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Chapter 5

Angiographic image analysis

Olena Tankyevych,Hugues Talbot, Nicolas Passat, MarianoMusacchio,Michel Lagneau1

5.1 Introduction

The important rise of medical imaging during the 20th century, mainly induced by
physics breakthroughs related to nuclear magnetic resonance and Xrays has led to the
development of imaging modalities devoted to visualise vascular structures. The anal
ysis of such angiographic images is of great interest for several clinical applications.
Initially designed to generate 2D data, these imaging modalities progressively led to
the acquisition of 3D images, enabling to visualise vascular volumes.

However, such 3D data are generally huge, being composed of several millions of
voxels, while the useful –vascular– information generally represents less than 5% of the
whole volume. In addition to this sparseness, the frequent low signaltonoise ratio and
the potential presence of artifacts make the analysis of such images quite a challenging
task. In order to assist radiologists and clinicians, it is therefore necessary to design
software tools enabling them to extract as well as possible the relevant information
embedded in 3D angiographic data.

One of the main ways to perform such a task is to develop segmentation meth
ods, i.e., tools which (automatically or interactively) extract the vessels as 3D volumes
from the angiographic images. A survey of such segmentation methods is proposed in
Section 5.3. In particular, it sheds light on recent advances devoted to merge different
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image processing methodologies to improve the segmentation accuracy.
Another way to consider computeraided analysis of 3D angiographic images is to

provide human experts with a base of highlevel anatomical knowledge which can pos
sibly be involved in more specific analysis procedures such as vessel labelling. Such
knowledge can in particular be embedded in vascular atlases which are devoted to
model qualitative and/or quantitative information related to vessels. A survey of differ
ent existing vascular atlases, and ways they can be created is proposed in Section 5.4.

The purpose of this chapter is to provide some general background notions on 3D
angiographic image analysis to the reader. Due to space limitations, it is impossible
to propose an exhaustive overview on vessel segmentation and vascular knowledge
modelling. Consequently, Sections 5.3 and 5.4 propose partial, but hopefully relevant,
states of the art on these topics. They present some of the most classical and/or recent
related works, and some pointers on more complete surveys linked to the main topics of
this chapter (or to connected research fields, for the sake of completeness). They also
present, in a more accurate fashion, some recent contributions of some of the authors,
especially related to vessel segmentation.

5.2 Clinical context

Vascular pathologies are one of the main causes of morbidity and mortality in theWest
ern world, and thus constitute an important issue in public health. The causes are
manifold, from traumatic lesions (due to accidents) to genetic vascular diseases (such
as some arteriovenous malformations), via those linked to obesity and stress (such as
atheromatosis and diabetes).

An anomaly affecting vessels can provoke perturbations in organ circulation as well
as in tissues supplied by the involved vascular network. If the lumen of the arteries
is shrunk, such as in an atheromatosis disease, blood flow will be affected and the
associated organwill be insufficiently supplied, leading, in the worst cases, to ischemia,
and then tissue death. The breaking of a vessel, normal (as in a trauma) or pathological
(as in an aneurysm rupture), can cause hemorrhages.

The various angiographic imaging techniques have to determine the nature of po
tential and actual vascular problems, and to accurately identify the affected vessels, in
order to select the most effective treatment. Magnetic resonance angiography (MRA)
was developed during the last decades, and presents the advantage to be noninvasive.
Xray angiography, and particularly computed tomography angiography (CTA) is in
vasive and irradiating, but remains, however, more performing one in terms of image
accuracy.

5.3 Vessel segmentation

The segmentation of vascular structures from 3D images is a particularly challenging
task. Here, the notion of segmentation is considered in a large sense. From an image
processing point of view, segmentation consists of partitioning an image into an object,
i.e., a structure of interest, and a background, i.e., the remainder of the image volume.
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In the context of angiographic imaging, we consider that vessel segmentation embeds
(i) methods that detect either whole vessels (i.e., their lumen and/or walls) or their me
dial axes, and/or (ii) methods that perform lowlevel processing or highlevel knowl
edge extraction (e.g., vein/artery discrimination [100, 103] or vessel labelling [14, 42]).
We also consider some methods which could be classified as filtering ones, since their
purpose is to perform vessel enhancement, which consists mainly of denoising, but also
of vessel reconnection (for example in case of stenosis, or of signal loss [27, 76]).

As discussed above, the difficulty to perform vessel segmentation is due to the
sparseness of data, and the possible presence of irrelevant signal (other tissues, ar
tifacts or noise). Moreover, anatomical properties of vessels are highly variable in
size, appearance, geometry and topology, and even more so in pathological cases like
aneurysms, stenoses, calcifications or arteriovenous malformations.

As stated in Section ??, there exist several kinds of angiographic data, generally
wellfitted for visualising specific vascular structures, and consequently for dealing
with specific clinical issues. The choice of a segmentation method is often linked to
the type of considered images, the vessel(s) to study and the clinical purpose. The next
section discusses the different methodological segmentation strategies.

5.3.1 Survey of vessel segmentation methods

General overview

Several surveys devoted to 3D vascular segmentation have been proposed during the
last ten years. The survey proposed in [94] focuses on vessel segmentation from MRA
images2, and divides them into skeleton methods (with an interest in medial axes) and
nonskeleton ones (that aim at detecting whole vascular volumes). Another (globally
similar) classification is proposed in [51] which deals more generally with vessel seg
mentation from any kind of data independently of their dimension or acquisition tech
nique. Finally, the most recent survey [56] mainly refers to 3D vessel segmentation
fromMRA and CTA, and divides its description into (i) the a priori information which
can be used for segmentation, (ii) the basic tools using this information for detecting
vessels, and (iii) the methodological frameworks involving these tools, as well as a
discussion on pre and postprocessing considerations.

In the next section, we introduce the segmentation methods divided into eight main
families corresponding to the main image processing strategies on which they rely:
regiongrowing, differential analysis, modelbased filtering, deformable models, path
finding, vessel tracking, statistical approaches, and mathematical morphology3.

Regiongrowing methods

Regiongrowing has been one of the first strategies considered for image segmentation
[117], and in particular medical/angiographic onesBasically, regiongrowing relies on

2Part I of this survey [93] also describes MRA acquisition techniques, which can be read in complement
to Section ??.

3By lack of room, it has been chosen to omit those which led to few publications. Such methodological
families, as neural networkbased methods [52], for instance, may however deserve the reader’s interest.
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two elements: one (or several) seed(s) [1] assumed to belong to the structure of interest
to be segmented, and a propagation criterion, enabling to segment the object from the
seed, by iterative addition of adjacent voxels.

