xn \ D). A subsetD that has this property will be called asimple set(for Xn). An
example of such a set is depicted in Fig. 1; ifXn is the 3-D set shown in that figure,
then the setD ⊂ Xn (in light grey) is simple forXn.

One way to address this problem would be to try to further reduce the setXn by
finding and deleting some subsetD of Xn \ K that is simple forXn. To put this idea
into practice, we need good ways of finding sets inXn \ K that are simple forXn.

Fig. 1. A setXn composed of 32 points (considered in 26-adjacency, see alsoFigs. 3(a)
and 4(a)), which does not contain any simple point, but whichincludes a subsetD (in light
grey), whose removal fromXn provides a setXn \ D “homotopy equivalent” in a discrete
sense toXn. In particular, it is possible to further reduceXn \D to a single point by iterative
removal of simple points.

We are, in particular, interested by simple sets which areminimal, in the sense that
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they do not strictly include any other simple set, since it issufficient to detect such
sets in order to carry on thinning. Also, we can hope that suchminimal simple sets
(i) have a specific structure which could make them easier to analyse, and (ii ) are
sufficient to deal with the whole problem of simple set removal.

The sequel of this article is organised as follows. In Section 2, we propose a discus-
sion on “topological artifacts” which may appear in discrete images, especially dur-
ing topology-preserving reduction procedures (generallybased on simple points).
This discussion leads to define the notion of simple set whichprovides a way to
“break” some of these artifacts, and then enables to improvethe efficiency of re-
duction procedures. In Section 3, the framework of cubical complexes is described.
Indeed, we propose to study simple sets in this framework, from which we can re-
trieve the classical notions of digital topology inZn, but which also enables to deal
with more general categories of cubical objects. Section 4 presents the main notions
of topology preservation in cubical spaces and formally introduces the definitions
of simple sets and minimal simple sets. General properties of such sets (valid in
any dimension) are proposed and proved in Section 5, while more specific ones,
devoted to “low dimensions” are proposed and proved in Section 6. Discussions
and perspectives regarding further works on simple sets areprovided in Section 7.

2 Why are simple sets useful?

2.1 Topological artifacts: the notion of lump

Let us consider the guided homotopic thinning procedure described in Section 1.
When performing such a procedure, the result is expected to fulfil a property of
minimality. This is indeed the case since the resultXn is minimal in the sense that
it contains no simple point outside ofK. However, we could formulate a stronger
minimality requirement, which seems natural for this kind of transformation: infor-
mally, the resultXn should not strictly include any subsetY which is “topologically
equivalent” toX, and such thatK ⊆ Y ⊂ Xn. We say that a homotopic skeleton of
X constrained byK is globally minimalif it fulfils this condition.

Now, a fundamental question arises: is any homotopic skeleton globally minimal?
Let us illustrate this problem in dimensions 2 and 3. InZ2, consider a full rectangle
X of any size, and the constraint setK = ∅. Obviously, this objectX is topologically
equivalent to a single point, thus only homotopic skeletonswhich are singletons
are globally minimal. Rosenfeld (1970) proved that any homotopic skeleton ofX is
indeed reduced to a single point.

However, in dimensionsn ≥ 3, this property does not hold: ifX is e.g.a full k×k×k
cube (k ≥ 5), we may find a homotopic skeleton ofX, with empty constraint set,
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which is not reduced to a single point (see Fig. 1). A classical counter-example is
the Bing’s house with two rooms (Bing (1964)), illustrated in Fig. 2. One can enter
the lower room of the house by the chimney passing through theupper room, and
vice versa. A discrete versionX1 of the Bing’s house is displayed in Fig. 5(a). It can
be seen that the Bing’s house can be carved from a full cube by iterative removal
of simple points. It can also be seen thatX1 contains no simple point: deleting any
point fromX1 would create a “tunnel”.

Fig. 2. A Bing’s house with two rooms visualised as a 2-D surface inR3 (see text).

It could be argued that objects like Bing’s houses are unlikely to appear while pro-
cessing real (noisy) images, because of their complex shapeand their size. How-
ever, Passat et al. (2007) found that there exists a large class of objects (of any
topology) presenting similar properties, some of them being quite small (see Figs. 3
and 4). Such objects will be calledlumpsand can be defined, as follows, thanks to
the notion of simple-equivalence.

Definition 1 Let n≥ 1. Let X,X′ ⊂ Zn. We say that X and X′ aresimple-equivalent
if there exists a sequence of sets〈Xi〉

t
i=0 (t ≥ 0) such that X0 = X, Xt = X′, and for

all i ∈ [1, t], we have either:
(i) Xi = Xi−1 \ {xi}, where xi ∈ Xi−1 is a simple point for Xi−1; or
(ii ) Xi−1 = Xi \ {xi}, where xi ∈ Xi is a simple point for Xi.

Definition 2 Let n≥ 1. Let X′ ⊂ X ⊂ Zn such that X and X′ are simple-equivalent.
If X does not contain any simple point outside X′, then we say that X is alump
relative toX′, or simply alump.

Note that the definition of lumps is proposed here inZn. In the next sections, we
will propose a definition of lumps in the framework of cubicalcomplexes. Once
introduced the basic notions on cubical complexes (Section3), this new definition
will generalise the current one.

Motivated by these considerations, mainly illustrated in 3-D, but still valid inn-D,
two questions arise: is it possible to detect when a thinningprocedure gets stuck on
a lump, and then, is it possible to find a way towards a globallyminimal homotopic
skeleton? For performing the latter task, a solution consists in identifying a subset
of X which can be removed without changing topology: we will callsuch a subset
asimple set.
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(a) (b)

(c) (d)

(e)

Fig. 3. Examples of 3-D lumpsLi ((a-e):L1 to L5), considered in 26-adjacency. Topologi-
cally equivalent subsets are depicted in light grey. The setLi (i = 1 to 5) hasi − 1 tunnel(s).

(a)

(b)

(c)

(d)

(e)

Fig. 4. 2-D visualisation of the successive planar slices ofthe lumpsLi of Fig. 3. (a-e):L1

to L5 (in black).
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2.2 Simple sets

Intuitively, a simple set can be defined as a subsetY of an objectX whose removal
from X “does not alter the topology ofX”. Following this intuitive and informal
definition, the setsYi ⊂ Xi (see Figs. 5–7) are simple for the set in which they lie
(in particular,Xi andXi \ Yi are simple-equivalent).

