\

An introduction to simple sets

Nicolas Passat, Loic Mazo

» To cite this version:

Nicolas Passat, Loic Mazo. An introduction to simple sets. Pattern Recognition Letters, 2009, 30
(15), pp.1366-1377. 10.1016/j.patrec.2009.07.008 . hal-01694415

HAL Id: hal-01694415
https://hal.univ-reims.fr /hal-01694415v1
Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.univ-reims.fr/hal-01694415v1
https://hal.archives-ouvertes.fr

Elsevier Editorial System(tm) for Pattern Recognition Letters

Manuscript Draft

Manuscript Number: PATREC-D-08-00467R2

Title: An introduction to simple sets

Article Type: Regular Article

Keywords: Discrete topology; Homotopy type preservation; Simple sets; Cubical complexes; n-D

spaces.

Corresponding Author: Dr. Nicolas Passat,

Corresponding Author's Institution: Strasbourg 1 University

First Author: Nicolas Passat

Order of Authors: Nicolas Passat; Loic Mazo



* Confirmation of Authorship

Pattern Recognition Letters
Authorship Confirmation

Please save a copy of this file, complete and upload as the “Confirmation of Authorship” file.

As corresponding author, I Nicolas Passat , hereby confirm on behalf of all authors that:

1. This manuscript, or a large part of it, has not been published, was not, and is not being
submitted to any other journal. If presented at a conference, the conference is identified. If
published in conference proceedings, the publication is identified below and substantial
justification for re-publication must be presented.

2. All text and graphics, except for those marked with sources, are original works of the authors,
and all necessary permissions for publication were secured prior to submission of the manuscript.

3. All authors each made a significant contribution to the research reported and have read and
approved the submitted manuscript.

Date 06 August 2008

Previous conference presentation

Previous conference proceedings publication

Justification for re-publication



* Revision note

An introduction to simple sets
PATREC-D-08-00467
Answers to reviewers

July 12, 2009

Reviewer 2

The paper is now acceptable for publication, as the overall quality has been
greatly increased by the answers given to the reviewers’ comments. I just have
two minor corrections and one request.

e Page 12: “preserves homotopy type” — “preserves the homotopy type”.

Answer: This has been corrected.

e Page 13, remark 8:

The collapsing operation you define here corresponds to the very same
operation, the collapsing, of (Kong 1997). The link between the latter
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Manuscript [Word or (La)TeX]
Click here to view linked References

An introduction to simple sets

Nicolas Passat", Loic Mazo?

aUniversité de Strasbourg, LSIIT, UMR CNRS 7005, France

Abstract

Preserving topological properties of objects during thigrprocedures is an important is-
sue in the field of image analysis. In this context, we presanintroductory study of the
new notion ofsimple setwhich extends the classical notion of simple point. Sinyl&o
simple points, simple sets have the property that the hgmydige of the object in which
they lie is not changed when such sets are removed. Simgasestudied in the frame-
work of cubical complexes which enables, in particular, wdel the topology irZ". The
main contributions of this article are: a justification oétstudy of simple sets (motivated
by the limitations of simple points); a definition of simplets and of a sub-family of them
calledminimal simple setghe presentation of general properties of (minimal) sergats
in n-D spaces, and of more specific properties related to “snrakisions” (these proper-
ties being devoted to be further involved in studies of sargdts in 2, 3 and 4-D spaces).

Key words: Discrete topology, homotopy type preservation, simpls,sztbical
complexesn-D spaces.

1 Introduction

Topological properties are fundamental in many applicetiof image analysis, in
particular in research fields where the retrieval/angreservation of topology of
real complex structures is required.

Topology-preserving operators, like homotopic skeletation, are used to trans-
form an object while leaving unchanged its topological eleteristics. In discrete
grids (2, 73, or Z*), such transformations can be defined afiitiently imple-
mented thanks to the notion simple pointKong and Rosenfeld (1989); Bertrand
(1994); Couprie and Bertrand (2009)): intuitively, a poaitan object is called
simple if it can be deleted from this object without alteritgytopology. A typical
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topology-preserving transformation based on simple gaiedietion, that we call
guided homotopic thinningDavies and Plummer (1981); Couprie et al. (2007)),
may be described as follows. The input data consists of 4 eépoints in the grid
(called object), and a subskt c X (called constraint set). Let, = X. At each
iterationi, choose a simple poing € X \ K according to some criteriore(g, a
priority function) and sek,; = X \ {X}. Continue until reaching a stapsuch
that no simple point foiX, remains inX, \ K. We call the result of this process a
homotopic skeleton of X constrained by Kotice that, since several points may
have the same priority, there may exist several homotogiesins for a given pair
(X K).

The most common example of priority function for the choiéecois a distance
map which associates to each pointofts distance from the boundary of. In
this case, the points which are closest to the boundary asedfirst, resulting in a
skeleton which is “centered” in the original object. In sopagticular applications,
the priority function may be obtained through a grey-saalage, for example when
the goal is to segment objects in this image while respettipglogical constraints
(Dokladal et al. (1999)). In the latter case, the order inclwipoints are considered
does not rely on geometrical properties, and mayftected by noise.

One drawback of thinning algorithms that work in the mannehave described is
that the final sek, is not always minimal (Passat et al. (2005)). The problene her
is that even thougkX, contains no simple point outside the constraintksett is
still possible forX;, \ K to include non-empty subses which have the property
thatX,, can be “deformed”, in a sense that will be made precise in Qiefin7, onto
the smaller seK, \ D (so thatX, is “homotopy equivalent” in a discrete sense to
Xn \ D). A subsetD that has this property will be calledsample se{for X;). An
example of such a set is depicted in Fig. IXjfis the 3-D set shown in that figure,
then the seD c X, (in light grey) is simple forX,.

One way to address this problem would be to try to further cedihe seX, by
finding and deleting some subg2bf X, \ K that is simple forX,,. To put this idea
into practice, we need good ways of finding setXjn K that are simple fok,.

Fig. 1. A setX, composed of 32 points (considered in 26-adjacency, seeFaso 3(a)
and 4(a)), which does not contain any simple point, but wirichudes a subséd (in light
grey), whose removal fronX, provides a sek, \ D “homotopy equivalent” in a discrete
sense toX,. In particular, it is possible to further redug \ D to a single point by iterative
removal of simple points.

We are, in particular, interested by simple sets whichmairemal in the sense that



they do not strictly include any other simple set, since #uicient to detect such
sets in order to carry on thinning. Also, we can hope that soiciimal simple sets
(i) have a specific structure which could make them easier tlysamaand if) are
suficient to deal with the whole problem of simple set removal.

