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Abstract

The hit-or-miss transform(HMT) is a fundamental operation on binary images, widely used since forty years. As it is not
increasing, its extension to grey-level images is not straightforward, and very few authors have considered it. Moreover,
despite its potential usefulness, very few applications ofthe grey-level HMT have been proposed until now. Part I of this
paper, developed hereafter, is devoted to the description of a theory leading to a unification of the main definitions of the
grey-level HMT, mainly proposed by Ronse and Soille, respectively (part II will deal with the applicative potential of the
grey-level HMT, which will be illustrated by its use for vessel segmentation from 3D angiographic data). In this first part, we
review the previous approaches to the grey-level HMT, especially the supremalone of Ronse, and theintegral one of Soille;
the latter was defined only for flat structuring elements, butit can be generalized to non-flat ones. We present a unified theory
of the grey-level HMT, which is decomposed into two steps. First afitting associates to each point the set of grey-levels for
which the structuring elements can be fitted to the image; as in Soille’s approach, this fitting step can beconstrained. Next,
a valuation associates a final grey-level value to each point; we proposethree valuations:supremal(as in Ronse),integral
(as in Soille) andbinary.

Key words: Mathematical morphology, hit-or-miss transform, grey-level interval operator, angiographic image processing.

1. Introduction

Consider a Euclidean or digital spaceE (E = Rn or
Zn). For X ∈ P(E), write Xc

= E \X (the complement
of X), X̌ = {−x | x ∈ X} (the symmetrical ofX), and
for p ∈ E, Xp = {x+ p | x ∈ X} (the translate ofX by
p). Then the Minkowski addition⊕ and subtraction⊖
are defined by setting forX, B ∈ P(E):

∗ Corresponding author: Benoı̂t Naegel.
Email: benoit.naegel@hesge.ch, tel: (+41) (0)22 338 05 66.

X ⊕ B =
⋃

b∈B

Xb and X ⊖ B =
⋂

b∈B

X−b .

This leads to the operatorsδB : X 7→ X ⊕ B (dilation
by B) and εB : X 7→ X ⊖ B (erosion byB); here B
is considered as a structuring element that acts on the
binary imageX. (NB. Our terminology follows [1,2],
in accordance with the algebraic theory of dilations
and erosions; it is slightly different from that of [3,4],
in the sense that for some operations, the structuring
elementB is replaced by its symmetricaľB, see [2,5]
for a more detailed discussion.)

The hit-or-miss transform(in brief, HMT) uses a
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pair (A, B) of structuring elements, and looks for all
positions whereA can be fitted within a figureX, andB
within the backgroundXc, in other words it is defined
by

X � (A, B) = {p ∈ E | Ap ⊆ X andBp ⊆ Xc}

= (X ⊖ A) ∩ (Xc ⊖ B) .
(1)

One assumes thatA ∩ B = ∅, otherwise we have al-
waysX � (A, B) = ∅. One callsA andB respectively
theforegroundandbackgroundstructuring element. In
practice, one often uses bounded structuring elements
A andB.

This operation was devised by Matheron and Serra
in the mid-sixties [6,3], and has been widely used
since. It represents the morphological expression of
the notion of template matching.

The binary hit-or-miss transform is often applied in
shape recognition, for example in document analysis
[7–9]. Hardware implementations with optical corre-
lators have been studied in [10–15]. These implemen-
tations seem interesting, since computational time is
independent from the size of the structuring element
used, which is obviously not the case with software
ones.

A recurrent issue consists in determining the struc-
turing elements (SEs) in order to cope with the noise
and the variability of the patterns to be recognized.

Zhao and Daut [16] propose a method to match
imperfect shapes in an image. They start with a set of
shapes to be recognized, then smooth each element of
this set by some kind of opening. The boundaries of
these smoothed sets are then used as SEs for the HMT.

Doh et al. [17] discuss the choice of SEs for the
recognition of a class of various objects. They start
from two sets: a set of hit SEs (i.e., SEs that fit the
objects to be recognized) and a set of miss SEs (SEs
that fit the background). Their conclusion is to use a
synthetic hit SE composed of the intersection of all hit
SEs and a synthetic miss SE composed of the union
of all miss SEs.

Bloomberg et al. [8,9] introduce a blur HMT which
consists in dilating both setX and complementXc.
They also propose to subsample the structuring el-
ements by imposing a regular grid. This allows the
HMT to be less sensitive to noise while preserving the
global characteristics of the shape.

The operatorX 7→
(

X� (A, B)
)

⊕A has been consid-
ered in [18] (it was suggested to the author by Heij-
mans), and later in [4, p. 149], where it was calledhit-
or-miss opening. It is idempotent and anti-extensive,
like an opening, but not increasing.

Although the HMT is widely used in binary image
processing, there are only a few authors who consid-
ered its possible extension to grey-level images (we
review the main works in the next section). The main
difficulty resides in the fact that this operator uses both
the setX and its complementXc, and is thus neither
increasing nor decreasing. Let us explain how to re-
moveXc from the definition (1).

Let A, B ∈ P(E) such thatA ⊆ B. Consider the
interval

[A, B] = {C ∈ P(E) | A ⊆ C ⊆ B} .

Then we defineη[A,B], the interval operator by[A, B],
by setting for everyX ∈ P(E):

η[A,B](X) = {p ∈ E | X−p ∈ [A, B]}

= {p ∈ E | Ap ⊆ X ⊆ Bp} .
(2)

Heijmans and Serra [19] were the first to consider such
an operation, but they wrote itX T (A, B) instead of
η[A,B](X). Clearlyη[A,B](X) = X� (A, Bc). Here the in-
clusion constraintA ⊆ B (without which we always get
η[A,B](X) = ∅) corresponds to the disjointness condi-
tion A∩Bc

= ∅ of the corresponding HMTX�(A, Bc).
In practice, one usually choosesA and the comple-
mentBc of B to be bounded.

This variant formulation was fruitful. First it al-
lowed to give a very short proof of the theorem of
Banon and Barrera [20], namely that every translation-
invariant operator is a union of HMTs. More precisely,
given a translation-invariantoperatorψ : P(E) →
P(E), Matheron’skernel[6] is the set

V(ψ) = {A ∈ P(E) | 0 ∈ ψ(A)} , (3)

and indeed Matheron showed thatif ψ is increasing,
we have

ψ(X) =
⋃

A∈V(ψ)

X ⊖ A (4)

for every X ∈ P(E), in other wordsψ is a union of
erosions. Consider now thebi-kernel[19]

W(ψ) = {(A, B) ∈ P(E)2 | A ⊆ B, [A, B] ⊆ V(ψ)} ,(5)

2



then an elegant proof in [19] shows that for everyX ∈
P(E) we have

ψ(X) =
⋃

(A,B)∈W(ψ)

η[A,B](X) , (6)

in other wordsψ is a union of interval operators (equiv-
alently, of HMTs).