However, among these sets, we may distinguish two categories: the setsY3,Y4, and
Y5 (see Fig. 7) are different from the setsY1 andY2 (see Figs. 5 and 6) since the
removal of the first ones can be obtained bymonotonicallyreducing the object (in
a “continuous-like” fashion which will be detailed in Definition 7), while the re-
moval of the other ones is necessarily the result of anon-monotonic(i.e. reduction
andgrowing) procedure: these two simple sets are defined as the result of the sub-
traction of the final and initial (simple-equivalent) objects.

From now on, we will only callsimple seta set corresponding to the first cate-
gory. This is justified by two arguments: (i) such sets are defined from a monotonic
transformation (with respect to the inclusion relation), which is consistent with the
general use of topology-preserving operations, that generally consist of reduction
or (dual) growing processes, and (ii ) by definition such objects may be locally char-
acterised (such local characterisations being generally impossible for the sets of the
second category1 ), which provides a real interest for their involvement in the de-
velopment of efficient topology-preserving procedures.

Let us now consider the simple setsYi (i ∈ [3, 5]) of Fig. 7. The setY3 is obviously
composed of two pointsx andy being both simple forX3−5. The removal ofx (resp.
y) from X3−5 then does not alter its topology. Moreover, this is also truefor the
iterative (or parallel) removal ofx andy from X3−5. Such points, called P-simple
points, have been fully described and characterised by Bertrand (1995). It is easy
to observe that any setY composed of points being P-simple for a setX can be
removed fromX without altering its topology (such a removal corresponding to
the successive removal of the points ofY in any order, and then to a monotonic
reduction ofX), thus is a simple set forX.

The setY4 is composed of two pointsx andy such thatx is simple forX3−5 while
y is simple forX3−5 \ {x} but not forX3−5. Consequently, the iterative removal of
x and y (in the correct order) fromX3−5 does not alter its topology. Any setY
composed, asY4, of such “successively” simple points for a setX is then a simple
set forX. This subfamily of simple sets has been considered by Ronse (1988), Ma
(1994), Kong (1995) and Gau and Kong (2003) as the basis for the definition of

1 As an example, the singleton setY2, with the same configuration of neighbours, could
appear in an objectX′2 such thatX′2 \ Y2 has not the same topology asX′2. This kind of
configuration has been exposed and analysed by Morgenthaler(1981) and Fourey and Mal-
gouyres (2003).
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(a)

(b)

Fig. 5. (a) A discrete versionX1 of the Bing’s house depicted in Fig. 2, decomposed into
its five planar slices for visualisation. The setX1 (considered in 26-adjacency) is composed
of 135 points. It is topologically equivalent to any singleton {x} ⊂ X1, but does not contain
any simple point. (b) A “simple set”Y1 (in light grey) forX1.

(a) (b)

Fig. 6. (a) A setX2 and a singleton setY2 ⊂ X2 (in light grey) “simple” forX2. (b) The set
X2 \ Y2.

x

y

(a)

x

y

(b)

x

y

(c)

Fig. 7. A setX3−5 including several kinds of simple sets (in light grey). (a) Left: Y3 ⊂ X3−5,
right: X3−5 \ Y3. (b) Left: Y4 ⊂ X3−5, right: X3−5 \ Y4. (c) Left: Y5 ⊂ X3−5, right: X3−5 \ Y5.
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the notion ofminimal non-simple sets(i.e.sets which are not simple while all their
strict subsets are simple). In particular, these simple sets include the ones described
in the previous paragraph.

The setY5 is composed of two pointsx andy which are both non-simple forX3−5

(the removal of eitherx or y from X3−5 would create a “tunnel”). However,Y5 can
be removed fromX3−5 in a monotonic way which corresponds to a reduction ofX3−5

(which will be described latter in the paper, and consistingin iteratively removing
“successive parts” ofx andy until obtainingX3−5\Y5) without altering its topology.
Such a setY5 is then a simple set forX3−5, despite the fact that it does not contain
any simple points. More generally, any subsetY of a setX (composed of simple
and/or non-simple points) which may be removed fromX by successive topology-
preserving “partial removal” of its points is a simple set. Note that sets such asY4

andY3 obviously belong to this category. The notion of simple set described in this
article will be defined in this way, which generalises and extends the simple sets
such as defined by Ronse (1988), Ma (1994), Kong (1995), Gau and Kong (2003)
or by Bertrand (1995), since they may now be composed of simple points but also
of non-simple ones.

It has to be noticed that first works on simple sets have already led to a character-
isation of the ones composed of exactly two non-simple points2 in a space which
modelsZ3, such sets being calledminimal simple pairs(Passat et al. (2008)). Ex-
perimental results (see Passat et al. (2008), Appendix A) have shown that consider-
ing the notion of simple pair (and thus more generally of simple set) could lead to
significant improvements of topology-preserving reduction procedures of discrete
objects.

Moreover, the notion of minimal simple pair provides a counter-example to the
following conjecture proposed by Kong et al. (1990).

Conjecture 3 (Kong et al. (1990), Conjecture 1, p. 383) Suppose X′ ⊆ X are finite
subsets ofZ3 and X is collapsible to X′. Then there are sets X1, X2, . . . , Xn with
X1 = X, Xn = X′ and, for0 < i < n, Xi+1 = Xi \ {xi} where xi is a simple point of Xi.

This result emphasises the fact that simple points are not sufficient to completely
deal with the problem of topology-preserving reduction of discrete images, thus
justifying the study of simple sets.

The purpose of this article is to propose a definition and a preliminary study of
simple sets. Although the motivations exposed in this section have been mainly il-
lustrated in the 3-D case, and especially inZ3 (where the problems linked to the
limitations of simple points have first appeared from experiments), the definitions
and most of the study will be proposed inn-D spaces, and in the framework of

2 All the sets depicted in Fig. 3 include such a simple set. In particular, the setY5 is a
simple set forL1 andL2 (which both includeX3−5).
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cubical complexes. This framework, promoted in particularby Kovalevsky (1989),
enables to modelZn (n ∈ N∗), retrieving the main notions and results of digital
topology (such as the notion of simple point), but also to define more general ob-
jects composed of cubical “parts” of various dimensions andstructured on regular
grids.

3 Cubical complexes

3.1 Basic notions

Intuitively, a cubical complex may be thought of as a set of elements having various
dimensions (e.g.vertices, edges, squares, cubes, etc.) glued together according to
certain rules. We recall in this section some basic definitions on complexes (see
also Bertrand and Couprie (2008)).