The sequel of this article is organised as follows. In Sec2owe propose a discus-
sion on “topological artifacts” which may appear in diserghages, especially dur-
ing topology-preserving reduction procedures (genelzised on simple points).
This discussion leads to define the notion of simple set whrclvides a way to
“break” some of these artifacts, and then enables to imptioeefticiency of re-
duction procedures. In Section 3, the framework of cubioatglexes is described.
Indeed, we propose to study simple sets in this framewook) fivhich we can re-
trieve the classical notions of digital topology4hA, but which also enables to deal
with more general categories of cubical objects. Sectioredgnts the main notions
of topology preservation in cubical spaces and formallyoidtices the definitions
of simple sets and minimal simple sets. General properfissich sets (valid in
any dimension) are proposed and proved in Section 5, while rspecific ones,
devoted to “low dimensions” are proposed and proved in 8edii Discussions
and perspectives regarding further works on simple setgrakeded in Section 7.

2 Why are simple sets useful?

2.1 Topological artifacts: the notion of lump

Let us consider the guided homotopic thinning procedurerdse=d in Section 1.
When performing such a procedure, the result is expectedlfibd property of
minimality. This is indeed the case since the re3ylts minimal in the sense that
it contains no simple point outside &. However, we could formulate a stronger
minimality requirement, which seems natural for this kifittansformation: infor-
mally, the resuliX;, should not strictly include any subsétwhich is “topologically
equivalent” toX, and such thaK C Y c X,. We say that a homotopic skeleton of
X constrained b is globally minimalif it fulfils this condition.

Now, a fundamental question arises: is any homotopic skelgiobally minimal?
Let us illustrate this problem in dimensions 2 and 3Z#nconsider a full rectangle
X of any size, and the constraint $&t= (). Obviously, this objecK is topologically
equivalent to a single point, thus only homotopic skeletwh&ch are singletons
are globally minimal. Rosenfeld (1970) proved that any htopiz skeleton oKX is
indeed reduced to a single point.

However, in dimensions > 3, this property does not hold: X is e.g.a full kxkxk
cube k > 5), we may find a homotopic skeleton ¥f with empty constraint set,



which is not reduced to a single point (see Fig. 1). A classicanter-example is
the Bing’s house with two rooms (Bing (1964)), illustratadHig. 2. One can enter
the lower room of the house by the chimney passing throughpiper room, and
vice versaA discrete versioiX; of the Bing’s house is displayed in Fig. 5(a). It can
be seen that the Bing’s house can be carved from a full cub&elstive removal
of simple points. It can also be seen tiatcontains no simple point: deleting any
point from X; would create a “tunnel”.

/]

A

.

Fig. 2. A Bing’s house with two rooms visualised as a 2-D stefmR3 (see text).

It could be argued that objects like Bing’s houses are uhliteeappear while pro-
cessing real (noisy) images, because of their complex shaghe¢heir size. How-
ever, Passat et al. (2007) found that there exists a largs ofobjects (of any
topology) presenting similar properties, some of themdegimnte small (see Figs. 3
and 4). Such objects will be callédmpsand can be defined, as follows, thanks to
the notion of simple-equivalence.

Definition 1 Letn> 1. Let X X’ c Z". We say that X and”are simple-equivalent
if there exists a sequence of s€)!_, (t > 0) such that X = X, X = X', and for
alli € [1,1], we have either:

(1) Xi = Xi_1 \ {X}, where xe Xi_; is a simple point for X;; or

(@i) Xi_1 = X\ {X}, where xe X; is a simple point for X

Definition 2 Letn> 1. Let X c X c Z" such that X and Xare simple-equivalent.
If X does not contain any simple point outside en we say that X is mp
relative toX’, or simply alump.

Note that the definition of lumps is proposed her&in In the next sections, we
will propose a definition of lumps in the framework of cubicaimplexes. Once
introduced the basic notions on cubical complexes (Se&jpthis new definition

will generalise the current one.

Motivated by these considerations, mainly illustrated-D,3Jout still valid inn-D,
two questions arise: is it possible to detect when a thinpnegedure gets stuck on
alump, and then, is it possible to find a way towards a globallyimal homotopic
skeleton? For performing the latter task, a solution casgmsidentifying a subset
of X which can be removed without changing topology: we will calth a subset
asimple set
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Fig. 3. Examples of 3-D lumpk; ((a-e):L1 to Ls), considered in 26-adjacency. Topologi-
cally equivalent subsets are depicted in light grey. Thés@ét= 1 to 5) had — 1 tunnel(s).
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Fig. 4. 2-D visualisation of the successive planar slicetheflumpsL; of Fig. 3. (a-e):L1
to Ls (in black).
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2.2 Simple sets

Intuitively, a simple set can be defined as a sulyset an objectX whose removal
from X “does not alter the topology of”. Following this intuitive and informal
definition, the set¥; c X; (see Figs. 5—7) are simple for the set in which they lie
(in particular,X; andX; \ Y; are simple-equivalent).

However, among these sets, we may distinguish two categydhie set¥s, Y,, and
Ys (see Fig. 7) are dierent from the set¥; andY, (see Figs. 5 and 6) since the
removal of the first ones can be obtainedrbgnotonicallyreducing the object (in
a “continuous-like” fashion which will be detailed in Defilwin 7), while the re-
moval of the other ones is necessarily the result mda-monotonidi.e. reduction
andgrowing) procedure: these two simple sets are defined agsiudt of the sub-
traction of the final and initial (simple-equivalent) oljec

From now on, we will only callsimple seta set corresponding to the first cate-
gory. This is justified by two arguments) 6uch sets are defined from a monotonic
transformation (with respect to the inclusion relationlieh is consistent with the
general use of topology-preserving operations, that gdigeronsist of reduction
or (dual) growing processes, ano py definition such objects may be locally char-
acterised (such local characterisations being generafppssible for the sets of the
second category), which provides a real interest for their involvement ie the-
velopment of éicient topology-preserving procedures.

Let us now consider the simple s&fdi € [3, 5]) of Fig. 7. The sel; is obviously
composed of two points andy being both simple foKs_s. The removal ok (resp.

y) from X3 s then does not alter its topology. Moreover, this is also farethe
iterative (or parallel) removal ot andy from Xz s. Such points, called P-simple
points, have been fully described and characterised byd@wett(1995). It is easy
to observe that any s&t composed of points being P-simple for a ¥etan be
removed fromX without altering its topology (such a removal correspogdio
the successive removal of the pointsYoin any order, and then to a monotonic
reduction ofX), thus is a simple set foX.