However, the main advantage of considering an in-
terval operator (2) instead of a HMT (1), is that it gave
way to the first theory (by Ronse [18]) of interval op-
erators on grey-level images and more generally on
complete lattices, in particular the operatorsδAη[A,B]

are part of a very interesting family of idempotent
and anti-extensive operators, called in [18]open-over-
condensations.

A few years later, Soille [21,4] gave independently
another definition of a HMT for grey-level images. His
framework was restricted to the use of flat structuring
elements and of discrete grey-levels. However, as we
will see in the next section, it can easily be generalized
to non-flat structuring functions and to images with
arbitrary grey-levels (continuous or discrete). More-
over, he introduced the possibility of constraining the
HMT; as we will see later on, this constraining of the
HMT can also be applied to Ronse’s version.

When it is extended to non-flat structuring elements,
the unconstrained version of Soille’s HMT has some
resemblance with Ronse’s interval operator [18], and is
also very similar to an operation introduced by Barat et
al. [22–24] under the name ofmorphological probing.

The authors have successfully applied grey-level
HMTs to the detection of blood vessels in 3D angio-
graphic images [25–28]. In fact, we used both Ronse’s
and Soille’s unconstrained versions, but also some new
variants. Therefore we have felt that it would be use-
ful to make a review of the different grey-level HMTs
found in the literature, and to give a unified theory
containing each one as a particular case.

The paper is organized as follows. In Section 2 we
review the various approaches to the grey-level HMT
found in the literature, mainly the ones of Ronse [18],
Soille [21,4] and Barat et al. [22–24]; we general-
ize Soille’s approach to arbitrary (not necessarily flat)
structuring elements and arbitrary (not necessarily dis-
crete) grey-levels. We will see that these HMTs can
be better understood by expressing them as grey-level
extensions of the interval operatorη[A,B] (2).

In Section 3 we give a unified theory of grey-level
interval operators. Such an operator can be decom-
posed into two steps:

(i) a fitting which extracts from a grey-level image
and a pair of structuring functions, a set of pairs
(p, t) (p a point,t a grey-level); we have two ver-
sions (following the approaches of Ronse and
Soille), and each one can optionally becon-
strainedas in Soille’s approach;

(ii) a valuation which constructs from this set of
pairs (p, t) the resulting grey-level image; we
have three versions: asupremalone (following
Ronse), anintegral one (following Soille), and
a binary one (which produces a binary image).

This gives thus in theory a set of six unconstrained
grey-level HMTs, and six constrained ones (however,
there is some redundancy in this set).

The Conclusion summarizes our findings and gives
some perspectives for further research. In particular,
we have not extended our theory to the general frame-
work of complete lattices, nor have we analysed the
operators obtained by composition of the HMT and the
dilation by the foreground structuring element (both
things were done in [18] for one version of the HMT).

Part II of this paper [29] will provide a review of
our work on the application of grey-level HMTs to the
detection and enhancement of blood vessels in 3D an-
giographic images, but also algorithmic remarks about
grey-level HMT, still valid for more general applica-
tions.

2. Existing approaches to the grey-level HMT

We will review the various forms given in the lit-
erature for the grey-level HMT. But let us beforehand
recall the basics from grey-level morphology [1,30].

We consider a spaceE of points, which can in gen-
eral be an arbitrary set. However, in order to define
translation-invariant operators (like the dilation and
erosion by a structuring element), we need to add and
subtract points, so in this case we assumeE to be
the digital spaceZn or the Euclidean spaceRn, for
which the addition and subtraction of vectors are well-
defined.

We have a setT of grey-levels, which is part of the
extended real lineR = R ∪ {+∞,−∞}. We requireT
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to be closed under nonvoid infimum and supremum
operations (equivalently,T is a topologically closed
subset ofR); for example we can takeT = R, T =
Z = Z ∪ {+∞,−∞}, T = [a, b] (a, b ∈ R, a < b) or
T = [a . . .b] = [a, b] ∩ Z (a, b ∈ Z, a < b). ThenT
is a complete lattice[1] w.r.t. the numerical order≤.
Write ⊤ and⊥ respectively for the greatest and least
elements ofT.

Grey-level images are numerical functionsE→ T,
they are generally written by capital lettersF,G,H, . . .
The setTE of such functions is a complete lattice for
the componentwise ordering defined by

F ≤ G ⇐⇒ ∀p ∈ E, F(p) ≤ G(p) ,

with the componentwise supremum and infimum op-
erations:

and

∨

i∈I

Fi : E→ V : p 7→ sup
i∈I

Fi(p)

∧

i∈I

Fi : E→ V : p 7→ inf
i∈I

Fi(p) .

Let us now introduce some notation. GivenF,G ∈ TE,
we writeG ≫ F (or equivalently,F ≪ G) if there is
someh > 0 such that for everyp ∈ E we haveG(p) ≥
F(p) + h. For F ∈ TE and p ∈ E, the translateof F
by p is the functionFp : E→ T : x 7→ F(x− p). The
supportof a functionF is the set supp(F) of points of
E having grey-levelF(p) strictly above the least value
⊥:

supp(F) = {p ∈ E | F(p) > ⊥} , (7)

and thedual supportof F is the set supp∗(F) of points
of E having grey-levelF(p) strictly below the greatest
value⊤:

supp∗(F) = {p ∈ E | F(p) < ⊤} . (8)

For everyt ∈ T, write Ct for the functionE → T
with constant valuet: ∀p ∈ E, Ct(p) = t. We see
in particular that the least and greatest elements of
the latticeTE of numerical functions are the constant
functionsC⊥ andC⊤ respectively. For anyB ⊆ E and
t ∈ T, thecylinder of base B and level tis the function
CB,t defined by

∀p ∈ E, CB,t(p) =



















t if p ∈ B,

⊥ if p < B.
(9)

Note in particular thatCt = CE,t. Also, for h ∈ E and
t ∈ T, the impulse ih,t is the cylinderC{h},t, thus

∀p ∈ E, ih,t(p) =



















t if p = h,

⊥ if p , h.
(10)

For F ∈ TE, we haveih,t ≤ F iff t ≤ F(h), and

F =
∨

{ih,t | h ∈ E, t ∈ T, t ≤ F(h)} ,

in other words every function is a supremum of the
impulses below it.

Thedual cylinder of base B and level tis the func-
tion C∗B,t defined by

∀p ∈ E, C∗B,t(p) =



















t if p ∈ B,

⊤ if p < B.
(11)

For V,W ∈ TE with V ≤ W, we have theinterval
[V,W] = {F ∈ ET | V ≤ F ≤W}.