In the case of vessel segmentation, seeds are generally defined interactively inside
vessels. The seeds can also be detected automatically, especially in the case where they
constitute the root of a vascular tree [69]. The possible definition of several seeds can
straightforwardly lead to an application of regiongrowing to vessel separation, and
in particular, to vein/artery discrimination. In such a case, a set of seeds is defined
for arteries and veins, respectively. A competitive regiongrowing is then performed,
based on ad hoc propagation criteria (e.g., a measure of greyscale connectedness in
[100])4.

The propagation criterion is commonly based on intensity properties, related to
the highintensity vascular signal. However, more sophisticated properties can also be
embedded in this segmentation strategy. In particular, it has been proposed to con
sider a priori knowledge related to the shape and size of the vessels to be segmented
[68], or to their topology [78]. The correctness of the orientation of the vessels during
the segmentation process has also been considered by proposing “wave propagation”
strategies [115], which aim to constrain the segmentation front to remain normal to the
vessel axis. It may be noticed that this kind of approaches has been further used for
vessel trackingmethods (discussed hereafter in the section). The concept of wave prop
agation has also further led to the development of methods related to both deformable
models (levelsets) and pathfinding approaches, namely, fastmarching methods [61].

Regiongrowing methods rely on a simple algorithmic framework, which makes
their development and use quite easy and induces a low (generally linear) computa
tional cost. In addition, they guarantee termination which is not systematically avail
able for other nonmonotonic strategies. However, the connectivity hypothesis intrin
sically associated to this strategy constitutes a weakness, since the method may fail
in segmenting vessels in case of vascular signal loss (due to partial volume effect, or
flow artifacts, for instance). A contrario, the use of a criterion being too permissive
may lead to leakage phenomena, and a final oversegmentation of vessels, requiring
to anticipate this effect [66]. In this context, regiongrowing methods have often been
preferentially devoted to the segmentation of large and/or wellcontrasted vessels (for
which intensity and connectivity hypotheses are generally reliable).

Differential analysis

Vessels are generally bright structures among a dark background. If an image is viewed
as the discrete analogue of a function from R

3 to R, vessels then appear as the maxima
of this function. Consequently, it may be possible to detect them by analysing the
differential properties of the image.

In order to deal with the discrete/continuous issue involved by this strategy, the
considered (discrete) image is convolved with a series of Gaussian derivatives with

4Note that, by duality, regiongrowing also provides solutions to segment vessels by skeletonization. In
such a case, the growing process starts from a seed being a subset of the background (which can then be
automatically defined), and generally includes topological constraints in the propagation criterion [27, 76].
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different standard deviations and in different directions, the obtained responses being
combined into a matrix.

In the case of first derivatives analysis, this matrix, which is the covariancematrix of
gradient vectors [2, 8], is called the structure tensor. Except for vessel segmentation,
the first derivatives have also been involved in diffusion filtering, which consists in
propagation of information in the orientations suggested by these derivatives [60].

In the case of second derivatives analysis, the resulting information is gathered in
the Hessian matrix. The main idea behind eigen analysis of the Hessian matrix is to
extract one or more principal directions of the local structure of the image. This gives
the direction of the minimal curvature, the principal one in the tubular structure and a
high curvature in the vessel crosssection plane, which makes the filter more efficient
to the contrary to line filters.

Compared with the image gradient, the Hessian matrix can capture the shape char
acteristics of objects, such as tubes, planes, blob surfaces or noise. In particular, the
eigenvalues of the Hessian matrix can be combined into a vesselness function in order
to describe plate, bloblike and tubular objects [34, 53, 84].

These methods can be performed in multiscale frameworks in order to detect ob
jects of different sizes. It has to be noticed that the choice and number of the considered
scales is particularly important in such methods. If performed at a unique scale, they
do not detect vessels of different sizes, and especially those out of the range of the con
sidered scale. Conversely, if performed at numerous scales, they can potentially detect
all the vessels but they become computationally quite expensive.

In addition, the robustness of such methods to noise is strongly related to the con
sidered scale. For large scales, the blurring effect of Gaussian filtering tends to remove
noise effects, and unfortunately, smaller objects. A contrario, for small scales, the
noise is hardly corrected by this filtering, and may bias the derivative evaluation accu
racy, thus requiring to incorporate assumptions related to noise in the method [113].

Despite some weaknesses, which require a specific care, derivativebased methods
provide efficient solutions for detecting vessels, especially in a multiscale framework,
and have then often been considered for the design of segmentation methods based
on model filtering (see next section) or for the guidance of deformable models, for
instance.

Modelbased filtering

In general, vessels appearance can be used as prior for segmentation. In this case, such
prior can describe vessel specific characteristics: photometric (usually being brighter
than the background) and/or geometric (curvilinear). The most simple ones are in
tensity and geometrybased models, which are often combined in deformable model
methodologies (see next section). Further, we describe such models in the complexity
increasing order.

Intensity models Intensity models, which are among the simplest ones, strongly
depend on the considered imaging modality. They can integrate brightness, contrast
and gradient prior, but also imaging properties, like intensity ranges or intensity vari
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ation based on location, or even noise distribution [2] (see also Section “Statistical
approaches” for a discussion on noise modelling).

In [111] a cylindrical parametric intensity model is directly fit to the image intensi
ties through an incremental process based on a Kalman filter for estimating the vessels
radii. While in [79], local neighbourhood intensities are considered in a spherical polar
coordinate system in order to capture the common properties for the different types of
vascular points. A natural integration into this kind of models is background descrip
tion [85, 102].

While being simple, intensity models are highly dependent on the nature of images.
Therefore, they have to be tuned for all kinds of circumstances, like artifacts or other
image distortions, as well as to compensate for image variability.

Geometry models The assumption that vessels are elongated thin objects, globally
similar to tubes has been used for the design of several geometric models, such as
generalised cylinders, superellipsoids, Gaussian lines, or barlike profiles [9, 53, 102].

Based on secondorder derivatives (see previous section), several models incorpo
rating geometrical properties have been developed. In [34], an ideal cylinder is pro
posed in order to enhance vessels within a measure called vesselness, while in [84] a
more general model incorporates elliptical shapes.

The bifurcation issue has also been considered, for instance in [3] where a bifurca
tion models is proposed and optimised based on vessel centerline information.

Geometry models are powerful tools for describing vessels and aiding to their fur
ther extraction within tracking schemes or by deformation. However, these methods,
assume image regularities that are present in highquality images but not necessarily in
noisier ones, nor in pathological cases. Furthermore, they often require careful param
eter tuning, which may change from one dataset to the next. They can be used together
with the intensity models often, combined in probabilistic and/or statistical approaches
contributing to decisionmaking whether pixel belongs or not to a vascular structure.