The setY, is composed of two points andy such thatx is simple forXs s while

y is simple forXs s \ {x} but not for X3_s. Consequently, the iterative removal of
x andy (in the correct order) fronK;_s does not alter its topology. Any sat
composed, a¥,, of such “successively” simple points for a séts then a simple
set forX. This subfamily of simple sets has been considered by RAr®8], Ma
(1994), Kong (1995) and Gau and Kong (2003) as the basis &ddifinition of

1 As an example, the singleton 9ét, with the same configuration of neighbours, could
appear in an objeck;, such thatxX} \ Y, has not the same topology %$. This kind of
configuration has been exposed and analysed by Morgen{tit) and Fourey and Mal-
gouyres (2003).
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Fig. 5. (a) A discrete versioX; of the Bing’s house depicted in Fig. 2, decomposed into
its five planar slices for visualisation. The 3@t(considered in 26-adjacency) is composed
of 135 points. It is topologically equivalent to any single{x} c X;, but does not contain
any simple point. (b) A “simple set; (in light grey) for X;.

(@) (b)

Fig. 6. (a) A setX, and a singleton séf; c X; (in light grey) “simple” for X,. (b) The set
X2\ Yo

Fig. 7. A setX3_s including several kinds of simple sets (in light grey). (&ft.Y3 c X3_s,
right: X35\ Y3. (b) Left: Y4 C X3_s, right: X35\ Ys. (C) Left: Y5 € X3_s, right: X35\ Ys.



the notion ofminimal non-simple sets.e. sets which are not simple while all their
strict subsets are simple). In particular, these simpkeisetude the ones described
in the previous paragraph.

The setYs is composed of two points andy which are both non-simple foX;_s
(the removal of eithek or y from X3 s would create a “tunnel”). HoweveYg can
be removed fronXs_s in a monotonic way which corresponds to a reductioX§
(which will be described latter in the paper, and consistmigeratively removing
“successive parts” of andy until obtainingXs_s \ Ys) without altering its topology.
Such a sels is then a simple set foXs_s, despite the fact that it does not contain
any simple points. More generally, any sub¥etf a setX (composed of simple
andor non-simple points) which may be removed frofiby successive topology-
preserving “partial removal” of its points is a simple settdlthat sets such &§
andY; obviously belong to this category. The notion of simple s=talibed in this
article will be defined in this way, which generalises anceags the simple sets
such as defined by Ronse (1988), Ma (1994), Kong (1995), Gaukang (2003)
or by Bertrand (1995), since they may now be composed of simgints but also
of non-simple ones.

It has to be noticed that first works on simple sets have ajr&atlto a character-
isation of the ones composed of exactly two non-simple géiim a space which

modelsZ?3, such sets being calledinimal simple pair{Passat et al. (2008)). Ex-
perimental results (see Passat et al. (2008), Appendix ¥¢ blaown that consider-
ing the notion of simple pair (and thus more generally of $erget) could lead to

significant improvements of topology-preserving redutfiwocedures of discrete
objects.

Moreover, the notion of minimal simple pair provides a caurgxample to the
following conjecture proposed by Kong et al. (1990).

Conjecture 3 (Kong et al. (1990), Conjecture 1, p. 383) Suppose X are finite
subsets ofZ® and X is collapsible to X Then there are sets; XX, ..., %, with
X1 =X, X =X and,forO<i<n, X,; = X\ {X} where xis a simple point of X

This result emphasises the fact that simple points are rftigmt to completely
deal with the problem of topology-preserving reduction tfcdete images, thus
justifying the study of simple sets.

The purpose of this article is to propose a definition and &rpiary study of
simple sets. Although the motivations exposed in this sadtave been mainly il-
lustrated in the 3-D case, and especiallyZih(where the problems linked to the
limitations of simple points have first appeared from experts), the definitions
and most of the study will be proposed mrD spaces, and in the framework of

2 All the sets depicted in Fig. 3 include such a simple set. Iniiqadar, the sefYs is a
simple set for.; andL, (which both includeXs_s).



cubical complexes. This framework, promoted in particblaKovalevsky (1989),
enables to modeL" (n € N¥), retrieving the main notions and results of digital
topology (such as the notion of simple point), but also torgefnore general ob-
jects composed of cubical “parts” of various dimensions stngictured on regular
grids.

3 Cubical complexes
3.1 Basic notions

Intuitively, a cubical complex may be thought of as a set efre¢nts having various
dimensions €.g.vertices, edges, squares, cubes, etc.) glued togethendaugdo
certain rules. We recall in this section some basic defimétion complexes (see
also Bertrand and Couprie (2008)).

Let Z be the set of integers. We consider the families of §&tsF1, such that
Fi ={{a} | a€ Z}, F} = {{a,a+ 1} | a € Z}. A subsetf of Z" (n > 1) which is
the Cartesian product oh elements off} and i — m) elements oft} is called a
faceor anm-faceof Z", mis thedimensionof f, and we write dimf) = m. We
denote byF" the set composed of all faces Bf. Note that there is a strong link
between theliscretenotion of face introduced here, and tt@ntinuousone which
is involved in the context of cellular complexes (sg.Kong (1997)), where the
setsFg, F} would be “replaced” by their continuous analogiigs= {[a, a] | a € Z},

= {Ja,a+ 1] | a € Z}. This continuous interpretation of the discrete notion
of face is illustrated in Fig. 8, which justifies, in partiaul the way to visually
represent faces in the sequel of the article.

(@) (b) ()

Fig. 8. Discrete and continuous interpretations of theamtf face. (a) Four elements
x = (0,1),y = (1,1),z = (0,0),t = (1,0) € Z2 (b) The O-facdy} = {1} x {1}, the 1-face
{x,z} = {0} x{0, 1}, and the 2-fac¢x, y, z, t} = {0, 1}x{0, 1}. (c) The continuous analogues of
the faces of (b): the O-face,[1]x[1, 1], the 1-face [00]x]0, 1[, and the 2-face JA[x]O0, 1[.

Let f be a face irF". We setf = {g e F" | g C f}, andf* = f \ {f} (see Fig. 9).
Any g € f is afaceof f, and anyg € f* is aproper faceof f. If F is a finite set
of faces of F", we write F~ = ;¢ f, F~ is theclosureof F (see Fig. 10). We
setstar(f) = {g € F" | f C g}, andstar(f) = star(f) \ {f}, star(f) and star*(f)
are thestar and theproper star of f respectively. IfF is a finite set of faces di"
andf € F, we setstar(f, F) = star(f) n F, andstar‘(f, F) = star(f,F) \ {f} (see



BN O
B 7 7
@ O ©

Fig. 9. (a) Three face§ (i € [1, 3]) of dimensioni. (b) fi. (© ﬁ* Dotglines: Q1-faces; in
light grey: 2-faces; in dark grey: 3-faces.

(a) (b)

Fig. 10. (a) A set of faceB. (b) The closurd-~ of F.
(a) (b)

Fig. 11. (a) A set of faceB. (b) star(f, F), for the O-facef € F.