Everyincreasingoperatorψ : P(E)→ P(E) on sets
extends to aflat operatorψT : TE → TE on grey-level
images [31]. For everyF ∈ TE and t ∈ T we define
the threshold set[1]

Xt(F) = {p ∈ E | F(p) ≥ t} .

ClearlyXt(F) is decreasing with respect tot. NowψT

is defined by applyingψ to each threshold set and
stacking the results. Formally:

ψT(F) =
∨

t∈T

Cψ(Xt(F)),t , (12)

so that for every pointp ∈ E we have

ψT(F)(p) =
∨

{t ∈ T | p ∈ ψ (Xt(F))} . (13)

In particular, whenE = Rn or Zn, the dilation δB

and erosionεB by a structuring elementB extend as
follows:

δT
B(F) =

∨

b∈B

Fb and εT
B(F) =

∧

b∈B

F−b , (14)

so that for every pointp ∈ E we have

and

δT
B(F)(p) =

∨

b∈B

F(p− b)

εT
B(F)(p) =

∧

b∈B

F(p+ b) .
(15)
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We will also write F ⊕ B and F ⊖ B for δT
B(F) and

εT
B(F) respectively.
Let us now consider morphological operations with

structuring elements that are functions instead of sets.
Here grey-levels will be added and subtracted in for-
mulas, thus in order to avoid grey-level overflow in
computations,T must necessarily be unbounded (so
⊤ = +∞ and⊥ = −∞), in fact we assume thatT = R
or Z (howeverT = aZ = {az | z ∈ Z} ∪ {+∞,−∞},
wherea > 0, is also possible). LetT′ = T \{+∞,−∞},
the set of finite grey-levels. We saw above that a func-
tion F can be translated by a pointp ∈ E, this is a hor-
izontal translation; now there is also a vertical transla-
tion, namely by a finite grey-levelt ∈ T′, transforming
F into F + t. Combining both, we get the translation
by (p, t), the translate ofF by (p, t) is F(p,t) = Fp+ t :
x 7→ F(x− p) + t. We consider impulsesih,t only for
t ∈ T′. Theumbraof a functionF ∈ TE is the set

U(F) = {(h, t) | h ∈ E, t ∈ T′, t ≤ F(h)} . (16)

Note that for an impulseih,t, we haveih,t ≤ F iff (h, t) ∈
U(F), and

F =
∨

{ih,t | (h, t) ∈ U(F)} . (17)

For F,G ∈ TE, we can define the Minkowski addition
F ⊕G and subtractionF ⊖G as follows:

and

F ⊕G =
∨

(h,t)∈U(G)

F(h,t)

F ⊖G =
∧

(h,t)∈U(G)

F(−h,−t) .
(18)

At every pointp ∈ E we have

(F ⊕G)(p) = sup
h∈E

(

F(p− h) +G(h)
)

= sup
h∈supp(G)

(

F(p− h) +G(h)
)

and

(F ⊖G)(p) = inf
h∈E

(

F(p+ h) −G(h)
)

= inf
h∈supp(G)

(

F(p+ h) −G(h)
)

.

SinceT = R orZ, the termsF(p−h), F(p+h), andG(h)
can have an infinite value, so the expressionsF(p −
h)+G(h) andF(p+h)−G(h) can take the form+∞−∞
or −∞ +∞, which are arithmetically undefined; then
their evaluation is achieved by the following rules:

– In the formula for (F⊕G)(p), we consider that+∞ =
∨

T′ and−∞ =
∨

∅, so+∞ −∞ =
∨

t∈T′
∨

t′∈∅(t +
t′) =

∨

∅ = −∞, in other words expressions of the
form+∞−∞ or −∞+∞must be evaluated as−∞.

– Dually, in the formula for (F ⊖G), we consider that
+∞ =

∧

∅ and−∞ =
∧

T′, so expressions of the
form+∞−∞ or −∞+∞must be evaluated as+∞.

We obtain thus the dilation and erosion byG, namely
δG : F 7→ F ⊕ G and εG : F 7→ F ⊖ G. These two
operations form anadjunction[1]:

∀F1, F2 ∈ TE, F1 ⊕G ≤ F2 ⇐⇒ F1 ≤ F2 ⊖G .(19)

Consider thesymmetricalǦ of G defined byǦ(x) =
G(−x), and thegrey-level inversion T→ T : t 7→ −t,
which extends to functions by transformingF into
−F : x 7→ −F(x). From (18) is easily seen that

and
−(F ⊕G) = (−F) ⊖ Ǧ

−(F ⊖G) = (−F) ⊕ Ǧ ,
(20)

in other words, erosion is thedual under grey-level
inversionof the dilation with the symmetrical struc-
turing function. Let us define thedual of G asG∗ =
−Ǧ : x 7→ −G(−x).

Taking a setB ∈ P(E) as structuring element, the
flat dilation and erosion byB seen in (14,15) are a
particular case of dilation and erosion by a grey-level
function, since we have:

F ⊕ B = F ⊕CB,0 and F ⊖ B = F ⊖CB,0 . (21)

More generally, fort ∈ T′, we have

and
F ⊕CB,t = (F ⊕ B) + t

F ⊖CB,t = (F ⊖ B) − t .
(22)

Structuring functions of the formCB,0 are also called
flat structuring elements.

Grey-level Minkowski operations do not always
preserve the bounds of image grey-levels:
Lemma 1 Let F,G ∈ TE such that F(p) ∈ [a, b] for
all p ∈ E, and let g= supp∈E G(p). Then for all p∈ E
we have(F ⊕G)(p) ∈ [a+ g, b+ g] and (F ⊖G)(p) ∈
[a− g, b− g].
Proof From (18) we check easily that for anyt ∈ T,
Ct⊕G = Ct+g andCt⊖G = Ct−g. The fact that∀p ∈ E,
F(p) ∈ [a, b], means thatCa ≤ F ≤ Cb. Hence we
get Ca+g = Ca ⊕ G ≤ F ⊕ G ≤ Cb ⊕ G = Cb+g and
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Ca−g = Ca ⊖ G ≤ F ⊖ G ≤ Cb ⊖ G = Cb−g, that is
∀p ∈ E, (F ⊕G)(p) ∈ [a+ g, b+ g] and (F ⊖G)(p) ∈
[a− g, b− g]. Q.E.D.

The next result is fundamental for our analysis:
Proposition 2 Let F,V,W ∈ TE, p ∈ E and t ∈ T′.
Then:

(i) V(p,t) ≤ F iff (F ⊖ V)(p) ≥ t.
(ii) V(p,t) ≪ F iff (F ⊖ V)(p) > t.
(iii) F ≤W(p,t) iff (F ⊕W∗)(p) ≤ t.
(iv) F ≪W(p,t) iff (F ⊕W∗)(p) < t.