Deformable models

Deformable models aim at fitting a geometric hypersurface (e.g., a 2D surface in a
3D image), by moving it and modifying its shape from an initial model, under the
guidance of several (generally antagonist) forces: external (“datadriven”) ones, related
to the image content, and internal (“modeldriven”) ones, devoted to preserve correct
geometry properties (e.g., regularity). Such models have been intensively used in the
field of image analysis due to the following advantages: arbitrary shape representation,
topological adaptivity, subpixel precision, etc.

Among the most classical methods, snake (often used in 2D in order to segment
vessel crosssections), have been considered, e.g., in [64], or in [46], where two (1D
and 2D) snakes are used for both segmentation and stenosis quantification.

Levelsets constitute another classical type of deformable models, and rely on an
Eulerian version of contour evolution with partial derivative equations. The contour is
integrated as the zerolevel of a higher dimension function (levelset). In [59], an orig
inal levelset based scheme proposes to deform an initial boundary estimate toward the
vascular structures in the image using a codimensiontwo regularisation force, based
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on the vessel centerlines instead of the vessel surface. An other levelset based method
[62] proposes to estimates the background and vessel intensity distributions based on
the intensity histogram, to more efficiently steer the levelset onto the vessel bound
aries.

Several efforts have been conducted to improve deformable models in the quite
specific case of elongated structures. In this context, [104] proposes to use flux max
imisation as an alternative curvaturebased regularisation which make surface normals
evolve according to gradient vector field. The key idea was to evolve a curve or a sur
face under constraints by incorporating not only the magnitude but also the direction
of an appropriate vector field.

In [54], local variances are measured with firstorder derivatives and are propagated
according to their strengths and directions with an optimally oriented flux reporting
more accurate and stable responses and higher robustness to disturbances from adjacent
structures in comparison with Hessianbased measures.

The major advantage of deformable models methods is that they are sensitive to
weak edges and robust to noisy structures. However, the intensity variation inside
vascular structures can generate significant intensity gradient with this undesired dis
continuity stopping the contour evolution at these regions. Due to this local minima,
the initial forces should be described with such precision that the final object borders
are not far from the initial ones. While the evolution of the deformation can be a
costly process. But, by integrating vessel features and forces in powerful optimisation
schemes help overcoming these problems.

Statistical approaches

Vessel segmentation based on statistical approaches generally relies on specific as
sumptions related to the intensity distribution of the vascular/nonvascular signals in
MRA data (only very few statistical methods have been devoted to CTA, see, e.g.,
[32], which proposes a particlefiltering strategy for coronary arteries segmentation),
and especially physical models of blood flow. If the number and the nature of these
distributions is supposed to be known correctly, it is then possible to determine their
respective parameters (and in particular the mean intensity characterising the associ
ated structures), via a standard ExpectationMaximisation (EM) technique [23].

In MRA, two or three distributions are generally considered, for the blood, and the
other anatomical structures and the background, respectively. They led, in particular
to the definition of GaussianGaussianuniform [107] and normalRayleigh–2×normal
[80] mixtures for timeofflight (TOF) MRA, and MaxwellGaussian [19], Maxwell
Gaussianuniform [17] mixtures for phasecontrast (PC) MRA. In [18], a hybridmodel,
enables to choose between these two kinds of mixtures. Alternatively, to these “con
strained” mixture choices, it has been proposed in [29] to consider a linear combination
of discrete Gaussians with alternate signs, involved in a modified EM, which enables
to adaptively deal with both laminar and turbulent (pathological) blood flow [28].

In the primarily considered strategies, the determination of the vascular intensity
led to a straightforward segmentation by thresholding of the image (sometimes en
riched by a hierarchical analysis of the image by octree decomposition [107]). From
an algorithmic point of view, segmentation improvements were also performed in con
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sidering of spatial information (i.e., statistical dependence) between neighbour voxels,
by integratingMarkov random fields (MRF) [38] in a postclassification correction step
[80]. In other works, speed and phase information provided by PCMRA were fused
and involved in a maximum a posterioriMRF framework to enhance vessel segmenta
tion [17, 18].

Statistical methods globally inherit from the strengths and weaknesses of the EM
algorithm. First, they generally require to establish hypotheses on the signal distri
bution. Moreover, they involve several parameters, for instance, weight, mean and
standard deviation, of the distributions. The initialisation of the segmentation process
then requires a special attention. Indeed, the convergence may possibly depend on the
quality of the initial distribution settings (sometimes automatically determined based
on heuristic rules [17, 107]). As for any optimisation strategy, the termination also
requires to decide whether the process has correctly converged or not (which is some
times empirically determined, for instance by a maximal number of iterations [107]).
Finally, since the segmentation process is strongly based on photometric properties (the
results often consist of global or local thresholdings), higherlevel knowledge such as
geometric assumptions are hardly considered, and require postprocessing steps based
on a statistical framework [80], or, more efficiently the collaboration of alternative im
age processing techniques (see examples in Section 5.3.1).

Path finding

Based on extremal intensity and connectedness criteria, the detection of a vessel seg
ment (or more precisely of its medial axis) can be expressed as the determination of a
minimal cost path in a weighted graph modelling voxels, their neighbourhood relations
and their intensity.

Vessel segmentation based on such strategies can rely on standard minimal path
finding techniques [25] (i.e., on “global” minimisation strategies, while methods cate
gorised in the next Vessel tracking section will rely on “local” (step by step) minimisa
tion strategies). This is, for instance, the case in [75].

Alternatively to classic pathfinding methods, fastmarching strategies [101] have
been considered. They are both related to the levelsets methodology (see Section
“Deformable models”) and minimal pathfinding ones (they remain, in particular, con
sistent with the continuous formulation of the minimalpath research). By opposition
to fully discrete pathfinding, they enable in particular to determine paths with a sub
voxel accuracy [4].