Let Z be the set of integers. We consider the families of setsF1
0, F

1
1, such that

F
1
0 = {{a} | a ∈ Z}, F1

1 = {{a, a + 1} | a ∈ Z}. A subsetf of Zn (n ≥ 1) which is
the Cartesian product ofm elements ofF1

1 and (n − m) elements ofF1
0 is called a

faceor anm-faceof Zn, m is thedimensionof f , and we write dim(f ) = m. We
denote byFn the set composed of all faces ofZn. Note that there is a strong link
between thediscretenotion of face introduced here, and thecontinuousone which
is involved in the context of cellular complexes (seee.g.Kong (1997)), where the
setsF1

0, F
1
1 would be “replaced” by their continuous analoguesR1

0 = {[a, a] | a ∈ Z},
R

1
1 = {]a, a + 1[ | a ∈ Z}. This continuous interpretation of the discrete notion

of face is illustrated in Fig. 8, which justifies, in particular, the way to visually
represent faces in the sequel of the article.

x y

z t

(a) (b) (c)

Fig. 8. Discrete and continuous interpretations of the notion of face. (a) Four elements
x = (0, 1), y = (1, 1), z = (0, 0), t = (1, 0) ∈ Z2. (b) The 0-face{y} = {1} × {1}, the 1-face
{x, z} = {0}×{0, 1}, and the 2-face{x, y, z, t} = {0, 1}×{0, 1}. (c) The continuous analogues of
the faces of (b): the 0-face [1, 1]×[1, 1], the 1-face [0, 0]×]0, 1[, and the 2-face ]0, 1[×]0, 1[.

Let f be a face inFn. We set f̂ = {g ∈ Fn | g ⊆ f }, and f̂ ∗ = f̂ \ { f } (see Fig. 9).
Any g ∈ f̂ is a faceof f , and anyg ∈ f̂ ∗ is aproper faceof f . If F is a finite set
of faces ofFn, we write F− =

⋃
f∈F f̂ , F− is theclosureof F (see Fig. 10). We

setstar( f ) = {g ∈ Fn | f ⊆ g}, andstar∗( f ) = star( f ) \ { f }, star( f ) andstar∗( f )
are thestar and theproper star of f, respectively. IfF is a finite set of faces ofFn

and f ∈ F, we setstar( f , F) = star( f ) ∩ F, andstar∗( f , F) = star( f , F) \ { f } (see
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(a) (b) (c)

Fig. 9. (a) Three facesfi (i ∈ [1, 3]) of dimensioni. (b) f̂i . (c) f̂ ∗i . Dots/lines: 0/1-faces; in
light grey: 2-faces; in dark grey: 3-faces.

(a) (b)

Fig. 10. (a) A set of facesF. (b) The closureF− of F.

f

(a) (b)

Fig. 11. (a) A set of facesF. (b) star( f , F), for the 0-facef ∈ F.

(a) (b)

Fig. 12. (a) A complexF. (b) A subcomplexG of F.

(a) (b)

Fig. 13. (a) A complexF. (b) The setF+ ⊆ F of the facets ofF.

(a) (b)

Fig. 14. (a) A complexF. (b) A principal subcomplexH of F.
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Fig. 11).

A set F of faces ofFn is a cell or anm-cell if there exists anm-face f ∈ F, such
thatF = f̂ . Theboundaryof a cell f̂ is the setf̂ ∗.

A finite setF of faces ofFn is acomplex(in Fn) if for any f ∈ F, we havef̂ ⊆ F, i.e.,
if F = F−. Any subsetG of a complexF which is also a complex is asubcomplex
of F (see Fig. 12). IfG is a subcomplex ofF, we writeG � F. If G � F andG , F,
we writeG ≺ F. If F is a complex inFn, we also writeF � Fn.

A face f ∈ F is a facetof F if there is nog ∈ F such thatf ∈ ĝ∗. We denote by
F+ the set composed of all facets ofF (see Fig. 13). Observe that (F+)− = F− and
thus, that (F+)− = F wheneverF is a complex.

If G is a subcomplex ofF, andG+ ⊆ F+, thenG is aprincipal subcomplex of F,
and we writeG ⊑ F (see Fig. 14). IfG ⊑ F andG , F, we writeG ⊏ F.

Thedimensionof a non-empty complexF in Fn is defined by dim(F) = max{dim( f ) |
f ∈ F+}. We say thatF is anm-complexif dim(F) = m. We say thatF is a pure
complexif for all f ∈ F+, we have dim(f ) = dim(F).

3.2 Detachment operation

Definition 4 Let n≥ 1. Let F � Fn be a cubical complex. Let G� F be a subcom-
plex of F. We set F ⊘ G = (F+ \ G+)−. The set F ⊘ G is a complex which is the
detachment ofG from F (see Fig. 15).

Definition 5 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a sub-
complex of F. Theattachment ofG to F is the complex defined by Att(G, F) =
G∩ (F ⊘ G) (see Fig. 16).

4 Simple sets and minimal simple sets

4.1 Topology in cubical complexes

Let F ⊆ Fn be a non-empty set of faces. A sequence (fi)s
i=0 (s ≥ 0) of faces inF is

a path in F (from f0 to fs) if for all i ∈ [0, s− 1], either fi is a face offi+1 or fi+1

is a face offi (with fi , fi+1 ∈ F). We say thatF is connectedif, for any two faces
f , g ∈ F, there is a path inF from f to g. We say thatG is aconnected component
of F if G ⊆ F, G is connected and ifG is maximal for these two properties (i.e., we

11



(a) (b) (c)

Fig. 15. (a) A complexF. (b) A (principal) subcomplexG of F. (c) The detachment ofG
from F.

(a) (b) (c)

Fig. 16. (a) A complexF. (b) A (principal) subcomplexG of F. (c) The attachment
Att(G, F) of G to F.

haveH = G wheneverG ⊆ H ⊆ F andH is connected). We denote byC[F] the set
of all connected components ofF. We setC[∅] = ∅.

Let F � Fn be a cubical complex. TheEuler characteristicof F, writtenχ(F), is
defined byχ(F) =

∑n
i=0(−1)i .νi, whereνi is the number ofi-faces ofF for i ∈ [0, n].

The Euler-Poincaré formula shows a deep link between the Euler characteristic
and the Betti numbers, which are topological invariants defined from the homology
groups3 of a complex.