Proof 1. (F ⊖ V)(p) ≥ t meansi(p,t) ≤ F ⊖ V, and
by adjunction (19) this is equivalent toi(p,t) ⊕ V ≤ F;
but i(p,t) ⊕ V = Vp,t, so the result follows.

2. V(p,t) ≪ F iff there is someh > 0 with V(p,t) ≤

F−h; by item 1, this is equivalent to
(

(F−h)⊖V
)

(p) ≥
t, in other words (F ⊖ V)(p) − h ≥ t for someh > 0,
that is (F ⊖ V)(p) > t.

3. By grey-level inversion,F ≤ W(p,t) iff −F ≥
−(W(p,t)) = (−W)(p,−t). Applying item 1, this is equiv-
alent to

(

(−F) ⊖ (−W)
)

(p) ≥ −t. Inverting again,

this means−
(

(−F) ⊖ (−W)
)

(p) ≤ t; by duality (20),

−
(

(−F)⊖ (−W)
)

= −(−F)⊕ (−W)∨ = F ⊕W∗, and the
result follows.

4. F ≪ W(p,t) iff there is someh > 0 with F +
h ≤ W(p,t); by item 3, this is equivalent to

(

(F + h) ⊕

W∗)
)

(p) ≤ t, in other words (F ⊕W∗)(p) + h ≤ t for
someh > 0, that is (F ⊕W∗)(p) < t. Q.E.D.

Let us apply this result to the case where (F⊖V)(p)
or (F ⊕W∗)(p) has an infinite value:
Corollary 3 Let F,V,W ∈ TE and p∈ E. Then:

(i) (F ⊖ V)(p) = +∞ iff
(

∀t ∈ T′, V(p,t) ≤ F
)

iff
∨

t∈T′ V(p,t) ≤ F.

(ii) (F ⊖ V)(p) = −∞ iff
(

∀t ∈ T′, V(p,t) 6≤ F
)

.

(iii) (F ⊕W∗)(p) = +∞ iff
(

∀t ∈ T′, F 6≤W(p,t)

)

.

(iv) (F ⊕W∗)(p) = −∞ iff
(

∀t ∈ T′, F ≤ W(p,t)

)

iff

F ≤
∧

t∈T′ W(p,t).
Proof Items 1 and 2 follow from item 1 of Proposi-
tion 2, and the fact that+∞ is the only value≥ t for
all t ∈ T′, while −∞ is the only one6≥ t for all t ∈ T′.
Items 3 and 4 follow from item 3 of Proposition 2, and
the fact that+∞ is the only value6≤ t for all t ∈ T′,
while −∞ is the only one≤ t for all t ∈ T′. Q.E.D.

Note that if F has all its values in an inter-
val [t0, t1] ⊂ R, and supp∈E V(p) = v ∈ R and
inf p∈E W(p) = w ∈ R, then by Lemma 1,F ⊖ V and
F ⊕ W∗ will have all their values in the intervals
[t0 − v, t1 − v] and [t0 − w, t1 − w] respectively, hence
infinite values do not occur in such a case.

2.1. Ronse’s supremal interval operator

The basic ideas in Ronse’s approach [18] are to start
from the interval operator (2) instead of the HMT,
and to consider the fact that a grey-level image is a
supremum of impulses (17) as the parallel of the fact
that a set is a union of singletons. We still assume
that T = Z or R. We define thus forV,W ∈ TE such
that V ≤ W the supremal interval operatorηS

[V,W] by
setting for everyF ∈ TE:

ηS
[V,W](F)

=

∨

{i(p,t) | (p, t) ∈ E × T′, F(−p,−t) ∈ [V,W]}

=

∨

{i(p,t) | (p, t) ∈ E × T′, V(p,t) ≤ F ≤W(p,t)} .

(23)

Note that following [19], Ronse wroteF T (V,W) for
ηS

[V,W](F). By Proposition 2, fort ∈ T′, V(p,t) ≤ F ≤
W(p,t) iff (F ⊕ W∗)(p) ≤ t ≤ (F ⊖ V)(p). Hence for
everyp ∈ E,

ηS
[V,W](F)(p) = sup{t ∈ T′ | V(p,t) ≤ F ≤W(p,t)} .

Now for a ≤ b, we haveb = sup{t ∈ T′ | a ≤ t ≤ b},
except ifa = b = +∞, in which case we get the empty
supremum, that is−∞. We obtain thus:

ηS
[V,W](F)(p) =


































(F ⊖ V)(p) if ( F ⊖ V)(p) ≥ (F ⊕W∗)(p)

, +∞ ,

−∞ otherwise .

(24)

Note that if (F ⊖ V)(p) = (F ⊕ W∗)(p) = +∞, by
Corollary 3 we haveF 6≤ W(p,t) for all t ∈ T′, so that
ηS

[V,W](F)(p) = −∞, and not+∞.
In practice, one usually choosesV with bounded

support, andW with bounded dual support (i.e.,W∗

has bounded support). For example, we can takeV =
CA,a andW = C∗B,b, see Fig. 1; thenW∗ = CB̌,−b and
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A BB

V

W

E

T

a

b

Fig. 1. Top: The two structuring elementsA (in black) andB (in
grey). Bottom: the cylinderV = CA,a (in black) has supportA and
the dual cylinderW = C∗B,b (in grey) has dual supportB.

by (22),F⊖V = (F⊖A)−a andF⊕W∗ = (F⊕ B̌)−b,
so that (24) gives here:

ηS
[V,W](F)(p) =


































(F ⊖ A)(p) − a if ( F ⊖ A)(p) ≥ (F ⊕ B̌)(p) + a− b

, +∞ ,

−∞ otherwise .

For A, B and a fixed, ηS
[V,W](F) increases withb, as

more and more points will get the value (F⊖A)(p)−a
instead of−∞. We illustrate this in Fig. 2.

The operatorδVη
S
[V,W] mapsF ∈ TE on

∨

{V(p,t) | (p, t) ∈ E × T′, V(p,t) ≤ F ≤W(p,t)} .

It is idempotent and anti-extensive like an opening
[18], but not increasing. It is part of a family of oper-
ators calledopen-over-condensations.

In [18] the theorem of Banon-Barrera (5,6) was also
extended to grey-level images (and more generally,
in a complete lattice where Minkowski operations are
properly defined [2]): every translation-invariant op-
erator is a supremum of supremal interval operators.

0
−1

T

E

A

B B

Fig. 2. HereE = Z andT = Z. On top we show the two structuring
elementsA and B (the origin being the left pixel ofA), with the
associated levelsa = 0 andb = −1 (thusV = CA,0 andW = C∗B,−1).

Below we show a functionF, and in grey we haveηS
[V,W] (F),

forming three peaks. The left peak would disappear forb ≤ −2,
and the right one forb ≤ −3.