E «*
(@) (b)

Fig. 12. (a) A complex. (b) A subcomplexG of F.
(a) (b)
Fig. 13. (a) A complex. (b) The seF* C F of the facets of.

E -
(a) (b)
Fig. 14. (a) A complex. (b) A principal subcompleX of F.
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Fig. 11).

A setF 01‘ faces ofF" is acell or an m-cell if tAhere exists aim-face f € F, such
thatF = f. Theboundaryof a cell f is the setf*.

A finite setF of faces off" is acomplexin F") if for any f € F, we havef ¢ F,i.e,
if F = F~. Any subsets of a complext which is also a complex is subcomplex
of F (see Fig. 12). If5 is a subcomplex of, we writeG < F. If G < F andG # F,
we writeG < F. If F is a complex irf", we also writeF < F".

A face f € F is afacetof F if there is nog € F such thatf € §*. We denote by
F* the set composed of all facets Bf(see Fig. 13). Observe thdt{)~ = F~ and
thus, that F*)~ = F whenevelF is a complex.

If G is a subcomplex oF, andG* C F*, thenG is aprincipal subcomplex of F
and we writeG C F (see Fig. 14). IGC F andG # F, we writeG C F.

Thedimensiorof a non-empty complek in F" is defined by dimif) = maxdim(f) |
f € F*}. We say thaF is anm-complexf dim(F) = m. We say thaF is apure
complexf for all f € F*, we have dim{) = dim(F).

3.2 Detachment operation

Definition 4 Letn> 1. Let F < F" be a cubical complex. Let & F be a subcom-
plex of F. We set ® G = (F* \ G*)". The set F© G is a complex which is the
detachment o& from F (see Fig. 15).

Definition 5 Let n > 1. Let F < F" be a cubical complex. Let G F be a sub-
complex of F. Thattachment ofs to F is the complex defined by /& F) =
Gn (F ©G) (see Fig. 16).

4 Simple sets and minimal simple sets
4.1 Topology in cubical complexes

Let F c F" be a non-empty set of faces. A sequentk ( (s > O) of faces inF is
apath in F (from § to fy) if for all i € [0, s— 1], eitherf; is a face offi,; or fi,;

is a face off; (with f;, fi,; € F). We say thaF is connectedf, for any two faces
f,g € F, there is a path ifr from f to g. We say thaG is aconnected component
of Fif G C F, Gis connected and (& is maximal for these two propertieisg, we

11
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(a) (b) (©)
Fig. 15. (a) A complex-. (b) A (principal) subcomplex of F. (c) The detachment db

T%EF -

L
)

(a) (b (c)

Fig. 16. (a) A complexF. (b) A (principal) subcomplexG of F. (c) The attachment
Att(G,F) of Gto F.

haveH = G whenevelG € H C F andH is connected). We denote B[ F] the set
of all connected components Bf We setC[0] = 0.

Let F < F" be a cubical complex. ThEuler characteristicof F, written y(F), is
defined byy(F) = X" ,(-1)".v;, wherey; is the number oi-faces ofF fori € [0, n].

The Euler-Poincaré formula shows a deep link between tHerEiaracteristic
and the Betti numbers, which are topological invariantsefifrom the homology
groups’ of a complex.

The Betti numbeb; (i € [0,n—1]) of a complext < F"is defined as the rank of the
i-th homology group of. The Euler-Poincaré formula, in the case of a complex
F < ", states thag(F) = Y75 (~1) .b;.

The Euler characteristic and the Betti numbers are wellakntwpological invari-
ants. In particular, the collapse operation—defined hereagdreserves them (Kaczyn-
ski et al. (2004)).

4.2 Collapsing

Collapsing is a topological operation on complexes thasgmees the homotopy
type.

Definition 6 Let n> 1. Let F < F" be a cubical complex. Let &€ F*. If g € f*
is such that f is the only face of F which strictly includesigert we say that g
is afree face that f is aborder faceand that the pair(f, g) is afree pair forF

3 An introduction to homology theory can be fouady.in Giblin (1981).

12



(see Fig. 17). If(f, g) is a free pair for F, the complex Kk {f, g} is anelementary
collapse ofF.

Note that if (f, g) is a free pair, then dingj) = dim(f) — 1.

o A A

Fig. 17. (a) A complexX. (b) The border faces d@f. (c) The free faces df. Any pair (f, g)
such thatf is in (b) andg c f isin (c) is a free pair foF.

Definition 7 Let n > 1. Let F < F" be a cubical complex. Let G F be a sub-
complex of F. We say that €ollapses ont&, and we note F\, G, if there exists
a sequence of complexés)!_, (t > 0) suchthath = F, F; = G, and F is an
elementary collapse ofiF for alli € [1,t]. The sequencé)._, is acollapse se-
guence fronF to G (see Fig. 18). Generally, we will also call collapse seqeen
from F to G, the sequencéf;, gi))!_, of free pairs verifying F= Fi_, \ {f;, g} for

o -
ﬁ@f@?

Fig. 18. From (@) to (d): a collapse sequence fierio a subcompleX < F.

Remark 8 The collapse operation, defined by Whitehead (1938), isssidal no-
tion in combinatorial topology. It can be seen as a discretergerpart of a defor-
mation retraction defined on “continuous” complexes (seg. H9). It was intro-
duced in the field of image (analysis and) processing by Ka8§7) in order to
establish a link between the notions of simple point andisantis deformation.

(@) (b) ©) (d)

Fig. 19. (a) A (2-)compleX. (d) An elementary collaps@é of F. (a-d) Some steps of the
“continuous” deformation retraction implicitly asso@dtto this elementary collapse.
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4.3 Simple cells and lumps

Intuitively a cellG < F is called simple if there is a topology-preserving defor-
mation of F over itself onto the relative complement Gfin F. The following
definition of simple cells, based on the collapse operatian,be seen as a discrete
counterpart of the one given by Kong (1997).

Definition 9 Letn> 1. Let F < F" be a cubical complex. Let4 F be a face of F.
The cellf is a simple cell for F if I\, F © f.

From the notion of simple cell, it is now possible to define ttadion of simple-
equivalenceand then the notion dmpin the framework of cubical complexes.