The Betti numberbi (i ∈ [0, n−1]) of a complexF � Fn is defined as the rank of the
i-th homology group ofF. The Euler-Poincaré formula, in the case of a complex
F � Fn, states thatχ(F) =

∑n−1
i=0 (−1)i .bi.

The Euler characteristic and the Betti numbers are well-known topological invari-
ants. In particular, the collapse operation–defined hereafter–preserves them (Kaczyn-
ski et al. (2004)).

4.2 Collapsing

Collapsing is a topological operation on complexes that preserves the homotopy
type.

Definition 6 Let n ≥ 1. Let F � Fn be a cubical complex. Let f∈ F+. If g ∈ f̂ ∗

is such that f is the only face of F which strictly includes g, then we say that g
is a free face, that f is aborder face, and that the pair( f , g) is a free pair forF

3 An introduction to homology theory can be founde.g.in Giblin (1981).
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(see Fig. 17). If( f , g) is a free pair for F, the complex F\ { f , g} is anelementary
collapse ofF.

Note that if (f , g) is a free pair, then dim(g) = dim( f ) − 1.

(a) (b) (c)

Fig. 17. (a) A complexF. (b) The border faces ofF. (c) The free faces ofF. Any pair (f , g)
such thatf is in (b) andg ⊂ f is in (c) is a free pair forF.

Definition 7 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a sub-
complex of F. We say that Fcollapses ontoG, and we note Fց G, if there exists
a sequence of complexes〈Fi〉

t
i=0 (t ≥ 0) such that F0 = F, Ft = G, and Fi is an

elementary collapse of Fi−1 for all i ∈ [1, t]. The sequence〈Fi〉
t
i=0 is a collapse se-

quence fromF to G (see Fig. 18). Generally, we will also call collapse sequence
from F to G, the sequence〈( fi, gi)〉ti=1 of free pairs verifying Fi = Fi−1 \ { fi, gi} for
all i ∈ [1, t].

(a) (b)

(c) (d)

Fig. 18. From (a) to (d): a collapse sequence fromF to a subcomplexK � F.

Remark 8 The collapse operation, defined by Whitehead (1938), is a classical no-
tion in combinatorial topology. It can be seen as a discrete counterpart of a defor-
mation retraction defined on “continuous” complexes (see Fig. 19). It was intro-
duced in the field of image (analysis and) processing by Kong (1997) in order to
establish a link between the notions of simple point and continuous deformation.

(a) (b) (c) (d)

Fig. 19. (a) A (2-)complexF. (d) An elementary collapseG of F. (a-d) Some steps of the
“continuous” deformation retraction implicitly associated to this elementary collapse.
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4.3 Simple cells and lumps

Intuitively a cell G � F is called simple if there is a topology-preserving defor-
mation of F over itself onto the relative complement ofG in F. The following
definition of simple cells, based on the collapse operation,can be seen as a discrete
counterpart of the one given by Kong (1997).

Definition 9 Let n≥ 1. Let F � Fn be a cubical complex. Let f∈ F be a face of F.
The cell f̂ is a simple cell for F if Fց F ⊘ f̂ .

From the notion of simple cell, it is now possible to define thenotion of simple-
equivalence, and then the notion oflump in the framework of cubical complexes.

Definition 10 Let n≥ 1. Let F, F′ � Fn be two cubical complexes. We say that F
and F′ aresimple-equivalentif there exists a sequence of complexes〈Fi〉

t
i=0 (t ≥ 0)

such that F0 = F, Ft = F′, and for any i∈ [1, t], we have either:
(i) Fi = Fi−1 ⊘ Hi, where Hi � Fi−1 is a simple cell for Fi−1; or
(ii ) Fi−1 = Fi ⊘ Hi, where Hi � Fi is a simple cell for Fi.

The simple-equivalence enables to establish a notion of topology preservation which
is not only based on monotonic deformations,i.e. on reductions or growings based
on simple cells (generally considered for applicative purpose (Dokládal et al. (1999);
Passat et al. (2005))), but also on non-monotonic ones. Two objects which are
simple-equivalent (seee.g. the objects of Figs. 6(a) and (b)) can be obtained by
both removal and addition of simple cells during the deformation process. Conse-
quently, their topologies are similar since the homotopy type of two intermediate
objects generated during the deformation process is the same. In particular, it may
happen that an objectF and one of its strict subsetsG are simple-equivalent while
there is no way to obtainG from F by successively removing simple cells (seee.g.
the complexes depicted in Fig. 3). Such objectsF are called lumps.

Definition 11 Let n ≥ 1. Let F � Fn be a cubical complex. Let F′ � F be a
subcomplex of F such that F and F′ are simple-equivalent. If F does not include
any principal simple cell outside F′, then we say that F is alump relative toF′, or
simply alump.

As stated in Section 2, a lumpF relative toF′, although not including any simple
cell which can be detached to provide a monotonic reduction strictly converging
ontoF′, may however include some subsets which can be detached in such a way.
Suchsimple sets, defined in the next section, then enable to develop monotonic (and
then algorithmically tractable) reduction processes which can be more efficient than
those only based on simple cells (since they can “break” somelumps).
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4.4 Simple sets

Definition 9 proposed for simple cells naturally extends to subcomplexesG � F
which contain an arbitrary number of facets, leading to the notion ofsimple set.

Definition 12 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a
subcomplex of F. We say that G issimple forF if F ց F ⊘ G. Such a subcomplex
G is called asimple subcomplex ofF or a simple set forF.

Note that the notion of attachment leads to the following local characterisation of
simple sets.

Proposition 13 (Bertrand (2007)) Let n ≥ 1. Let F � Fn be a cubical complex.
Let G � F be a subcomplex of F. The complex G is simple for F if and only if
Gց Att(G, F).

The following notion ofremovable setenables to model the part of a complex
which is effectively deleted during a collapse sequence.

Definition 14 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊆ F be a subset of
F. We say that G isremovable forF, or that G is aremovable set forF, if F \G � F
and Fց F \G.

This notion is strongly related to the one of simple set, since a simple set can be
partitioned into two subsets: its attachment and itsremovable part. More formally,
we have the following property, which directly derives fromthe definitions.

Property 15 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a sub-
complex of F. Then, G is simple for F if and only if G\ Att(G, F) is removable for
F.

Definition 16 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a
subcomplex of F. We say that G istrivially simple forF, or that G is atrivial simple
set forF, if G is simple for F while its removable part is empty (i.e.G\Att(G, F) =
∅).