2.2. Soille’s integral HMT

Soille [21,4] assumes discrete grey-levels (an inter-
val in Z) and flat structuring elements. If we return
to the formula (13) for the construction of the flat op-
eratorψT from an increasingset operatorψ, the set
of all t ∈ T such thatp ∈ ψ (Xt(F)) is a closed inter-
val [⊥, b], whereb gives the valueψT(F)(p) (NB. this
holds because we have discrete grey-levels; otherwise
we could have the half-open interval [⊥, b[). This is
no longer valid ifψ is not increasing; in particular, if
ψ is a HMT, we will see below that it is an interval,
but generally not containing⊥. The idea in [21,4] is
to take as value of the grey-level HMT the length of
that interval.

Let A, B ∈ P(E) be disjoint structuring elements,
and consider the finite grey-level setT̂ = [t0 . . . t1] ⊂
Z. Soille’s (unconstrained) HMT on grey-level images,
written UHMTA,B, is defined [4, Eq. (5.3) p. 143] by
setting for everyF ∈ T̂E andp ∈ E:

UHMTA,B(F)(p) =

card{t ∈ T | p ∈ Xt(F) � (A, B)} .
(25)

Note that the resulting grey-level values will be non-
negative, in fact they belong to the interval [0, t1− t0].
We illustrate it in Fig. 3 (to be compared with Fig. 2).
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A BB
T

E

Fig. 3. HereE = Z and T = [0 . . . t1] ⊂ Z. On top we show the
two structuring elementsA and B (the origin being the left pixel
of A). Below we show a functionF (the same as in Fig. 2); the
dots indicate the pairs (p, t) with p ∈ Xt(F) � (A,B), and in grey
we haveUHMTA,B(F).

In order to analyse Soille’s operator, we embed the
grey-level setT̂ into Z:
Proposition 4 Let A, B ∈ P(E), T = Z and T̂ =
[t0 . . . t1] ⊂ Z. For every t∈ T, F ∈ T̂E and p∈ E, we
have p∈ Xt(F) � (A, B) iff

(CA,0)(p,t) = CAp,t ≤ F ≪ C∗Bp,t
= (C∗B,0)(p,t) ,

iff (F ⊕ B̌)(p) < t ≤ (F ⊖ A)(p).
Proof Recall thatq ∈ Xt(F) iff F(q) ≥ t. The con-
dition p ∈ Xt(F) � (A, B) means thatAp ⊆ Xt(F) and
Bp ⊆ Xt(F)c. The first partAp ⊆ Xt(F) translates as:
for everyq ∈ Ap, F(q) ≥ t; on the other hand, forq <
Ap, we have alwaysF(q) ≥ −∞; henceAp ⊆ Xt(F) ⇔
CAp,t ≤ F. The second partBp ⊆ Xt(F)c translates as:
for everyq ∈ Bp, F(q) < t, that isF(q)+ 1 ≤ t; on the
other hand, forq < Bp, we have alwaysF(q) + 1 ≤
t1+1 ≤ +∞; henceBp ⊆ Xt(F)c ⇔ F ≪ C∗Bp,t

. There-
fore p ∈ Xt(F) � (A, B) iff CAp,t ≤ F ≪ C∗Bp,t

. Now
clearly CAp,t = (CA,0)(p,t) andC∗Bp,t

= (C∗B,0)(p,t). Ap-
plying Proposition 2, and the fact that (C∗B,0)

∗
= CB̌,0,

the condition (CA,0)(p,t) ≤ F ≪ (C∗B,0)(p,t) is equivalent
to (F ⊕ CB̌,0)(p) < t ≤ (F ⊖ CA,0)(p), in other words
by (22), (F ⊕ B̌)(p) < t ≤ (F ⊖ A)(p). Q.E.D.

We get thus:

UHMTA,B(F)(p) =

max
{

(F ⊖ A)(p) − (F ⊕ B̌)(p), 0
}

,
(26)

in other words [4, Eq. (5.4) p. 143] it has value

(F ⊖ A)(p) − (F ⊕ B̌)(p)

if ( F ⊖ A)(p) > (F ⊕ B̌)(p), and 0 otherwise.
From Proposition 4, we see that Soille’s grey-level

HMT is not restricted to flat structuring elements; the
two setsA andB correspond implicitly to the cylinder
CA,0 and the dual cylinderC∗B,0. Also, it does not re-
quire discrete grey-levels; we have simply to measure
at each pointp the half-open interval

]

(F⊕ B̌)(p), (F⊖

A)(p)
]

. Now the Lebesgue measure inR and the dis-
crete measure (cardinal) inZ, when applied to a half-
open interval ]a, b], both give its lengthb− a.

Assume thusT = Z or R. Let mesbe the measure
used onT′ (Lebesgue’s forT′ = R and discrete for
T′ = Z). ForV,W ∈ TE such thatV ≤W, we define the
integral interval operatorηI

[V,W] by setting for every
F ∈ TE andp ∈ E:

ηI
[V,W](F)(p)

= mes
(

{t ∈ T′ | V(p,t) ≤ F ≪W(p,t)}
)

= mes
(

{t ∈ T′ | (F ⊕W∗)(p) < t ≤ (F ⊖ V)(p)}
)

= max
{

(F ⊖ V)(p) − (F ⊕W∗)(p), 0
}

.

(27)

In the third line of the equation, an expression of the
form+∞−∞ or−∞+∞ for (F ⊖V)(p)− (F⊕W∗)(p)
must lead to the value 0. Indeed, if (F ⊖ V)(p) =
(F ⊕W∗)(p) = +∞, Corollary 3 givesF 6≤ W(p,t) for
all t ∈ T′, while if (F ⊖ V)(p) = (F ⊕W∗)(p) = −∞,
Corollary 3 givesV(p,t) 6≤ F for all t ∈ T′; in both cases
the second line of the equation givesmes(∅) = 0.

We can take, as above with Ronse’s operator,V =
CA,a andW = C∗B,b. For A, B anda fixed, increasingb
increasesηI

[V,W](F) by the same amount on all points
having non-zero value. For flat structuring elements
(V = CA,0 andW = C∗B,0), we obtain Soille’s original
operatorUHMTA,B.

As can be seen with Fig. 2 and 3, the two inter-
val operatorsηS

[V,W] andηI
[V,W] can be used to detect in

an image all locationsp where the grey-level onAp

is higher than that onBp by at least some heighth:
here we takeV = CA,a andW = C∗B,b with h = a− b.
While ηS

[V,W] behaves as the erosionεV at such loca-
tions,ηI

[V,W] measures the effective difference between
the grey-levels inAp andBp.