Definition 10 Let n> 1. Let K F’ < F" be two cubical complexes. We say that F
and F are simple-equivalenif there exists a sequence of comple¢gs;_, (t > 0)
suchthat b = F, F, = F’, and for any i€ [1, t], we have either:

() Fi = Fi_1 © H;, where H < F;_; is a simple cell for I=4; or

(i) Fi_y = F; © H;j, where H < F; is a simple cell for

The simple-equivalence enables to establish a notion ofdgy preservation which
is not only based on monotonic deformations,on reductions or growings based
on simple cells (generally considered for applicative psg(Dokladal et al. (1999);
Passat et al. (2005))), but also on non-monotonic ones. Tjects which are
simple-equivalent (see.g.the objects of Figs. 6(a) and (b)) can be obtained by
both removal and addition of simple cells during the defdromaprocess. Conse-
guently, their topologies are similar since the homotogpetpf two intermediate
objects generated during the deformation process is the.darparticular, it may
happen that an obje€t and one of its strict subse@are simple-equivalent while
there is no way to obtai® from F by successively removing simple cells (&eg.
the complexes depicted in Fig. 3). Such objdeigre called lumps.

Definition 11 Let n > 1. Let F < F" be a cubical complex. Let’F< F be a
subcomplex of F such that F and &re simple-equivalent. If F does not include
any principal simple cell outside’fFthen we say that F is lamp relative toF’, or
simply alump.

As stated in Section 2, a lunfp relative toF’, although not including any simple
cell which can be detached to provide a monotonic reductioctly converging
ontoF’, may however include some subsets which can be detachedhrasuay.
Suchsimple setsdefined in the next section, then enable to develop monofand
then algorithmically tractable) reduction processes Wien be morefécient than
those only based on simple cells (since they can “break” dames).
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4.4 Simple sets

Definition 9 proposed for simple cells naturally extendsubmplexe$s < F
which contain an arbitrary number of facets, leading to thigom of simple set

Definition 12 Let n > 1. Let F < F" be a cubical complex. Let & F be a
subcomplex of F. We say that Gsisnple forF if F \, F © G. Such a subcomplex
G is called asimple subcomplex df or a simple set forF.

Note that the notion of attachment leads to the followinglarharacterisation of
simple sets.

Proposition 13 (Bertrand (2007)) Let n > 1. Let F < E" be a cubical complex.
Let G < F be a subcomplex of F. The complex G is simple for F if and dnly i
G \\ Att(G, F).

The following notion ofremovable seenables to model the part of a complex
which is dfectively deleted during a collapse sequence.

Definition 14 Letn> 1. Let F < F" be a cubical complex. Let G F be a subset of
F. We say that G isemovable folF, or that G is aremovable set foF, if F\G < F
and F\, F\G.

This notion is strongly related to the one of simple set, siasimple set can be
partitioned into two subsets: its attachment anddataovable partMore formally,
we have the following property, which directly derives frone definitions.

Property 15 Let n> 1. Let F < F" be a cubical complex. Let G F be a sub-
complex of F. Then, G is simple for F if and only iN@\tt(G, F) is removable for
F.

Definition 16 Let n > 1. Let F < F" be a cubical complex. Let & F be a
subcomplex of F. We say that Giiwially simple for F, or that G is atrivial simple
set forF, if G is simple for F while its removable part is empie(G\ Att(G, F) =
0).

Remark 17 If G is a trivial simple set for F, then © G = F. As such sets do
not present a real interest from an algorithmic point of viégs@m now on, we will
always implicitly consider that a simple set G for F is nomtl. Note that in this
context, a simple cell for F is necessarilypancipalcell of F.

We introduce now the notion ehinimal simple set

Definition 18 Let n > 1. Let F < F" be a cubical complex. Let & F be a
subcomplex of F. The complex G isinimal simple subcomplex ¢br a minimal
simple set foy F if G is a (non-trivial) simple set for F and G is minimal (Wit
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respect tox) for this property {.e. YH < G, H is (non-trivially) simple for F
= H=0).

The notion of minimal simple set may be useful from both tletioal and algorith-
mic points of view sincei} the existence of a simple set necessarily implies the
existence of at least one minimal simple set, andofy definition, a minimal sim-
ple set is necessarily easier (or, at least, not harder)aacterise than a “general”
simple set. In particular, we can hope that in several cadgsefding on the di-
mension(s) of" andor of F, for example), the study of minimal simple sets could
be suficient to deal with the problem of detachialj simple sets from a complex
(an example of this assertion will be fouady.in Mazo and Passat (2009)).

5 General properties of simple sets

In this section, we present and prove some properties ofleiamm minimal sim-
ple sets valid in any dimensiaon> 1. We first consider “global” properties related
to their principalness with respect to their superset (8ed.1), to their remov-
able part (Section 5.2), to their attachment (Section H8)ta their connectedness
(Section 5.4). More “local” properties dealing with 0-D digiurations of their at-
tachment (Section 5.5) are then considered.

The purpose of Sections 5 and 6 is in particular to obtain arg#sn as accurate
as possible of (minimal) simple sets, enabling to furtherveéecharacterisations
of subfamilies of such sets, and more generally to improeeatgorithmic cost of
their detection and removal.

5.1 Principalness

Proposition 19 (which is illustrated in Fig. 20) implies thltxom an algorithmic
point of view, the study of the simple sets of a complex carelstricted to the fam-

ily of its principal subcomplexes, thus leading to a strong decrease of the mumbe
of potential simple sets to consider. In particular, minisimple sets are principal
subcomplexes, as stated in Proposition 20.

Proposition 19 Let n > 1. Let F < F" be a cubical complex. Let & F be a
simple set for F. Let Hk G be the maximal (with respect &) subcomplex of G
verifying HC F (i.e. YK < G,KC F = K C H). Then H is a simple set for F and
FOH=FOoG.

Proof LetH = (G*NnF*)~ < G. By construction, we havd # 0 (asG is not trivial,
see Remark 17} C F andH is the maximal (with respect t§) subcomplex of5
for this property. Moreover, we hale® H = (F* \ H*)” = (F* \ (G* n F*"))” =
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(FF\G*)” = F © G. Finally, it comeskF \, F © G = F © H, andH is then a
simple set forF. O

%@g ~Fm M m T
(@ (b) (©) (d)

Fig. 20. (a) A 3-compleX. (b) A simple seG < F of F. (c) The maximal (with respect to
<) subcomplex of G verifying H C F; H is a simple set foF. (d) The detachment df
from F, which is equal to the detachment®ffrom F (see Proposition 19).

Proposition 20 Let n > 1. Let F < F" be a cubical complex. Let & F be a
minimal simple set for F. Then G F.

Proof SinceG is a simple set foF, from Proposition 19, there exisk$ < G such
thatH C F andH is a simple set foF. The minimality ofG implies thatH = G.
Then,GE F.O

Remark 21 From now on, the simple sets of a complex F will be considensaieay
the complexes @ F. Moreover, if G is a simple set for F, then we obviously have
FOoG#0,ie.G" c F*, and thus, G< F. Based on these considerations, given a
complex F< F", we will only consider simple sets G of F which ve(iiy=)G C F.