The methods based on pathfinding are globally wellfitted for the detection of
vessel medial axes, especially in the case of small vessels which justifies in particular
their frequent use in coronary detection. (For larger vessels, the optimal path may
diverge from the medial axis, leading to eccentric results, this issue then requiring a
specific care [57].) However, it has to be noticed that efforts have also been conducted
to develop segmentation methods enabling to extract both vessel axes and vessel walls
[7, 57], which express the whole vascular volume segmentation as the minimisation of
a path in a space enriched with a supplementary “scale” dimension corresponding to
the vessel radius.
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Despite attempts for segmenting whole vascular trees [114], such methods gener
ally remain devoted to the segmentation of vessel segments, thus requiring to inter
actively provide at least an initial point, and also a final one [75, 108]. In this case,
they may be robust to noise, and signal decrease (or short signal loss) along the vessel,
especially in case of stenoses. These methods being based on monotonic and/or finite
algorithmic processes, their termination is guaranteed, and their theoretical algorithmic
cost is generally low. Practically, the computational cost may however be high, and in
this context, the proposal of initial and final points can potentially enable its reduction
by computing paths from both points simultaneously [75].

Tracking methods

By opposition to pathfinding methods, tracking ones consist in finding a vessel in a
local fashion, by progressively determining successive segments composing it. Such
an approach requires to interactively propose a seed, namely the starting point of the
tracking process, located in the vessel, and (in most cases) the direction in which the
vessel has to be tracked.

This strategy has to be applied step by step, a small segment of the vessel being
detected at each step. The principal issues to consider in such methods are the deter
mination of a correct geometry of the detected segment (namely the determination of
its cross section), the determination of the vessel axis, and the evaluation of the direc
tion of the next segment to be found (i.e., the trajectory modification), or equivalently,
the next point in the vessel. Less frequently, vessel tracking methods, such as the one
proposed in [63], directly perform a more global iterative vascular volume detection,
corrected, at each step, by the analysis of the induced vessel axis, which can in partic
ular be constrained by ad hoc topological hypotheses.

The determination of the vessel crosssection at the current point (which enables
in particular its correct repositioning on the vessel axis) can be performed according
to several strategies. The use of a gradientbased measure is considered in [109] (a
centerline measure based on the vessel profile then enables to approximate the vessel
centerline, even in case of noncircularity). The explicit determination of vessel cross
sections to estimate the vessel axis may however be avoided. In particular, it can be
done by considering that the medial axis is necessarily located on a ridge point [5],
which may be detected thanks to secondderivatives criteria. Such an approach requires
a minima the use of cross section information related to the size of the vessel (in order to
determine the correct scale factor), and circularity hypotheses. It can also be performed
based on a local optimisation of 3D models [102, 112], which may also lead to the
determination of the vessel axis orientation. More classically, the next tracking point
may be determined according to the best fit of a sphere modelling the vessel into the
image [12, 47, 69].

Despite a few attempts to deal with the case of bifurcations, which can enable the
recursive processing of a whole vascular tree [9, 13, 31], vessel tracking is especially
wellfit for the segmentation of single vessels. In this case, the termination has to be
considered. Some methods require, in particular, to provide both a starting and an
ending point [109].

It has to be noticed that, similarly to the other local approaches (which aim at
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detecting a part of the vessels, and/or are guided by providing a seed), such methods
present a generally low algorithmic/computational cost.

They however present some drawbacks related to the determination of multiple pa
rameters and to possible error propagation (which characterise such local methods),
potentially leading to incorrect segmentation if vessel orientation and/or axis is mis
calculated at a given step, for instance due to a bifurcation, non circular section, or a
strong axis curvature.

Mathematical morphology methods

Mathematical morphology (MM) is a wellestablished theory of nonlinear, order
based image analysis. Fundamental texts on morphology include the books by Serra
[86, 87], but more recent and more synthetic texts are also available, including the
works by Soille [89] and by Najman and Talbot [72].

Filtering thin objects with morphology can be achieved using appropriate structur
ing elements. Typically, thin structuring elements include segments and paths, com
bined over families. To account for arbitrary orientation, one can use families of ori
ented segments and compute a supremum of openings or an infimum of closings as
described in [90].

To account for noise or disconnection, families of incomplete segments can be
used instead, yielding socalled rankmax openings, which are just as efficient and also
described in the same reference.

Paths are elongated structuring elements, but that are not necessarily locally straight.
Even though the size of families of paths grow exponentially with their length, there
exists a recursive decomposition that makes the use of such families tractable [43]. As
with segments, it is useful to account for some discontinuities using socalled incom
plete paths. As with segments, there exists an efficient implementation [95]. In fine,
path and segment operations are comparable in speed.

In [96], it is shown that path and segment morphological operators significantly
outperform linear and steerable filters for the segmentation of thin (2D) structures,
even in the presence of heavy noise. Paths operators have been extended to 3D in [44],
and show to outperform all other morphological filters for thin object segmentation in
3D, both for efficiency and performance.

Connected operators are also supremum of openings or infimum of closings, but
use families of structuring elements that are so large that it makes little sense to present
them in this way. Instead, the concept of connectivity is used [83, 105]. The simplest
of those is the area opening or closing. Informally, the area opening suppresses objects
that are smaller in area than a given size λ . It extends readily to arbitrary lattices,
and corresponds to a supremum of openings with a very large family of structuring
elements: all the connected sets that have an area smaller than λ . In the continuum,
this family is not countable, but in the discrete case it is still very large. Fortunately it
is not implemented in this way. A very efficient way to implement this operator is via
the component tree [65, 71, 82].

In [106], a scaleindependent elongation criterion was introduced to find vascular
structures, while in [11], component tree was mixed with classification strategies to
segment 3D vessels in an automated fashion.
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Other useful connected operators are thinnings rather than openings, as they make it
possible to use more complex criteria for object selection, for instance using elongation
measures, that are not necessarily increasing.

Hitormiss transforms repeatedly use pairs of structuring elements (SEs) to select
objects of interest, rather than single SEs. In [10, 68], authors used such operators for
3D vessel segmentation, including brain, liver and heart vessels.

(a) (b)

(c) (d)

Figure 5.1: Vessel segmentation examples. (a) Brain vessels segmentation based on
deformable models. (b) Brain arteries segmentation based on pathfinding and statis
tical approaches. (c) Brain arteries segmentation based on vessel tracking. (d) Brain
vessels segmentation based on greylevel hitormiss transform. Illustrations from (a)
[59], (b) [110], (c) [31], (d) [68].
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Hybrid methods

Despite the huge amount of methodological contributions dedicated to 3D vessel seg
mentation, proposed during the last twenty years, the results provided by such segmen
tation methods generally remain perfectible.

The handling of undersegmentation (especially in the case of small vessels, whose
size is close to the image resolution, of signal decrease, or of partial volume effect)
and oversegmentation (especially in the case of neighbouring with other anatomical
structures, or of high intensity artifacts), the robustness to image degradations (low
signaltonoise ratio), the ergonomy (automation, or easy interaction), the low compu
tational cost, the guarantee of termination and convergence, accuracy of the result (for
instance, the ability to provide results at a higher resolution than the image one) are
desirable properties for such methods. Unfortunately, none is generally exempt from
drawbacks, even in the frequent (and justified) case where the method is devoted to a
quite specific task, vascular structure, and/or image modality.