Note that, contrarily toδVη
S
[V,W], the operator

δVη
I
[V,W] is not necessarily idempotent. Take for ex-

ampleE = Z, the flat structuring elementsA = {0}
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andB = {−1} (thusV = C{0},0 andW = C∗
{−1},0). Then

δV = εV is the identity, whileδW∗ is the translation
by +1. We illustrate in Fig. 4 the construction of

δVη
I
[V,W](F) and

(

δVη
I
[V,W]

)2
(F) for F given byF(z) = z

for z= 1, . . . , 5 andF(z) = 0 otherwise.

0 1 2 3 4 5 6

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

(b)

(c)

(a)

(d)

(e)

Fig. 4. (a) The function F; we have F ⊖ V = F (with
V = C{0},0). (b) The functionF′ = F ⊕W∗ (with W = C∗

{−1},0)

is the translate ofF by +1. (c) G = ηI
[V,W] (F) is given by

G(p) = max{F(p) − F′(p), 0}; we haveG = δV(G) = δVη
I
[V,W] (F),

andG = G⊖ V. (d) G′ = G⊕W∗ is the translate ofG by +1. (e)
H = ηI

[V,W] (G) is given byH(p) = max{G(p) −G′(p), 0}; we have

H = δV(H) = δVη
I
[V,W] (G) =

(

δVη
I
[V,W]

)2
(F).

Soille introduced a constrained variantCMHTA,B

of his HMT. Here we assume that one of the two
structuring elementsA and B contains the origino.
If o ∈ A, in (25) we require thatp ∈ Xt(F) � (A, B)
for t = F(p), which means that (F ⊕ B̌)(p) < F(p) ≤
(F ⊖ A)(p); if the requirement is not met, the result is
0. Aso ∈ A, we always have (F⊖A)(p) ≤ F(p), hence
we get

CHMTA,B(F)(p) =

card{t ∈ T | (F ⊕ B̌)(p) < t ≤ (F ⊖ A)(p) = F(p)} ,

in other words it is equal to


































(F ⊖ A)(p) − (F ⊕ B̌)(p) if F(p) = (F ⊖ A)(p)

> (F ⊕ B̌)(p) ,

0 otherwise.

If o ∈ B, in (25) we require thatp ∈ Xt(F)� (A, B) for
t = F(p)+1, which means that (F⊕B̌)(p) < F(p)+1 ≤

(F ⊖ A)(p) that is (F ⊕ B̌)(p) ≤ F(p) < (F ⊖ A)(p),
and the result is 0 if this condition fails. Aso ∈ B, we
always have (F ⊕ B̌)(p) ≥ F(p), so we get

CHMTA,B(F)(p) =

card{t ∈ T | F(p) = (F ⊕ B̌)(p) < t ≤ (F ⊖ A)(p)} ,

in other words it is equal to


































(F ⊖ A)(p) − (F ⊕ B̌)(p) if ( F ⊖ A)(p) >

(F ⊕ B̌)(p) = F(p) ,

0 otherwise.

In order to generalize this to arbitrary structuring
functions, we can forget the requirement thatA or B
contains the origin, but keep only the constraint that
F(p) = (F ⊖A)(p) or F(p) = (F ⊕ B̌)(p). Thus we ob-
tain, for V,W ∈ TE such thatV ≤ W, theconstrained
integral interval operatorηC

[V,W] , which gives for every
F ∈ TE andp ∈ E:

ηC
[V,W](F)(p)

=



































ηI
[V,W](F)(p) if F(p) = (F ⊖ V)(p)

or F(p) = (F ⊕W∗)(p) ,

0 otherwise.

(28)

2.3. Barat’s morphological probing

Barat et al. [22–24] introduced under the name of
morphological probingan operation which has some
similarity to the integral grey-level interval operator
ηI

[V,W]. We consider again two structuring functions
V,W ∈ TE; the idea is to measure at each pointp ∈ E
two numerical valuestv andtw defined as follows:tv is
the greatestt such thatVp,t ≤ F, while tw is the leastt
such thatF ≤Wp,t; then one associates top the value
tw − tv.

From Proposition 2 and Corollary 3, we have

and
(F ⊖ V)(p) = sup{t ∈ T′ | V(p,t) ≤ F}

(F ⊕W∗)(p) = inf{t ∈ T′ | F ≤W(p,t)} .
(29)

Moreover:
– if (F⊖V)(p) , ±∞, (F⊖V)(p) is the greatestt ∈ T′

such thatV(p,t) ≤ F;
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– if (F⊕W∗)(p) , ±∞, (F⊕W∗)(p) is the leastt ∈ T′

such thatF ≤W(p,t).
Thus Barat’s morphological probing operatorMPV,W

is given by

MPV,W(F)(p) = (F ⊕W∗)(p) − (F ⊖ V)(p) (30)

for everyF ∈ TE and p ∈ E. We haveηI
[V,W](F)(p) =

max{−MPV,W(F)(p), 0} by comparison to (27). We il-
lustrate in Fig. 5 the difference between morphological
probing and the integral grey-level interval operator.

t

t

v

w

p

p

WW

V V

Fig. 5. Left: In morphological probing, we look for the least
interval [tv, tw] such that Vp,tv ≤ F and F ≤ Wp,tw . Right: in
the integral interval operator, we look for the greatest interval
{t | Vp,t ≤ F ≪Wp,t}.

Contrarily to the two interval operators seen above,
here we do not require on the structuring functionsV
and W that V ≤ W, but rather that we always have
F ⊕ W∗ ≥ F ⊖ V. For example consider two func-
tionsGv,Gw defined on a supportS, such that−∞ <

Gw(p) ≤ Gv(p) < +∞ for all p ∈ S, and letV,W be
defined byV(p) = Gv(p) andW(p) = Gw(p) for p ∈
S, while V(p) = −∞ andW(p) = +∞ for p < S. Here
we will have

(F ⊕W∗)(p) = sup
h∈S

(

F(p+ h) −Gw(h)
)

≥ inf
h∈S

(

F(p+ h) −Gv(h)
)

= (F ⊖ V)(p) .

In [22–24] the particular case whereGv = Gw was
considered. For instance, ifGv = Gw has constant
value 0 onS, we getV = CS,0 andW = C∗S,0, as in the
left image in Fig. 5.

2.4. Other works

Khosravi and Schafer [32] use a single structuring
functionV and define a grey-level HMT onF as the
arithmetical sum [F ⊖ V] + [(−F) ⊖ (−V)]; by duality
(20), this is equal to [F ⊖ V] − [F ⊕ V∗]. This is thus
the same asηI

[V,V], except that negative values are not
changed into 0.

Schaefer and Casasent [13] use two structuring
functionsV andW, and define a grey-level HMT on
F as the meet [F ⊖ V] ∧ [(−F) ⊖W] (however they
use a non-standard notation for expressing this).