5.2 Removable part

The following two propositions, related to the connectessngroperties of the re-
movable part of simple sets, will be essentially used tatistathe results of Sec-
tions 5.3 and 5.4.

Proposition 22 Letn> 1. Let F < F" be a cubical complex. Let & F be a simple
set for F. Let G = G\ Att(G, F) be the removable part of G. Let, = G, be a
connected component of Gf H, # G; (i.e.if H, c G;), then:

() H =H; £ Gc Fisasimple set for F;
(i) G © His asimple set for © H.

Proof Let us suppose th#d, # G;. Let((fi,g))_, (t > 2) be a collapse sequence
fromFtoF © G. Let | € [2,t] such thatf; € H, and f;_; ¢ H,, if such faces exist.
As H, is a connected component@f, we also have; € H, while g;_1 ¢ H;. The
pairs (f;_1,gj-1) and (f;, g;) can then obviously be exchanged, providing another
valid collapse sequence frofto F © G. We can then inductively build a new
collapse sequencéf;, gi))_, verifying fi ¢ H, = fi,1 ¢ H, foralli € [1,t-1]. Let

a = maXi € [1,t] | fi € H;}. By definition of((fi,gi)>it=1 anda, we havef; € H,
foralli € [1,a] while f; ¢ H, for all i € [a + 1,t]. Moreover, for the same reason
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as previously, we havg € H, for alli € [1,a] while g; ¢ H, for all i € [@ + 1,t].
SinceH, C {fi,gi}l_;, we then havéd, = {fi, g} ,. The sequencq f;, g))’, is then
a collapse sequence fromto F \ H,. LetH = H_. SinceH,(# G;) is a connected
component of5; = G\ Att(G, F) whereG C F is a simple set foF, we have in
particularH — G © F. Moreover,H, = H \ Att(H, F), and thenF \ H; = F © H.
Consequently, we have N\, F O H, i.e. H C F is a simple set foF. By definition,
((fi, o)., is a collapse sequence fromM® Hto F © G. AsH £ G C F, we
haveGOH C F© H,andF © G = (F © H) © (G © H). Then, we finally obtain
FOHN(FOH)O(GOH), i.e. GO H isasimple setfoF ©H. O

From Proposition 22, we immediately derive the followingposition.

Proposition 23 Let n > 1. Let F < F" be a cubical complex. Let @ F be a
minimal simple set for F. Let G= G\ Att(G, F) be the removable part of G. Then,
G, is connected.

5.3 Attachment

Proposition 24 (which is illustrated in Fig. 21(a-e)) ereasblo restrict the research
of simple sets and authorises in particular the developwfa’gion-growing (and
possibly parallel) strategies.

Proposition 24 Letn> 1. Let F < F" be a cubical complex. Let & F be a simple
setfor F. Let HZ G be a strict principal subcomplex of G. If fit, F) C Att(G, F),
then:

(i) Hisasimple set for F;
(i) G © His asimple set for © H.

Proof Let G, = G\ Att(G, F) be the removable part @. LetH, = H \ Att(H, F).

Let K; be a connected componentidf, in particular, we hav&, C G,. As K; is
connected, it is included in a connected componer@ofLet K = K. We have
Att(K, F) C Att(H, F) c Att(G, F), thenK; is necessarily a connected component
of G,. SinceAtt(H, F) c Att(G, F), we haveH, C G,, and asH = G, we obtain

H, # G,. Then, from Proposition 22 © G c F is a simple set foF, and

G © K is a simple set foF © K. If H = K, then the result holds. Otherwise,
sinceH © K £ G © K, the result easily follows by induction on the connected
components oH,. O
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Fig. 21. (a) A compleX and a simple se& C F (in dark grey). (b) The detachment Gf
from F. (c-e) Three strict principal subcomplexisof G such thatAtt(H, F) € Att(G, F)
(in dark grey). (f,g) The two connected componettsf G (in dark grey). The detachment
of G from F (b) can be obtained frork (a) by detaching the subcomplexkisof (c-e)
(resp. the subcomplexes of (f,g)) in any order or in parallel (see Proposition 24 fres
Proposition 25)).

5.4 Connectedness

Proposition 25 (which is illustrated in Fig. 21(a,f-g)) ispecific case of Propo-
sition 24. It establishes the connectedness of the simpéeveeich have to be
searched to enable the removal of all of them. This propmsitveaker than Propo-
sitions 22 and 24, is however more easily usable for the diefirof region-growing
strategies.

Proposition 25 Let n > 1. Let F < F" be a cubical complex. Let @ F be a
non-connected simple set for F. LettHG be a connected component of G. Then:

() Hisasimple set for F;
(i) G © Hisasimple set for © H.

The next proposition derives from Proposition 25. It is agstirect consequence of
Proposition 23.

Proposition 26 Let n > 1. Let F < F" be a cubical complex. Let @ F be a
minimal simple set for F. Then G is connected.

Since the collapse operation does not alter the connecsdifecomplexes, we
derive from Propositions 13 and 26 the following result.

Proposition 27 Let n > 1. Let F < F" be a cubical complex. Let @ F be a
minimal simple set for F. Then A@, F) is connected.
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Remark 28 More generally, as the collapse operation does not alteBé#i num-
bers of a complex, the Betti numbers oftGF and At{(G, F) are equal if G is a
simple (anda fortiori a minimal simple) set for F.

5.5 The case d¥-D attachments

The following lemma will be necessary to prove Proposition 3

Lemma 29 Letn> 1. Let F < F" be a cubical complex. Let&é F be a0-face and
C be a connected component of starF). Let((fi, g))._, (t > 1) be a collapse
sequence for F. If there exists a path: (pi)}‘:0 (k> 5)in F suchthat p= px = h,
p1 € C, p1 ¢ C and p ¢ star(h, F) for all i € [2,k — 2], then there exists a path
7 = (q)_, (I >5)in F\ Ui,{fig}suchthatg=q =h,q € C, g1 ¢ C, and
g ¢ star(h,F) foralli € [2,] - 2].