As nearly all the main strategies of image processing have been –not fully satisfacto
rily– investigated to propose solutions to this issue, a reasonable trend during the last
years has consisted in designing hybrid segmentation methods obtained by crossing
methodologies. An alternative way to overcome this issue is to inject more guiding
knowledge in the segmentation processes, which justifies –among other reasons– the
generation of anatomical vascular models, as discussed in Section 5.4. These strategies
aim, in particular, at taking advantage of (distinct and complementary) advantages of
different segmentation techniques.

A synthetic overview of such hybrid methods is proposed hereafter.

Principal strategies Hybrid vessel segmentation methods present a range of possi
ble solutions for overcoming certain weaknesses of each method and combining their
advantages.

One of the most popular hybrid methods is combination of multiscale differential
analysis within vessel detection schemes as in [34, 84] with deformable models, such
as levelsets [15], Bspline snakes [33] and maximum geometric flow [24, 103].

The deformable method with energy minimising functionals has also been com
bined with statistical regionbased information in a multiscale feature space for auto
matic cerebral vessel segmentation [45].

The tracking strategies have been as well reinforced by gradient flux of circular
crosssections as in [55], while in [35] a multiple hypothesis tracking was used with
Gaussian vessel profile and a statistical model fitting.

In [110] a probabilistic method for axis finding is used within a tracking with min
imal path finding strategy together with a possible used guidance. This method is
especially wellfitted for pathological cases.

Multiscale morphology has been used with Gabor wavelets (providing vessel size
and direction) filters in [92]. Advantage of the Gabor wavelet that it is capable of tuning
to specific frequencies allowing estimation of the vessel dimension while the morpho
logical tophat filter enhances the contrast between vessel structures and background.
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5.4 Vessel modelling

5.4.1 Motivation

Context

The availability of accurate knowledge related to anatomical structures is of precious
use in nearly all the fields related to medical image analysis, and more generally to
medical applications. Being able to know where an organ is located, what its shape,
dimensions, functions, cellular or chemical composition, and its spatial relations or
collaborations with other organs are, constitutes the basics of anatomy and medicine.

In the case of vessels, and more generally of vascular trees5, the anatomical knowl
edge can be classified into three categories:

• morphological properties: what is the shape of a vessel (crosssection, trajec
tory), its size (diameter, crosssection area), its orientation, etc.?

• structural properties: what is the topology of a vascular network (number of
branches, bifurcations, presence of cycles/anastomoses), its position, its spatial
relations with other organs, etc.?

• functional properties: what are the vascular territories of an organ (i.e., what
parts of an organ are supplied by a given branch of a vascular network)?

In the field of angiographic image analysis, the question of functional properties,
and more specifically the partition of an organ into vascular territories has not been in
tensively considered. In the case of coronaries, the vascular territories are generally im
plicitly provided by the different branches of the coronary tree (the knowledge of such
regions is of actual importance for determining the parts of the heart being affected by
vessel stenoses, and possible subsequent heart attack). It will be observed in the sequel
of this chapter that the computational modelling of these branches has been carefully
studied for several years. In the case of cerebral vasculature, the different areas of
the brain supplied by the main branches originated from the Willis polygon have been
described since long ago in the medical literature (see, e.g., [70, 97, 98] for recent con
tributions)6. But these areas have not yet played a crucial role in angiographic/medical
image analysis, despite their potential helpfulness. Similar considerations can be made
for the liver vascular networks, and in particular the portal network, the branches of
which define the main hepatic anatomical segments [21].

Usefulness

The other two kinds of anatomical knowledge, namely, morphological and structural
ones, have been the object of a few works related to medical image analysis since the

5From a structural (and more especially from a topological) point of view, the terminology of “tree”
is generally incorrect for most of vascular networks, despite its frequent use in the literature devoted to
angiographic imaging. In the sequel of the chapter we will generally distinguish vascular trees from vascular
networks. This distinction will be clarified in the next sections.

6A notion of “vascular areas”, which actually does not match the anatomical notion of vascular territories
has been introduced in [78] in order to propose a partition of the cerebral volume enabling to facilitate the
segmentation of vessels from PCMRA data.
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end of the 80’s. In particular, the coronary tree and the (arterial and venous) networks
of the brain have been considered.

The first studies, related to the heart, have essentially been devoted to gather and
model structural information related to the coronary arteries in order to assist the ra
diologists in their analysis of vessels from CT data, especially for the diagnosis and
followup of stenoses and their consequences on heart blood supply. The globally sim
ple structure of the coronary tree and its (relative) invariance has led to the design of
the first vascular models. Such vascular models will be referred to as atlases7 in the
sequel of the chapter. A survey of this first family of (deterministic) atlases is proposed
in Section 5.4.2.

More recent studies, essentially devoted to the cerebrovasculature, have intended
to gather and model morphological information related to potentially complex vascular
networks. It has to be noticed that, by opposition to vascular structures such as coro
nary arteries or hepatic vessels, vascular networks as the cerebral ones are not actually
tree structures. A vascular tree originates from a single vessel, which progressively di
vides itself (by bifurcations) into branches, leading to an arborescent hierarchy (which,
in particular, does not present any cycle). Vascular networks, such as the cerebral
ones, present a more complex organisation. They can originate from several vessels,
which divide themselves to refine into smaller branches, but which can also join to
gether to give birth to new vessels, or present cyclic structures, as anastomoses. To
the complexity induced by the structure of such vascular networks, one must add the
complexity induced by the nature of the vessels visualised in the considered images
(both veins and arteries, large and small vessels), from the image modalities (generally
noninjected data, especially in MRA, in the case of brain vessels), but also from the
anatomical variability of the vessels (from both morphological and structural points of
view). In this context, the design of no longer deterministic, but statistical atlases had
to be considered. A survey of this second family of atlases is proposed in Section 5.4.3.
One of the main uses of such statistical atlases is the guidance of automated vessel seg
mentation procedures [68], which is a crucial step for several medical image analysis
applications.

5.4.2 Deterministic atlases

The first works on vascular atlases have consisted in developing deterministic models
of the vessels. By deterministic, we mean that a model is a (representative) example
of what can be a vascular network. Although being a good (and actually useful) repre
sentation of the anatomical truth, such a deterministic atlas is however not necessarily
able to take in consideration in an accurate way the interindividual variability. Broadly
speaking, these atlases can be seen as a direct transcription of the models described
(both textually and visually) in the anatomy literature. The pioneering works related to
this topic were actually based on this approach.