Raducanu and Graña [33] compare the grey-level
HMT (GHMT) defined by Khosravi and Schafer [32]
with an operator called the level set hit-or-miss trans-
form (LSHMT). This operator consists in applying a
binary HMT to the successive thresholds of a func-
tion F and of a structuring functionG, and keep the
supremum of all results:

F � G = sup{t ∈ T | p ∈ Xt(F) �

(

Xt(G),Xt(G)c
)

} .

3. Unified theory

From the two interval operators described in Sub-
sections 2.1 and 2.2, we see that both involve two
steps: first afitting which associates to an imageF a
set of pairs (p, t) ∈ E × T′, for which the translates
V(p,t) andW(p,t) have some relation toF; it can even-
tually be associated to the operation ofconstraining;
second avaluationwhich derives from this set of (p, t)
a new grey-level image.

AssumeV,W ∈ ET with V ≤ W. The fitting used
in Ronse’s supremal interval operator will be written
HV,W, it is defined by

HV,W(F) = {(p, t) ∈ E × T′ | V(p,t) ≤ F ≤W(p,t)} . (31)

Another one was used in Soille’s integral interval op-
erator, we write itKV,W, it is defined by

KV,W(F) = {(p, t) ∈ E × T′ | V(p,t) ≤ F ≪W(p,t)} . (32)

Next, the constraining is the operatorCV,W : TE →

P(E×T′), associating to a functionF : E→ T the set

CV,W(F) =
{

p ∈ E | F(p) = (F ⊖ V)(p)

or F(p) = (F ⊕W∗)(p)
}

× T′ .
(33)
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We get thus the twoconstrained fittings HCV,W andKC
V,W

defined by

and
HC

V,W(F) = HV,W(F) ∩CV,W(F)

KC
V,W(F) = KV,W(F) ∩CV,W(F) .

(34)

The valuation must associate to any subset ofE×T′

a functionE→ T. The one used in Ronse’s supremal
interval operator is the upper envelope operatorS,
associating to anyY ∈ P(E × T′) the function

S(Y) : E→ T : p 7→ sup{t ∈ T′ | (p, t) ∈ Y} . (35)

Note thatS is a dilation in the algebraic sense [1], that
is:

S
(

⋃

i∈I

Yi

)

=

∨

i∈I

S(Yi) ; (36)

the adjoint erosion [1] is the map associating to a
functionF its umbraU(F), see (16).

Soille’s integral interval operator uses another one,
written I , associating to anyY ∈ P(E×T′) the function

I (Y) : E→ T : p 7→ mes
(

{t ∈ T′ | (p, t) ∈ Y}
)

, (37)

wheremesmeans the measure (Lebesgue’s forT′ =
R and discrete forT′ = Z). Following [19], for a
sequenceXn of sets and a setX, we write Xn ↑ X to
mean that the sequenceXn (n ∈ N) is increasing (i.e.,
Xn ⊆ Xn+1 for all n ∈ N) and converges toX (i.e., X =
⋃

n∈N Xn); similarly for a numerical sequencern, rn ↑ r
means that the sequence is increasing and converges
to r (i.e., rn ≤ rn+1 for all n ∈ N, andr = supn∈N rn). A
well-known property of measures is that for a sequence
Xn of measurable sets,Xn ↑ X =⇒ mes(Xn) ↑ mes(X)
(see Theorem 1.8(c) on p. 25 of [34]). We have thus
for a sequenceYn (n ∈ N) in E × T′:

Yn ↑ Y =⇒ I (Yn) ↑ I (Y) , (38)

which is weaker than being a dilation, as in (36).
We introduce a third valuation, the binary oneB,

which associates to anyY ∈ P(E × T′) the set

B(Y) = {p ∈ E | ∃t ∈ T′, (p, t) ∈ Y} . (39)

We can represent it as a function with value+∞ on
B(Y) and −∞ elsewhere, this gives thus the binary
mask valuationM associating toY the function

M(Y) : E→ T :

p 7→



















+∞ if ∃t ∈ T′, (p, t) ∈ Y ,

−∞ otherwise .

(40)

Note thatB and M are also dilations in the algebraic
sense, that is:

and

B
(

⋃

i∈I

Yi

)

=

⋃

i∈I

B(Yi)

M
(

⋃

i∈I

Yi

)

=

∨

i∈I

M(Yi) ;
(41)

their adjoint erosions are respectively: forB the map
P(E)→ P(E× T′) : X 7→ X × T′, and forM the map
{−∞,+∞}E → P(E×T′) : F 7→ supp(F)×T′ = U(F).

Composing one ofHV,W or KV,W, optionally con-
strained by intersection withCV,W, by one ofS, I and
M, we obtain an interval operator. We have thus six
unconstrained operatorsS HV,W, S KV,W, IHV,W, IKV,W,
MHV,W and MKV,W, as well as six constrained ones,
S HC

V,W, S KC
V,W, IHC

V,W, IKC
V,W, MHC

V,W andMKC
V,W. We

see then that Ronse’s supremal interval operator is
S HV,W, Soille’s unconstrained integral interval oper-
ator is IKV,W, while the constrained one isIKC

V,W. In
[27,28] we used a union ofBHV,W for various choices
of pairs (V,W), as a form of segmentation of tubular
shapes, while in [25,26] we associated to an imageF
the image

F ∧ MKV,W(F) :

p 7→



















F(p) if ∃t ∈ T′, V(p,t) ≤ F ≪W(p,t) ,

−∞ otherwise ,

which represents tubular shapes with their original
grey-level.

Let us compare, for each valuationS, I or M, the
interval operators according to the two fitting operators
HV,W (31) andKV,W (32). The relation between the two
fittings differs with the choice ofZ or R for T:

T = Z :

HV,W = KV,W+1 and KV,W = HV,W−1 ;

T = R :

HV,W =

⋂

ε>0

KV,W+ε and KV,W =

⋃

ε>0

HV,W−ε .

(42)
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Since intersection with the setCV,W distributes union
and intersection, by (33) these equalities remain valid
for constrained fittings, in other words if we replace
H by HC andK by KC in each expression.

For T = Z, each one of the six interval operators
usingHV,W (with valuationS, I or M, with or without
constraining) is equal to the corresponding operator
with KV,W+1. Consider now the case whereT = R. As
S is a dilation (36), by (42) we get

T = R : S KV,W =

∨

ε>0

S HV,W−ε , (43)

and similarly for the constrained versionsS KC
V,W and

S HC
V,W−ε. For the integral valuationI , the fact that a

closed interval [a, b] has the same Lebesgue measure
as the corresponding half-open interval ]a, b] (namely,
its lengthb− a), we get

mes
(

{t ∈ T′ | (F ⊕W∗)(p) < t ≤ (F ⊖ V)(p)}
)

= max
{

(F ⊖ V)(p) − (F ⊕W∗)(p), 0
}

= mes
(

{t ∈ T′ | (F ⊕W∗)(p) ≤ t ≤ (F ⊖ V)(p)}
)

,

so that forT = R, IKV,W = IHV,W and IKC
V,W = IHC

V,W

(but this is not true forT = Z, whereIKV,W(F)(p) =
max{IHV,W(F)(p)− 1, 0}). Finally, asB andM are di-
lations (41), we get

T = R : and

BKV,W =

⋃

ε>0

BHV,W−ε

MKV,W =

∨

ε>0

MHV,W−ε ,
(44)

and similarly for the constrained versions.