Proof Without loss of generality, we can assume that such that magdim(p;) |

i € [0,K]} = 1, and all the 1-faces of are distinct (remember tha; € C and
Per ¢ C). If {pi}, N {f1, 01} = 0, we setr’ = n. Otherwise, since by our previous
assumptiong has no free O-face iR, there exists a 1-facg, (« € [1,k—1]) of
such thag; = p,. We can clearly replacp, in 7= by a sequence of the 5 faces of
ﬂ* \ {Po-1, Pa» Pas1} (in the correct order) to obtain a new path= (q; }:‘1‘ = (g }:1

in F \ {f1, g1} from h to h. Note that the first (resp. last) 1-fagg (resp.Q,.4) of o
belongs to the same connected componergtaf(p,_1, F) (resp.star (py.1, F))
(Po-1, Pos1 are O-faces) ag; and two 1-faces ofr surrounding a O-facg of o
belong to the same connected componergtaf‘(g, F). Hence, it is easy to check
thatg; € C andq; ¢ C, and if a O-faceg; (j € [4,1]) of x is equal toh, one of the
two paths §)._,, (i }:}‘ verifies all the required properties (otherwisg)i{] verifies
the same required properties). As the connected compohstar(h, F \ {f, 0:})
containingq, is included inC, the result follows by inductiorz

Proposition 30 Letn> 1. Let F < F" be a cubical complex. Let & F be a simple
set for F. Let fe G be aO-face of G such that st&ff, F) is not connected, and
Cl[star(f, F)] n C[star*(f,G)] # 0 (see Fig. 22(d,g,h)). Then:

(i) AH; € C[G\ {f}] such that HN Att(G, F) = 0;
(i) YH; € C[G\ {f}] such that H N Att(G, F) = 0, we have:
(@) H, nstar(f,F) e C[star(f, F)];

(b) H, n star(f,F) e C[star(f,G)].

Proof The proof is proposed fdf andG connected. It straightforwardly extends
to F andor G non-connected (see Proposition 25) by considering the estiad
components oF andG containingf.

Proof of (i). Let A e C[star*(f, F)] n C[star‘(f,G)]. Let H, € C[F \ {f}] such that
A c H,. SinceF \, F © G, we deduce thatl, n star’(f, F) = H, nstar’(f,G) = A

20



(otherwise, by Lemma 29, we would have a patlri® G including a face of A).

If H, N Att(G, F) = 0, then we haved, € C[G \ {f}], and we are done. Let us now
suppose thatl, NAtt(G, F) # 0. As the collapse operation preserves connectedness,
and sinceG is connectedAtt(G, F) is also connected. Then, we ha&#(G, F) c

H, (otherwise,f € Att(G, F), and thenAn Att(G, F) # 0, in contradiction with the
fact thatA € C[star(f, F)|nC[star‘(f, G)]). Consequently, it comek ¢ Att(G, F),

and asstar’(f, F) is not connected, there exi®tss C[star'(f, F)] nC[star‘(f, G)],

with B # A. LetH/ € C[F \ {f}] such thatB c H/. AsH; n H, = 0, we have

H; N Att(G, F) = 0 andH, € C[G\ {f}]. Hence () holds.

Proof of (ii). Let H, € C[G \ {f}] such thatH, N Att(G,F) = 0. LetH = H, =

H, U {f}. If star(f,H) is not connected, then from Lemma 29, we deduce that
H, N (F © G) # 0, in contradiction with the fact thad, N Att(G, F) = 0. o

Proposition 31 Letn> 1. Let F < F" be a cubical complex. Let & F be a simple
set for F. Let fe G be aO-face of G such that st&ff, F) is not connected, and
C[star*(f, F)]nC[star(f,G)] # 0. Let H € C[G\{f}] such that HNAtt(G, F) = 0.
Then:

() H=H EGC Fisasimple set for F;
(iiy Att(H,F) = f;
(iii) if H # G, then GO H is a simple set for © H.

Proof The proof is proposed fdf andG connected. It straightforwardly extends
to F andor G non-connected (see Proposition 25) by considering the emiad
components of andG containingf. Note that from Proposition 30, exists.
LetH = H; = H, U {f}, we have in particulaH C G c F andAtt(H,F) = f,
If f e Att(G,F), the result follows from Proposition 22. We now supposé tha
f ¢ Att(G, F). Let((fi,g))_, (t > 1) be a collapse sequence frdfito F © G. Let
a € [1,t] be such thag, = f. Note that for ali € [1, @ — 1], sinceAtt(H, F) = {f},
we have eitheffi,g; € H, or fi,g ¢ H,. Let | € [2,« — 1] be such thafj, g; € H,
while fi_1,9j-1 ¢ H, if such faces exist. The pairé;(1, 9;-1), (f;, ;) can then be
exchanged, providing another valid collapse sequence FrooF © G. Moreover,
asG \ H, is connected, and as the collapse operation preservesatedness,
(G\H)\{fi, gi}i“:‘l1 is connected, and then, we cannot hfyve H, (otherwise, G\
Ho)\ {fi, gi};jll = {f}: contradiction). AH is connected, we also hatt\ {f;, gi};’:‘ll
connected, and thehi \ {f, gi}>' = {f}, then for alli € [, t], we havef;, g; ¢ H;.
Itis then possible to inductively build a new collapse seweé( f;, gi))!_, verifying
fig H = fio1 ¢ H foralli e [1,t - 1]. Letg = maxi € [1,t] | fi € H,}. Then,
we havel f, g}, = H,, in particular,H \ {f,, g}, = (f}, and((f,, @)Y, is then a
collapse sequence frobkhC G = F to{f} = Att(H, F). Consequenthy is a simple
set forF. Moreover, ifH # G, we have) # GO H = F © H, and{(f;, gi)>}=ﬁ+1 isa
collapse sequence fromo Hto F © G = (F © H) © (G © H). Hence the result
holds.o

Remark 32 Propositions 30 and 31 (which are illustrated in Fig. 22) blato re-
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strict the research of simple sets to those which do not ptesegy “isthmuses” i e.
O-faces satisfying the hypothesis of f in Propositions 30&h)d For instance, the
face f is (resp. is not) such an isthmus in Fig. 22(g,h) (ré$g. 22(d)). Proposi-
tions 31 establishes, in particular, that any simple set @ cbmplex F can be fully
detached from F by iterative (and non-deterministic) detaent of its principal
subcomplexes attached to F by such an isthmus.

The following proposition immediately derives from Projimnis 30 and 31.
Proposition 33 Let n > 1. Let F < F" be a cubical complex. Let @ F be a
minimal simple set for F. Then, there exists at most @fi@ce f € G such that

star’(f, F) is not connected and [Gtar‘(f, F)] n C[star(f,G)] # 0. If f exists,
then we have A{G, F) = {f}, and star(f, G) is connected.

6 Properties of simple sets related to dimension@and 1

From the previous section, we can derive some propertiageceto 0-D and 1-D
structures of simple and minimal simple set&in

6.1 0-D properties

The first proposition is elementary.

Proposition 34 Letn> 1. Let F < F" be a cubical complex. Let G F be a simple
cell for F. Thendim(G) > 0.

Based on this result and on the propositions of Section 5,amepcove the non-
existence of O-facets in simple sets, and then the nonegdstof 0-D simple sets.

Proposition 35 Letn> 1. Let F < F" be a cubical complex. Let G F be a simple
set for F. Let fe G* be a facet of G. Thedim(f) > 0.