7The notion of atlas has been the subject of a quite intensive research activity during the last fifteen
years, especially in the field of brain imaging. The emergence of computational anatomy [39, 50, 99] is, in
particular, a direct expression of such research activities.
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Pioneering works

To the best of our knowledge, the first vascular atlas generated from angiographic data
has been developed for the modelling of coronary arteries [26]. This “handmade”
atlas consists of a (piecewise linear) skeleton modelling the main coronary artery seg
ments and branches, and then provides information on topology (e.g., position of the
bifurcations), position and trajectory of vessels. Starting from 2D arteriographies of 37
patients, vessels were manually segmented from two orthogonal views, from the origin
of the coronaries to the most distal visible point on each considered branch. A total set
of approximately 100 points was then regularly sampled on each segmented tree, lead
ing to a 3D mean positioning of each point. An interactive choice of the structures to
be visualised, and the visualisation angle could then permit to automatically generate
2D projections of the atlas. At the same period, a second approach has been proposed
in [36], relying on a model composed of two orthogonal planes embedding a struc
tural and spatial representation of each one of the left and right coronary trees. Based
on this pseudo3D reference, a symbolic description of the arteries is proposed, pro
viding in particular information on branch names and hierarchy, position, (qualitative)
orientation, or vascular territories. This description was made by use of declarative
programming with each predicate formalising a given information related to a vessel,
while some more general rules modelled heuristic information, such as continuity or
angular limits at bifurcations.

By opposition to methods such as [36], which rely on bases of semantic knowledge,
those which took advantage of the emerging technologies offered by computer graphics
at the end of the 80’s (as [26]), gave rise to related strategies, essentially based on graph
modelling and geometric information.

Graphbased and geometric atlases

Among the methods aiming at generating deterministic atlases, one can distinguish
those based on graphs, and those based on geometry. The first ones essentially focus on
a symbolic description of the vascular structures (independently from their embedding
in the 3D space, i.e., from their anatomical reality), while the second ones especially
aim at defining such models as objects which “match at best” a spatial reality.

One of the main uses of such atlases, is the labelling of coronary branches, i.e., the
automatic naming of vessels, in order to assist radiological analysis. The extraction
of reliable vascular information from cardiovascular data (generally 2D or 3D CT an
giography) is of precious use for coronary disease assessment. In this context, it is not
only required to segment these vessels (which is a nontrivial task, subject to strong
research efforts by the medical image analysis community [67]), but also to be able to
name each branch of the coronary tree, in order to facilitate the radiological analysis.
Such a highly semantic task can not, of course, be carried out without using highlevel
a priori anatomical knowledge. Based on these considerations, several vascular atlases
have been involved in –and sometimes specifically designed for– this labelling task
[14, 30, 36, 41, 42].
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Graphbased atlases The extraction of a graph modelling the structure of a vascu
lar network (i.e., assigning an edge to each vessel branch, and a node to each junc
tion/bifurcation) has been a purpose frequently considered by the first vessel segmen
tation methods devoted to 3D angiographic data [37, 115]. Note that the main weakness
of these first approaches was propagation of segmentation errors in the obtained model.

A solution proposed in [30] relies on the data collected, and validated, in [26]. It is
proposed to define both a symbolic graphbased atlas, which models the tree structure
of the coronary arteries, and to couple it with a geometric 3D atlas which models spatial
and geometric relationships. Unclassically, the nodes of the graph represent vessel
segments while the edges model their bifurcations. Each node of the graph is then
associated with a vessel name, a width, but also a list of points located on the vessel
medial axis. This information then intrinsically provides a geometric model of the
vessels.

In order to automatically build a graphmodel of a vascular tree without depending
on possible errors inherited from the segmentation process of real images, an alterna
tive consists in generating such a graph from a realistic anatomical phantom. This is the
approach proposed in [14] for generating a graphbased atlas of the coronary arteries.
The use of a phantom enables to easily obtain a segmentation (which can be validated
a posteriori) and to derive, by a topological postprocessing, curvilinear structures en
abling to define a graph structure. In [14], such an atlas can be achieved by storing at
each edge/vessel segment information attributes such as its name, length, orientation
and diameter.

Geometrybased atlases The works described above have focused on vascular struc
tures presenting simple properties, namely the coronary arteries, out of their anatomical
neighbouring context. In recent works, efforts have been conducted to design vascular
atlases related to more complex structures. These contributions rely, in particular, on
the use of geometric models, and specifically surfacic meshes.

In [74], a geometric atlas of the whole cerebral vascular network is proposed (see
Figure 5.2(a)). This network is quite complex, being composed of veins and arteries of
varying sizes (at the resolutions available in 3D CT and MR angiographic data, namely
0.5 mm), organised in a nonarborescent fashion. The generation process, based on the
TOF MRA of a healthy patient, is composed of several iterative steps, the most crucial
of which is segmentation (performed manually, for the sake of correctness), medial
axes determination and topology correction (also performed interactively), vessel sur
face generation, quantitative knowledge extraction and vessel labelling. It leads to a
quite accurate vascular atlas providing information on the type of vessels (arteries or
veins), their position in the intracranial volume, their name, size and topology. Such
an atlas, essentially designed with highlevel image processing tools, but in a basically
manual fashion, however, remains strongly related to the only patient involved in the
image acquisition process.

In [58], a geometric atlas of the whole heart, made of surfacic meshes correspond
ing to different anatomical structures, is proposed (see Figure 5.2(b)). In addition to
the coronary arteries, it also models several anatomical structures such as the heart
chambers and the trunks of the connected vasculature (the model generation of which
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(a) (b)

Figure 5.2: Geometrybased atlases. (a) Atlas of the cerebral vascular (arterial and ve
nous) networks. (b) Atlas of the whole heart and of the coronary arteries. Illustrations
from (a) [74] and (b) [58].

is beyond the scope of this chapter). The information used for generating this vascular
atlas consists of measurements from [26], which helped to create a first vascular model.
In order to correctly fit this model on its neighbouring cardiac structures, a registration
step is carried out8. The registration process is driven by the medial axes of the main
artery segments, interactively delineated from 27 3D CT data (which had previously
been involved in the mesh generation of the other anatomical structures). It is based
on an incremental relaxation of the authorised degrees of freedom, first accepting rigid
(translation, rotation) transformation, then scaling, and finally, affine transformation.
By opposition to the vascular atlas proposed in [74] for the cerebrovasculature, the one
presented here, despite the relative simplicity of the modelled vascular tree, presents
the specificity to model spatial relationships with neighbouring –non vascular– struc
tures. This is the first (and to our knowledge, the only) vascular atlas presenting such
a property. Still, by opposition to the previous atlas, this one has been created (at least
partially) thanks to the vascular information provided by 3D CT data of several pa
tients. As stated in the synthetic description of the generation protocol, this required to
be able to process heterogeneous anatomical knowledge, possibly presenting variabil
ity. In particular, this implies to consider tools enabling to fuse the information related
to several patients in a unified result. In the present case, this was done by considering
registration. In Section 5.4.3 it will be shown that based on similar registrationbased
strategies, it is possible to obtain results which are no longer deterministic, but statisti
cal, enabling in particular to model the interindividual variability.