3.1. Bounded grey-levels

As we did not make any restriction on structuring
functions, we presented our operators in the frame-
work of unbounded grey-levels, namelyT = Z or R,
for which it is guaranteed that the result of an opera-
tor will not produce a grey-level overflow. In practical
situations, one takes as grey-level set a finite interval
T̂ = [t0, t1] ⊂ Z, and we have to see how the theory
adapts to this situation.

The first problem is to ascertain that the result of our
operations will have their grey-levels in the interval

[t0, t1]. If V andW are flat (V = CA,0 andW = C∗B,0),
or more generally if

sup
h∈E

V(h) = inf
h∈E

W(h) = 0

then by Lemma 1,F ⊖V andF ⊕W∗ have their grey-
levels in [t0, t1]. This shows thatV and W are not
necessarily inT̂E. In other words,the space of grey-
level images is often different from that of structuring
functions.

If we use Soille’s approach, hence the integral val-
uation I , as we get only non-negative values in the
result, we must assume thatt0 = 0, so [t0, t1] ⊂ N.

With Ronse’s approach, and the supremal valua-
tion, we use the lattice-theoretical supremum opera-
tion. Now inT̂ = [t0, t1], all suprema and infima are the
same as inZ andR, except the empty ones: sup∅ = ⊥
gives−∞ in Z andR, but t0 in [t0, t1], while inf ∅ = ⊤
gives+∞ in Z and R, but t1 in [t0, t1]; thus the re-
sulting value−∞ in (24) or in an empty supremum
returned byS, must be set tot0 instead of−∞.

Note also that the special interpretation of the case
(F⊖V)(p) = (F⊕W∗)(p) = +∞ in (24), and of the case
(F ⊖ V)(p) = (F ⊕W∗)(p) = ±∞ in (27), which arose
because±∞ < T′, does not apply here for (F⊖V)(p) =
(F ⊕W∗)(p) = t1 or t0.

Finally, in the binary mask valuationM, the result-
ing values+∞ and−∞ should be replaced byt1 and
t0.

We have thus the following guidelines for translat-
ing our theory to the case of an arbitrary complete lat-
tice T of numerical values (with greatest element⊤
and least element⊥):

(i) Choose the structuring functionsV,W in such
a way that the result of the interval operators
will have their grey-levels inT (no overflow);
in particularV andW do not necessarily have
their values inT.

(ii) Let T′ = T ∩ R, the set of finite values ofT.
All special cases given above for (F ⊖ V)(p) or
(F⊕W∗)(p) = +∞ or−∞ do not apply to⊤ and
⊥ when the latter are finite.

(iii) An empty supremum (in the supremal approach)
must be set to⊥ instead of−∞. The values+∞
and−∞ in the binary mask valuationM must
be replaced by⊤ and⊥.

We illustrate in Fig. 6 the application of the three
unconstrained interval operators with fittingK in the
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case of bounded non-negative integer grey-levels.

B A B

T

E
B A B

T

E
B A B

T

E

Fig. 6. HereE = Z andT = [0 . . . t1] ⊂ N. We use flat structuring
elementsA and B (the origin being the left pixel ofA), setting
V = CA,0 andW = C∗B,0. From top to bottom, we showS KV,W(F),
IKV,W(F) and MKV,W(F), as they are computed in the framework
of bounded grey-levels; each time the result is given withF shown
dashed.

It is interesting to see what happens for binary im-
ages, that is forT = {0, 1}. Taking two disjoint struc-
turing elementsA, B, the cylinderV = CA,0 and dual
cylinderW = C∗B,0, then the 3 unconstrained and 3 con-
strained interval operators usingKV,W (namely,S KV,W,
IKV,W, MKV,W, S KC

V,W, IKC
V,W andMKC

V,W) are all equal;
in fact for F : E→ {0, 1}, S KV,W(F) (or anyone of the
5 others applied toF) has value 1 on all pointsp ∈ E
where (F ⊖ A)(p) = 1 and (F ⊕ B̌)(p) = 0, and value
0 on other points. Now every subsetX of E corre-

sponds to its characteristic function having value 1 on
X and 0 onXc; thus if F is the characteristic function
of X, thenS KV,W(F) is the characteristic function of
(X⊖ A) \ (X⊕ B̌) = X � (A, B). To summarize, all six
interval operators withKV,W are equal, and correspond
to the original HMT by (A, B) for sets (1).

4. Conclusion

Hit-or-miss transforms have proved to be very use-
ful in binary image processing. However, they have
seldom been considered in the case of grey-level im-
ages, the greatest obstacle being the difficulty to extend
this non-increasing operator to grey-level images. This
contribution provides a comprehensive theory of the
various forms of HMTs for grey-level images while
generalizing the previous approaches [18,21,4] and the
variant of morphological probing [22–24].

Applications of morphological probing were given
in [22–24,35,36]. Several applications of the grey-
level HMT have been given in [4]. In Part II of this
paper [29] we will present some applications of the
grey-level HMT in the specific case of analysing 3D
angiographic image (i.e. medical images visualizing
vessels) [25–28]. This should convince the reader of
its wide applicability in the field of grey-level image
processing.

In the same way as the composition of dilation and
erosion leads to opening and closing, it would be in-
teresting to analyse the properties of the operators ob-
tained by composition of an interval operator and the
dilation by the first structuring element. For example
δVη

S
[V,W] is idempotent, but notδVη

I
[V,W] .

Also, a complete theory of interval operators in a
complete lattice still remains to be done. Some steps in
that direction were made in [18]. Let us give a further
pointer. We consider a complete latticeL with a sup-
generating family S, that is

∀X ∈ L, X =
∨

{s ∈ S | s≤ X} ;

(say, forL = P(E), S consists of all singletons, for
L = TE, S is the set of impulses). Given two algebraic
dilationsδ, δ′ such thatδ ≤ δ′, we define the interval
operatorη[δ,δ′] by

η[δ,δ′](X) =
∨

{s ∈ S | δ(s) ≤ X ≤ δ′(s)} .
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Using the tools of [18], it can be shown thatδη[δ,δ′] is
idempotent. It would be interesting to see under which
conditions an arbitrary operator onL is a supremum of
interval operatorsη[δ,δ′] . This topic will be the subject
of a future paper.
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