Remark 17 If G is a trivial simple set for F, then F ⊘ G = F. As such sets do
not present a real interest from an algorithmic point of view, from now on, we will
always implicitly consider that a simple set G for F is non-trivial. Note that in this
context, a simple cell for F is necessarily aprincipalcell of F.

We introduce now the notion ofminimal simple set.

Definition 18 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a
subcomplex of F. The complex G is aminimal simple subcomplex of(or a minimal
simple set for) F if G is a (non-trivial) simple set for F and G is minimal (with
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respect to�) for this property (i.e. ∀H � G, H is (non-trivially) simple for F
⇒ H = G).

The notion of minimal simple set may be useful from both theoretical and algorith-
mic points of view since (i) the existence of a simple set necessarily implies the
existence of at least one minimal simple set, and (ii ) by definition, a minimal sim-
ple set is necessarily easier (or, at least, not harder) to characterise than a “general”
simple set. In particular, we can hope that in several cases (depending on the di-
mension(s) ofFn and/or of F, for example), the study of minimal simple sets could
be sufficient to deal with the problem of detachingall simple sets from a complex
(an example of this assertion will be founde.g.in Mazo and Passat (2009)).

5 General properties of simple sets

In this section, we present and prove some properties of simple and minimal sim-
ple sets valid in any dimensionn ≥ 1. We first consider “global” properties related
to their principalness with respect to their superset (Section 5.1), to their remov-
able part (Section 5.2), to their attachment (Section 5.3) and to their connectedness
(Section 5.4). More “local” properties dealing with 0-D configurations of their at-
tachment (Section 5.5) are then considered.

The purpose of Sections 5 and 6 is in particular to obtain a description as accurate
as possible of (minimal) simple sets, enabling to further derive characterisations
of subfamilies of such sets, and more generally to improve the algorithmic cost of
their detection and removal.

5.1 Principalness

Proposition 19 (which is illustrated in Fig. 20) implies that, from an algorithmic
point of view, the study of the simple sets of a complex can be restricted to the fam-
ily of its principal subcomplexes, thus leading to a strong decrease of the number
of potential simple sets to consider. In particular, minimal simple sets are principal
subcomplexes, as stated in Proposition 20.

Proposition 19 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a
simple set for F. Let H� G be the maximal (with respect to�) subcomplex of G
verifying H⊑ F (i.e.∀K � G,K ⊑ F ⇒ K ⊑ H). Then H is a simple set for F and
F ⊘ H = F ⊘ G.

Proof Let H = (G+∩F+)− � G. By construction, we haveH , ∅ (asG is not trivial,
see Remark 17),H ⊑ F andH is the maximal (with respect to�) subcomplex ofG
for this property. Moreover, we haveF ⊘ H = (F+ \ H+)− = (F+ \ (G+ ∩ F+))− =
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(F+ \ G+)− = F ⊘ G. Finally, it comesF ց F ⊘ G = F ⊘ H, andH is then a
simple set forF. �

(a) (b) (c) (d)

Fig. 20. (a) A 3-complexF. (b) A simple setG � F of F. (c) The maximal (with respect to
�) subcomplexH of G verifying H ⊑ F; H is a simple set forF. (d) The detachment ofH
from F, which is equal to the detachment ofG from F (see Proposition 19).

Proposition 20 Let n ≥ 1. Let F � Fn be a cubical complex. Let G� F be a
minimal simple set for F. Then G⊑ F.

Proof SinceG is a simple set forF, from Proposition 19, there existsH � G such
thatH ⊑ F andH is a simple set forF. The minimality ofG implies thatH = G.
Then,G ⊑ F. �

Remark 21 From now on, the simple sets of a complex F will be considered among
the complexes G⊑ F. Moreover, if G is a simple set for F, then we obviously have
F ⊘ G , ∅, i.e.G+ ⊂ F+, and thus, G≺ F. Based on these considerations, given a
complex F� Fn, we will only consider simple sets G of F which verify(∅ ⊏)G ⊏ F.

5.2 Removable part

The following two propositions, related to the connectedness properties of the re-
movable part of simple sets, will be essentially used to establish the results of Sec-
tions 5.3 and 5.4.

Proposition 22 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F. Let Gr = G \ Att(G, F) be the removable part of G. Let Hr ⊆ Gr be a
connected component of Gr . If Hr , Gr (i.e. if Hr ⊂ Gr), then:

(i) H = H−r ⊏ G ⊏ F is a simple set for F;
(ii) G ⊘ H is a simple set for F ⊘ H.

Proof Let us suppose thatHr , Gr . Let 〈( fi, gi)〉ti=1 (t ≥ 2) be a collapse sequence
from F to F ⊘ G. Let j ∈ [2, t] such thatf j ∈ Hr and f j−1 < Hr , if such faces exist.
As Hr is a connected component ofGr , we also haveg j ∈ Hr while g j−1 < Hr . The
pairs (f j−1, g j−1) and (f j, g j) can then obviously be exchanged, providing another
valid collapse sequence fromF to F ⊘ G. We can then inductively build a new
collapse sequence〈( fi , gi)〉ti=1 verifying fi < Hr ⇒ fi+1 < Hr for all i ∈ [1, t−1]. Let
α = max{i ∈ [1, t] | fi ∈ Hr }. By definition of〈( fi, gi)〉ti=1 andα, we havefi ∈ Hr

for all i ∈ [1, α] while fi < Hr for all i ∈ [α + 1, t]. Moreover, for the same reason
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as previously, we havegi ∈ Hr for all i ∈ [1, α] while gi < Hr for all i ∈ [α + 1, t].
SinceHr ⊆ { fi, gi}

t
i=1, we then haveHr = { fi, gi}

α
i=1. The sequence〈( fi, gi)〉αi=1 is then

a collapse sequence fromF to F \ Hr . Let H = H−r . SinceHr(, Gr) is a connected
component ofGr = G \ Att(G, F) whereG ⊏ F is a simple set forF, we have in
particularH ⊏ G ⊏ F. Moreover,Hr = H \ Att(H, F), and then,F \ Hr = F ⊘ H.
Consequently, we haveF ց F ⊘ H, i.e. H ⊏ F is a simple set forF. By definition,
〈( fi , gi)〉ti=α+1 is a collapse sequence fromF ⊘ H to F ⊘ G. As H ⊏ G ⊏ F, we
haveG ⊘ H ⊏ F ⊘ H, andF ⊘ G = (F ⊘ H) ⊘ (G ⊘ H). Then, we finally obtain
F ⊘ H ց (F ⊘ H) ⊘ (G ⊘ H), i.e. G ⊘ H is a simple set forF ⊘ H. �

From Proposition 22, we immediately derive the following proposition.