Proof If dim(f) = 0, then the celf is a connected component®f Proposition 25
then implies thaff is simple forF, in contradiction with Proposition 341

The following result is an easy consequence of Propositton 3

Proposition 36 Letn> 1. Let F < F" be a cubical complex. Let G F be a simple
set for F. Thendim(G) > 0.
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Fig. 22. (a) A complexX- and a O-facef € F such thatstar’(F, f) is not connected. (b)
star’(F, f) U {f}. (c) star’(F, f), composed of three connected components. (d) In dark
grey: a simple seG = F of F such thatC[star*(f, F)] n C[star*(f,G)] = 0: the only
connected component atar'(f,G) (e) is strictly includedin one of the three connected
components oftar*(f, F) (f). This set does not satisfy the hypotheses of PropositRD
and 31. (g,h) Two simple se&c F of F such thaC[star*(f, F)] nC[star(f,G)] # 0 and
(i,)) their associated set of facesar*(G, f) composed of three (i) and two (j) connected
components. (k,n) The only two subsets of fatkse C[G \ {f}] of the simple set& of
(g9,h) such thaH, N Att(G, F) = 0 (note that the third connected componen&af{ f} in the
case of (g) does not verify the hypotheses of Proposition(81) The respective closures
H = H; of the setsH, of (k,n) which verify the properties of Proposition 31. (nfhe
respective detachments of the stef (¢,0) fromF. As stated by Proposition 3iii{, the
complexH of (¢) (resp. (0)) remains a simple set for the complex of (p) (resp
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6.2 1-D properties

The following proposition states that a minimal simple skiah is not a cell cannot
contain any 1-facets.

Proposition 37 Let n > 1. Let F < F" be a cubical complex. Let @ F be a
minimal simple set for F such that G is not a cell. Let G* be a facet of G. Then,
dim(f) > 2.

Proof Let us suppose that dirfif < 2. From Proposition 35, we then have dih&
1. Letgs, g € f be the two O-faces of. As f is not a simple cell foF, we have
g € G, star‘(g, F) is not connected, and } € C[star(g;, F)] n C[star*(g;, G)] for
i € [1,2], in contradiction with Proposition 33. Then, dif)(> 1.o

The following proposition, which states that a minimal slenpet of dimension 1
is necessarily a simple cell, is a direct consequence ofd3ipn 37.

Proposition 38 Let n> 1. Let F < F" be a cubical complex. Let @ F be al-D
minimal simple set for F. Then G is a simple cell for F.

The following proposition can easily be proved by inductitom Propositions 30
and 31.

Proposition 39 Letn> 1. Let F < F" be a cubical complex. Let & F be a simple
set for F such that G is not a cell and*@ontains at least 4-facet. Then:

() dH c G such that AfH, F) is a0-cell;
(i) YH c G such that AfH, F) is aO-cell:
(@) His asimple setfor F
(b) GO H is asimple set for B H.

Remark 40 Note that, based on this proposition, we can also prove bydtidn
that a simple set can be detached (in a non-deterministitida$ by iterative re-
moval of simpléel-cells andor (not necessarily minimal) simple sets composed of
facets of dimensior 2. From an algorithmic point of view, this result implies that
it is syficient to only detect the simplecells and the simple sets which do not con-
tain 1-facets. Such simple sets are necessarily located in thesabed components
of complexes from which all the princip&lcells have been detached.

The following proposition is a direct consequence of Praposs 38 and 39.

Proposition 41 Letn> 1. Let F < F" be a cubical complex. Let & F be a simple
set for F such thatim(G) = 1. If G is not a cell, then:

() dH c G such that H is a simple cell for F;
(i) YH C G such that H is a simple cell for F, G H is a simple set for F© H.
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(@) (b) ()

B 5

() (3 )

Fig. 23. (a) A complex-. (b) A simple setG C F of F. (c) The detachment d& from
F. (d-f) Successive detachments, frdgm of simple 1-cells and simple sets composed of
facets of dimensior 2, obtained fronG (see Proposition 39 and Remark 40).

Remark 42 The results of Proposition 41 cannot be extended to simpke Ge
such thatdim(G) = 3 (and a fortioridim(G) > 3), the Bing’s house providing an
obvious counter-example. The extension of this proposit@im(G) = 2 (which
actually depends on the dimensiont®8j will be considered in further works (see
next section).

7 Discussion and perspectives

Simple sets are objects which, to our knowledge, have neaam bonsidered and,
a fortiori, studied. From an algorithmic point of view, it is importanienable their
detection (if possible with the lowest computational c@stll their removal (by
direct or “step by step” strategies) to desidfic@ent topology-preserving reduction
procedures.

The propositions enunciated in Sections 5 and 6 lead to tloeiog (non-exhaustive)
list of considerations, which are valid independently & thimension of the com-
plex F to be reduced nor the dimension of the spEta which it lies:

e any simple se® of F admits a subcomple{ which is principal for, and whose
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detachment fronfr has the samefiect as the detachment Gf(Proposition 19);

e any simple seG of F can be fully detached frorig by iterative (or parallel, since
the order does not matter) detachment of its principal soipbexes “sharing”
their attachment witls (Proposition 24), ana fortiori by iterative or parallel
detachment of its connected components (Proposition 25);

e any simple seG of F can be fully detached from a complex by iterative (and
non-deterministic) detachment of its principal subcorreteattached té¢ by
a O-face (Proposition 31), and in particular simple 1-cahlsl simple sets not
containing 1-facets (Proposition 39);

e any simple seG of F of dimension 1 can be fully detached frofmby itera-
tive (and non-deterministic) detachment of simple 1-cetismiposing it (Propo-
sition 41).

In particular, it is then sfficient to detecprincipal, connectedsimple setswithout
“isthmuses”(i.e. without O-faces verifying the hypotheses of Propositiofsa8d
31) to completely deal with the issue of removing simple.sEtgse properties can
be used to limit the study of simple sets to a much smallerlfawhose knowledge
is suficient to lead to topology-preserving simple set-basedatialu procedures
guarantying the removal @l simple sets from a complex.

The removal of simple sets of dimension 1 can be handled by @osidering
simple 1-cells. The next step of this work will now consissindying the case of
dimension 2, firstin “general” 2-D spaces(pseudo-manifolds), and then in more
classical spaces of higher dimensiae.(F", with n > 3), to provide characterisa-
tions enabling the development of reduction proceduresagiyng the complete
detachment oéll 2-D simple sets. In this context, it will be shown that theiowt
of minimal simple set (equivalent to the notion of simpld e¢ldimension 1, prop-
erty which will no longer be necessarily true in higher dirsiens) and the various
properties introduced and studied in this paper, will be recpus use (see.g.
Passat et al. (2009); Mazo and Passat (2009)).
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