8The reader interested in registration –which is an issue strongly linked to (vascular) atlas generation–
may complete the study of this chapter by reading the following surveys [48, 116].
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5.4.3 Statistical atlases

In the above section, we have considered the vascular atlases which can be qualified
as deterministic, in the sense that they present a model of vasculature which could be
seen as the vascular network of a representative patient among the population. In this
section, we now focus on non deterministic vascular atlases, and more especially on
statistical ones, which are intuitively less similar to a hard anatomical model, but which
aim at gathering and modelling more completely and efficiently the characteristics of a
whole population of patients.

Anatomical variability handling

When designing an anatomical model (in the present case, a vascular atlas), two ques
tions have to be considered carefully:

1. How to model the invariant information, i.e., the set of characteristics shared by
the whole population?

2. How to model the interindividual variability, i.e., the set of varying characteris
tics among this population, in a unified framework?

The deterministic atlases described in Section 5.4.2 actually provide efficient answers
to the first question. However, since they are based on a hard (graph or geometric)
model, their ability to handle interindividual variability is not obvious9.

Most of the contributions devoted to deterministic vascular atlas generation propose
various (partial) solutions to this issue. In the preliminaryworks on coronarymodelling
[26], it is mentioned that there exist three variants in the coronary trees structure: right
dominant (10%), balanced anatomic distribution (80%), and left dominant (10%)10. In
[36], such variations are considered by exhaustively modelling each induced branch
distribution (in this case by integrating them into the symbolic base of knowledge).

In the case of cerebral vessels, there also exists a strong interindividual variabil
ity from both topological and geometrical points of view [81]. In order to cope with
this issue in the case of the vascular atlas proposed in [74] (and obtained from a single
patient), a straightforward solution is an exhaustive list of each topological variation de
scribed in the anatomy literature [73]. In [41], a more unified solution is proposed for
the modelling and storing of such interindividual topological variations. This is done
by initially considering a classical graphbased modelling (see Section 5.4.2) enriched
by fusing of several anatomical models/graphs into a “vascular catalogue”, composed
of a graph of all variations, and a discrimination matrix. This matrix helps to extract
these variations as graphs similar to those of [14, 30]. (See also [40] for a more theo
retical/methodological contribution related to the same concepts.)

9However, this fact does not represent a crippling drawback, since the relevance of interindividual vari
ability handling is essentially modulated by the applications requiring the designed atlas. In particular,
deterministic atlases must not be considered as less (or more) relevant than statistical ones.

10Note that the information on coronary arteries gathered in [26] corresponds to a sample of patients
with “normalsized hearts”. This example illustrates the general necessity to constraint some anatomical
hypotheses if we may hope to finally obtain a useful model from a finite (and generally restricted) set of
patients. Such a consideration remains valid when considering statistical models: a classical example is the
restriction to either healthy or nonhealthy people in the considered pool of patients.
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(a) (b) (c)

Figure 5.3: Atlas for the portal vein entry, in the liver. (a) Sagittal, (b) coronal and (c)
axial slices. Illustration from [68].

The handling of variability proposed in these contributions is essentially based on
characteristics related to the structure of the vascular networks. This is a straightfor
ward consequence of the modelling strategies which are primarily based on topologi
cal datastructures. In particular, the quantitative variations are generally omitted from
these atlases, and the answer of these methods to the second question actually remains
partial.

Some recent contributions try to propose complementary answers to this second
question. They are specifically devoted to cope with the issue of modelling the vari
ability of anatomical characteristics which can be quantified, for instance the size, ori
entation, position, or even the shape of the vessels. To this end, they propose to generate
nondeterministic (namely statistical) atlases.

Recent works

The methods described hereafter are mainly devoted to design vascular atlases of ves
sels or vascular trees/networks from a set of patients/images presenting possible anatom
ical variations. In all these contributions, the input data consist of vascular volumes
extracted from angiographic images. Similarly to most of the methods for determinis
tic atlas generation, the ones for statistical atlas generation then strongly rely on vessel
segmentation. The following methods have been classified according to the degree of
complexity of the modelled anatomical information.

Shape model When the vascular structures of interest are sufficiently simple, for in
stance when only a vessel, or a vessel segment has to be modelled, a first (and straight
forward) approach for generating vascular atlases can consist in creating shape models.
Such models can be defined by computing the mean image of data obtained from the
segmentation of a (learning) image database. This mean image of binary functions can
be seen as a fuzzy function with values in the interval [0,1].

In [69], such a model (which can in particular be involved in subsequent segmenta
tion procedures [68]) has been proposed for a vessel segment, namely the entrance of
the portal vein, in the liver. The atlas, built from a database of 15 segmented images of
the portal vein entry, is illustrated in Figure 5.3.
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(a) (b) (c)

Figure 5.4: Atlas of the cerebral arteries. (a) Sagittal, (b) coronal and (c) axial maxi
mum intensity projections. Illustration from [20] (with kind permission from Springer
Science+Business Media: MICCAI 2003, Tissuebased affine registration of brain im
ages to form a vascular density atlas, volume 2879 of LNCS, 2003, p. 12, D. Cool et
al., Figure 1).

Density atlas When the vascular structures become more complex, in particular in
the case where a whole vascular tree/network is considered, a straightforward mean
image gathering each patient vascular information is no longer sufficient to accurately
generate a satisfactory vascular atlas. In this more difficult context, it becomes neces
sary to develop adequate strategies for fusing several vascular images onto a coherent
anatomical reference. Such strategies thus require the use of a registration procedure.

Intuitively, a first and natural way to proceed consists in attempting to register all
the (segmented) vascular networks onto a chosen one, considered as the reference.
Such an approach has been developed in [16], where the reference network is first
skeletonized and then processed to provide a distance map (providing the distance to
the closest vessel). The other segmented vascular networks are then registered (by
affine transformation) on this template. The mean and variance images obtained from
the distance maps of all the registered images finally provide a kind of probabilistic
vascular atlas.