Proposition 23 Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a
minimal simple set for F. Let Gr = G \ Att(G, F) be the removable part of G. Then,
Gr is connected.

5.3 Attachment

Proposition 24 (which is illustrated in Fig. 21(a-e)) enables to restrict the research
of simple sets and authorises in particular the developmentof region-growing (and
possibly parallel) strategies.

Proposition 24 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F. Let H⊏ G be a strict principal subcomplex of G. If Att(H, F) ⊆ Att(G, F),
then:

(i) H is a simple set for F;
(ii) G ⊘ H is a simple set for F ⊘ H.

Proof Let Gr = G \ Att(G, F) be the removable part ofG. Let Hr = H \ Att(H, F).
Let Kr be a connected component ofHr , in particular, we haveKr ⊆ Gr . As Kr is
connected, it is included in a connected component ofGr . Let K = K−r . We have
Att(K, F) ⊆ Att(H, F) ⊆ Att(G, F), thenKr is necessarily a connected component
of Gr . SinceAtt(H, F) ⊆ Att(G, F), we haveHr ⊆ Gr , and asH ⊏ G, we obtain
Hr , Gr . Then, from Proposition 22,K ⊏ G ⊏ F is a simple set forF, and
G ⊘ K is a simple set forF ⊘ K. If H = K, then the result holds. Otherwise,
sinceH ⊘ K ⊏ G ⊘ K, the result easily follows by induction on the connected
components ofHr . �
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(a) (b)

(c) (d) (e)

(f) (g)

Fig. 21. (a) A complexF and a simple setG ⊏ F (in dark grey). (b) The detachment ofG
from F. (c-e) Three strict principal subcomplexesH of G such thatAtt(H, F) ⊆ Att(G, F)
(in dark grey). (f,g) The two connected componentsH of G (in dark grey). The detachment
of G from F (b) can be obtained fromF (a) by detaching the subcomplexesH of (c-e)
(resp. the subcomplexesH of (f,g)) in any order or in parallel (see Proposition 24 (resp.
Proposition 25)).

5.4 Connectedness

Proposition 25 (which is illustrated in Fig. 21(a,f-g)) is aspecific case of Propo-
sition 24. It establishes the connectedness of the simple sets which have to be
searched to enable the removal of all of them. This proposition, weaker than Propo-
sitions 22 and 24, is however more easily usable for the definition of region-growing
strategies.

Proposition 25 Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a
non-connected simple set for F. Let H⊏ G be a connected component of G. Then:

(i) H is a simple set for F;
(ii) G ⊘ H is a simple set for F ⊘ H.

The next proposition derives from Proposition 25. It is alsoa direct consequence of
Proposition 23.

Proposition 26 Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a
minimal simple set for F. Then G is connected.

Since the collapse operation does not alter the connectedness of complexes, we
derive from Propositions 13 and 26 the following result.

Proposition 27 Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a
minimal simple set for F. Then Att(G, F) is connected.
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Remark 28 More generally, as the collapse operation does not alter theBetti num-
bers of a complex, the Betti numbers of G⊏ F and Att(G, F) are equal if G is a
simple (anda fortiori a minimal simple) set for F.

5.5 The case of0-D attachments

The following lemma will be necessary to prove Proposition 30.

Lemma 29 Let n≥ 1. Let F � Fn be a cubical complex. Let h∈ F be a0-face and
C be a connected component of star∗(h, F). Let 〈( fi, gi)〉ti=1 (t ≥ 1) be a collapse
sequence for F. If there exists a pathπ = (pi)k

i=0 (k ≥ 5) in F such that p0 = pk = h,
p1 ∈ C, pk−1 < C and pi < star(h, F) for all i ∈ [2, k − 2], then there exists a path
π′ = (qi)l

i=0 (l ≥ 5) in F \
⋃t

i=1{ fi, gi} such that q0 = ql = h, q1 ∈ C, ql−1 < C, and
qi < star(h, F) for all i ∈ [2, l − 2].

Proof Without loss of generality, we can assume thatπ is such that max{dim(pi) |
i ∈ [0, k]} = 1, and all the 1-faces ofπ are distinct (remember thatp1 ∈ C and
pk−1 < C). If {pi}

k
i=0 ∩ { f1, g1} = ∅, we setπ′ = π. Otherwise, since by our previous

assumption,π has no free 0-face inF, there exists a 1-facepα (α ∈ [1, k− 1]) of π
such thatg1 = pα. We can clearly replacepα in π by a sequenceσ of the 5 faces of
f̂ ∗1 \ {pα−1, pα, pα+1} (in the correct order) to obtain a new pathπ′ = (qi)t+4

i=1 = (qi)l
i=1

in F \ { f1, g1} from h to h. Note that the first (resp. last) 1-faceqα (resp.qα+4) of σ
belongs to the same connected component ofstar∗(pα−1, F) (resp.star∗(pα+1, F))
(pα−1, pα+1 are 0-faces) asf1 and two 1-faces ofσ surrounding a 0-faceg of σ
belong to the same connected component ofstar∗(g, F). Hence, it is easy to check
thatq1 ∈ C andql−1 < C, and if a 0-faceq j ( j ∈ [4, t]) of π is equal toh, one of the
two paths (qi)

j
i=1, (qi)t+4

i= j verifies all the required properties (otherwise, (qi)t+4
i=1 verifies

the same required properties). As the connected component of star∗(h, F \ { f1, g1})
containingq1 is included inC, the result follows by induction.�

Proposition 30 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F. Let f ∈ G be a0-face of G such that star∗( f , F) is not connected, and
C[star∗( f , F)] ∩C[star∗( f ,G)] , ∅ (see Fig. 22(d,g,h)). Then:

(i) ∃Hr ∈ C[G \ { f }] such that Hr ∩ Att(G, F) = ∅;
(ii) ∀Hr ∈ C[G \ { f }] such that Hr ∩ Att(G, F) = ∅, we have:

(a) Hr ∩ star∗( f , F) ∈ C[star∗( f , F)];
(b) Hr ∩ star∗( f , F) ∈ C[star∗( f ,G)].

Proof The proof is proposed forF andG connected. It straightforwardly extends
to F and/or G non-connected (see Proposition 25) by considering the connected
components ofF andG containingf .
Proof of(i). Let A ∈ C[star∗( f , F)] ∩C[star∗( f ,G)]. Let Hr ∈ C[F \ { f }] such that
A ⊂ Hr . SinceF ց F ⊘ G, we deduce thatHr ∩ star∗( f , F) = Hr ∩ star∗( f ,G) = A
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(otherwise, by Lemma 29, we would have a path inF ⊘ G including a face of A).
If Hr ∩ Att(G, F) = ∅, then we haveHr ∈ C[G \ { f }], and we are done. Let us now
suppose thatHr∩Att(G, F) , ∅. As the collapse operation preserves connectedness,
and sinceG is connected,Att(G, F) is also connected. Then, we haveAtt(G, F) ⊂
Hr (otherwise,f ∈ Att(G, F), and thenA∩ Att(G, F) , ∅, in contradiction with the
fact thatA ∈ C[star∗( f , F)]∩C[star∗( f ,G)]). Consequently, it comesf < Att(G, F),
and asstar∗( f , F) is not connected, there existsB ∈ C[star∗( f , F)]∩C[star∗( f ,G)],
with B , A. Let H′r ∈ C[F \ { f }] such thatB ⊂ H′r . As H′r ∩ Hr = ∅, we have
H′r ∩ Att(G, F) = ∅ andH′r ∈ C[G \ { f }]. Hence (i) holds.
Proof of (ii ). Let Hr ∈ C[G \ { f }] such thatHr ∩ Att(G, F) = ∅. Let H = H−r =
Hr ∪ { f }. If star∗( f ,H) is not connected, then from Lemma 29, we deduce that
Hr ∩ (F ⊘ G) , ∅, in contradiction with the fact thatHr ∩ Att(G, F) = ∅. �

Proposition 31 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F. Let f ∈ G be a0-face of G such that star∗( f , F) is not connected, and
C[star∗( f , F)]∩C[star∗( f ,G)] , ∅. Let Hr ∈ C[G\{ f }] such that Hr∩Att(G, F) = ∅.
Then:

(i) H = H−r ⊑ G ⊏ F is a simple set for F;
(ii) Att(H, F) = f̂ ;
(iii) if H , G, then G ⊘ H is a simple set for F ⊘ H.

Proof The proof is proposed forF andG connected. It straightforwardly extends
to F and/or G non-connected (see Proposition 25) by considering the connected
components ofF andG containing f . Note that from Proposition 30,Hr exists.
Let H = H−r = Hr ∪ { f }, we have in particularH ⊑ G ⊏ F andAtt(H, F) = f̂ .
If f ∈ Att(G, F), the result follows from Proposition 22. We now suppose that
f < Att(G, F). Let 〈( fi , gi)〉ti=1 (t ≥ 1) be a collapse sequence fromF to F ⊘ G. Let
α ∈ [1, t] be such thatgα = f . Note that for alli ∈ [1, α − 1], sinceAtt(H, F) = { f },
we have eitherfi, gi ∈ Hr or fi , gi < Hr . Let j ∈ [2, α − 1] be such thatf j , g j ∈ Hr

while f j−1, g j−1 < Hr , if such faces exist. The pairs (f j−1, g j−1), ( f j , g j) can then be
exchanged, providing another valid collapse sequence fromF to F ⊘ G. Moreover,
as G \ Hr is connected, and as the collapse operation preserves connectedness,
(G\Hr) \ { fi, gi}

α−1
i=1 is connected, and then, we cannot havefα ∈ Hr (otherwise, (G\

Hr)\ { fi , gi}
α−1
i=1 = { f }: contradiction). AsH is connected, we also haveH \ { fi, gi}

α−1
i=1

connected, and then,H \ { fi, gi}
α−1
i=1 = { f }, then for alli ∈ [α, t], we havefi, gi < Hr .

It is then possible to inductively build a new collapse sequence〈( fi , gi)〉ti=1 verifying
fi < Hr ⇒ fi+1 < Hr for all i ∈ [1, t − 1]. Let β = max{i ∈ [1, t] | fi ∈ Hr }. Then,
we have{ fi, gi}

β

i=1 = Hr , in particular,H \ { fi, gi}
β

i=1 = { f }, and〈( fi , gi)〉
β

i=1 is then a
collapse sequence fromH ⊑ G ⊏ F to { f } = Att(H, F). Consequently,H is a simple
set forF. Moreover, ifH , G, we have∅ , G ⊘ H ⊏ F ⊘ H, and〈( fi , gi)〉ti=β+1 is a
collapse sequence fromF ⊘ H to F ⊘ G = (F ⊘ H) ⊘ (G ⊘ H). Hence the result
holds.�

Remark 32 Propositions 30 and 31 (which are illustrated in Fig. 22) enable to re-
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strict the research of simple sets to those which do not present any “isthmuses” (i.e.
0-faces satisfying the hypothesis of f in Propositions 30 and31). For instance, the
face f is (resp. is not) such an isthmus in Fig. 22(g,h) (resp.Fig. 22(d)). Proposi-
tions 31 establishes, in particular, that any simple set G ofa complex F can be fully
detached from F by iterative (and non-deterministic) detachment of its principal
subcomplexes attached to F by such an isthmus.

The following proposition immediately derives from Propositions 30 and 31.

Proposition 33 Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a
minimal simple set for F. Then, there exists at most one0-face f ∈ G such that
star∗( f , F) is not connected and C[star∗( f , F)] ∩ C[star∗( f ,G)] , ∅. If f exists,
then we have Att(G, F) = { f }, and star∗( f ,G) is connected.

6 Properties of simple sets related to dimensions0 and 1

From the previous section, we can derive some properties related to 0-D and 1-D
structures of simple and minimal simple sets inFn.

6.1 0-D properties

The first proposition is elementary.

Proposition 34 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
cell for F. Then,dim(G) > 0.

Based on this result and on the propositions of Section 5, we can prove the non-
existence of 0-facets in simple sets, and then the non-existence of 0-D simple sets.

Proposition 35 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F. Let f∈ G+ be a facet of G. Thendim( f ) > 0.

Proof If dim( f ) = 0, then the cellf̂ is a connected component ofG. Proposition 25
then implies thatf̂ is simple forF, in contradiction with Proposition 34.�

The following result is an easy consequence of Proposition 35

Proposition 36 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F. Then,dim(G) > 0.
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Fig. 22. (a) A complexF and a 0-facef ∈ F such thatstar∗(F, f ) is not connected. (b)
star∗(F, f ) ∪ { f }. (c) star∗(F, f ), composed of three connected components. (d) In dark
grey: a simple setG ⊏ F of F such thatC[star∗( f , F)] ∩ C[star∗( f ,G)] = ∅: the only
connected component ofstar∗( f ,G) (e) is strictly includedin one of the three connected
components ofstar∗( f , F) (f). This set does not satisfy the hypotheses of Propositions 30
and 31. (g,h) Two simple setsG ⊏ F of F such thatC[star∗( f , F)]∩C[star∗( f ,G)] , ∅ and
(i,j) their associated set of facesstar∗(G, f ) composed of three (i) and two (j) connected
components. (k,n) The only two subsets of facesHr ∈ C[G \ { f }] of the simple setsG of
(g,h) such thatHr ∩Att(G, F) = ∅ (note that the third connected component ofG\ { f } in the
case of (g) does not verify the hypotheses of Proposition 31). (ℓ,o) The respective closures
H = H−r of the setsHr of (k,n) which verify the properties of Proposition 31. (m,p) The
respective detachments of the setsH of (ℓ,o) from F. As stated by Proposition 31 (iii ), the
complexH of (ℓ) (resp. (o)) remains a simple set for the complex of (p) (resp. m).
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6.2 1-D properties

The following proposition states that a minimal simple set which is not a cell cannot
contain any 1-facets.

Proposition 37 Let n ≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a
minimal simple set for F such that G is not a cell. Let f∈ G+ be a facet of G. Then,
dim( f ) ≥ 2.

Proof Let us suppose that dim(f ) < 2. From Proposition 35, we then have dim(f ) =
1. Let g1, g2 ∈ f̂ be the two 0-faces of̂f . As f̂ is not a simple cell forF, we have
gi ∈ G, star∗(gi , F) is not connected, and{ f } ∈ C[star∗(gi , F)] ∩C[star∗(gi,G)] for
i ∈ [1, 2], in contradiction with Proposition 33. Then, dim(f ) > 1.�

The following proposition, which states that a minimal simple set of dimension 1
is necessarily a simple cell, is a direct consequence of Proposition 37.

Proposition 38 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a1-D
minimal simple set for F. Then G is a simple cell for F.

The following proposition can easily be proved by inductionfrom Propositions 30
and 31.

Proposition 39 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F such that G is not a cell and G+ contains at least a1-facet. Then:

(i) ∃H ⊏ G such that Att(H, F) is a 0-cell;
(ii) ∀H ⊏ G such that Att(H, F) is a 0-cell:

(a) H is a simple set for F
(b) G ⊘ H is a simple set for F ⊘ H.

Remark 40 Note that, based on this proposition, we can also prove by induction
that a simple set can be detached (in a non-deterministic fashion) by iterative re-
moval of simple1-cells and/or (not necessarily minimal) simple sets composed of
facets of dimension≥ 2. From an algorithmic point of view, this result implies that
it is sufficient to only detect the simple1-cells and the simple sets which do not con-
tain 1-facets. Such simple sets are necessarily located in the connected components
of complexes from which all the principal1-cells have been detached.

The following proposition is a direct consequence of Propositions 38 and 39.

Proposition 41 Let n≥ 1. Let F � Fn be a cubical complex. Let G⊏ F be a simple
set for F such thatdim(G) = 1. If G is not a cell, then:

(i) ∃H ⊏ G such that H is a simple cell for F;
(ii) ∀H ⊏ G such that H is a simple cell for F, G⊘ H is a simple set for F ⊘ H.
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Fig. 23. (a) A complexF. (b) A simple setG ⊏ F of F. (c) The detachment ofG from
F. (d-ℓ) Successive detachments, fromF, of simple 1-cells and simple sets composed of
facets of dimension≥ 2, obtained fromG (see Proposition 39 and Remark 40).

Remark 42 The results of Proposition 41 cannot be extended to simple sets G
such thatdim(G) = 3 (and a fortiori dim(G) > 3), the Bing’s house providing an
obvious counter-example. The extension of this proposition to dim(G) = 2 (which
actually depends on the dimension ofFn) will be considered in further works (see
next section).

7 Discussion and perspectives

Simple sets are objects which, to our knowledge, have never been considered and,
a fortiori, studied. From an algorithmic point of view, it is importantto enable their
detection (if possible with the lowest computational cost)and their removal (by
direct or “step by step” strategies) to design efficient topology-preserving reduction
procedures.

The propositions enunciated in Sections 5 and 6 lead to the following (non-exhaustive)
list of considerations, which are valid independently of the dimension of the com-
plex F to be reduced nor the dimension of the spaceFn in which it lies:

• any simple setG of F admits a subcomplexH which is principal forF, and whose
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detachment fromF has the same effect as the detachment ofG (Proposition 19);
• any simple setG of F can be fully detached fromF by iterative (or parallel, since

the order does not matter) detachment of its principal subcomplexes “sharing”
their attachment withG (Proposition 24), anda fortiori by iterative or parallel
detachment of its connected components (Proposition 25);

• any simple setG of F can be fully detached from a complex by iterative (and
non-deterministic) detachment of its principal subcomplexes attached toF by
a 0-face (Proposition 31), and in particular simple 1-cellsand simple sets not
containing 1-facets (Proposition 39);

• any simple setG of F of dimension 1 can be fully detached fromF by itera-
tive (and non-deterministic) detachment of simple 1-cellscomposing it (Propo-
sition 41).

In particular, it is then sufficient to detectprincipal, connectedsimple sets,without
“isthmuses” (i.e. without 0-faces verifying the hypotheses of Propositions 30 and
31) to completely deal with the issue of removing simple sets. These properties can
be used to limit the study of simple sets to a much smaller family whose knowledge
is sufficient to lead to topology-preserving simple set-based reduction procedures
guarantying the removal ofall simple sets from a complex.

The removal of simple sets of dimension 1 can be handled by only considering
simple 1-cells. The next step of this work will now consist instudying the case of
dimension 2, first in “general” 2-D spaces (i.e.pseudo-manifolds), and then in more
classical spaces of higher dimension (i.e.Fn, with n ≥ 3), to provide characterisa-
tions enabling the development of reduction procedures guarantying the complete
detachment ofall 2-D simple sets. In this context, it will be shown that the notion
of minimal simple set (equivalent to the notion of simple cell at dimension 1, prop-
erty which will no longer be necessarily true in higher dimensions) and the various
properties introduced and studied in this paper, will be of precious use (seee.g.
Passat et al. (2009); Mazo and Passat (2009)).
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