If such an approach enables the discrimination between healthy and nonhealthy
patients (especially in the case of arteriovenous malformations), it is actually not suf
ficient to accurately model the vessels. This is due, in particular, to the lack of a mor
phological reference. In order to correct this drawback, it is possible to perform reg
istration no longer to angiographic data, but to associated morphological images. This
alternative approach is proposed in [20], where each angiographic data (in this case,
cerebral MRA) is associated with a T2weighted MRI of the same patient. An affine
registration procedure is then applied between these T2 data, leading to morphology
based deformation fields which are then applied on distance maps similar to the ones
previously described, leading to an atlas consisting of a vascular density map. A result
for cerebral arteries, obtained from 9 patients is depicted in Figure 5.4. Nonetheless, for
creating vascular atlases as density fields, a recent strategy has been proposed in [88],
for cardiovascular CT data. By opposition to the case of cerebral MRA data, which
requires the simultaneous use of MRI data, here, the considered CTA images contained
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Figure 5.5: 3D visualisation of the vascular atlas (here, thresholded density field) for
the three main coronary arteries (centerlines of which, for a given CTA, are depicted in
green, red and yellow). Illustration from [88], ( c�2010 IEEE).

both morphological (cardiac) structures and angiographic ones. It is then possible to
directly perform registration on such data. In this context, after (nonrigid) registration
of the main vessel centerlines of each image with the chosen reference image and es
timation of the closest centerline for each point of the image, a meanshift clustering
is performed in order to assign each point to one of the three main vessel clusters. An
arteryspecific density at each point can then be computed from a covariance analysis.
A result obtained from 85 CTA is depicted in Figure 5.5.

Enriched atlas The statistical atlas generation protocols presented above are essen
tially devoted to a density field generation. This density field models information re
lated to a “vascular presence probability” and possibly a shape, when the interindivid
ual variability is sufficiently low.

It may however be useful to be able to model more accurate information, related for
instance to size and orientation. An approach described in [77] proposes such a method.
It requires as input more information than a simple segmentation, namely a segmented
volume (as in [69]), the associated medial axes (as in [16, 20, 88]), but also information
on the vessel orientation (it has to be noticed that all these information elements may
be obtained from a segmented volume, by using adequate methods11). It also requires
correct deformation fields in order to register these different data with an anatomical
reference. In order to do so, each angiographic image (in the current case, cerebral PC
MRA phase image) is associated with a morphological image (namely the associate
PCMRA magnitude image), following a strategy similar to the one proposed in [20].
Nonrigid registration of these morphological images then provides the deformation
fields enabling to match the segmentation, medial axes and orientation maps associated
to each image onto the anatomical reference. The mean and variance values for each
one of these scalar and vectorial attributes finally lead to a vascular density field (as
in [16, 20, 88]), but also to size and orientation intervals at each vascular point of the

11See, e.g., [22] for a robust medial axis computation method.
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(a) (b) (c)

Figure 5.6: Atlas of the cerebral vascular network. (a) Vascular density, visualised as
a maximum intensity projection (sagittal view). (b) Mean vessel diameters, visualised
as a maximum intensity projection (sagittal view). (c) 3D visualisation of a part of the
orientation image. Illustration from [77].

atlas. Such an atlas, modelling both cerebral veins and arteries, built from 16 patients
is partially illustrated in Figure 5.6.

Remaining challenges The vascular atlas generation protocols discussed in the pre
vious section provide, by opposition to most of the ones devoted to deterministic at
lases, the way to pull together and fuse information from a potentially large set of data,
in a globally automated fashion. Such automation requirements however induce sev
eral conditions related to vessel segmentation which can be performed automatically
as already discussed in Section 5.3.1, but which (at least in the case of vessels) still
does not propose perfect results. However, it has to be noticed that in the context of at
las generation, a sufficient condition for a correct use of automatically segmented data
would be the guarantee that they do not present any false positives (the presence of
false negatives being possibly compensated by the possibly high number of segmented
data).

Another crucial issue related to nondeterministic atlas generation is the availability
of efficient registration methods. The most recent methods [77, 88] are based on non
rigid registration techniques, the accuracy of which (by opposition to rigid or even
affine registration) is probably a sine qua non condition to obtain satisfactory results.
Since such nonrigid registration algorithms have probably reached a correct degree
of efficiency for the processing of dense images (such as morphological cerebral data,
for instance), the development of efficient registration procedures in the case of sparse
–and more especially of angiographic– data seems to remain, despite few recent works
[6, 16, 49, 91], a globally open question.
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[100] Tizon, X., Smedby, Ö.: Segmentation with grayscale connectedness can sepa
rate arteries and veins in MRA. Journal of Magnetic Resonance Imaging 15(4),
438–445 (2002)

[101] Tsitsiklis, J.: Efficient algorithms for globally optimal trajectories. IEEE Trans
actions on Automatic Control 40(9), 1528–1538 (1995)

[102] Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., Roysam,
B.: Robust 3D modeling of vasculature imagery using superellipsoids. IEEE
Transactions on Medical Imaging 26(2), 223–237 (2007)

[103] van Bemmel, C.M., Spreeuwers, L.J., Viergever, M.A., Niessen, W.J.: Level
setbased arteryvein separation in blood pool agent CEMR angiograms. IEEE
Transactions on Medical Imaging 22(10), 1224–1234 (2003)

[104] Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Transac
tions on Pattern Analysis and Machine Intelligence 24(12), 1565–1578 (2002)

[105] Vincent, L.: Grayscale area openings and closings, their efficient implementa
tion and applications. In: International Symposium on Mathematical Morphol
ogy  ISMM 1993, pp. 22–27. Barcelona, Spain (1993)

[106] Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement
filtering. In: Medical Image Computing and ComputerAssisted Intervention
 MICCAI 2001, Lecture Notes in Computer Science, vol. 2208, pp. 770–777.
Springer (2001)

[107] Wilson, D.L., Noble, J.A.: An adaptive segmentation algorithm for timeof
flight MRA data. IEEE Transactions on Medical Imaging 18(10), 938–945
(1999)

[108] Wink, O., Frangi, A.F., Verdonck, B., Viergever, M.A., Niessen, W.J.: 3D MRA
coronary axis determination using a minimum cost path approach. Magnetic
Resonance in Medicine 47(6), 1169–1175 (2002)



BIBLIOGRAPHY 36

[109] Wink, O., Niessen, W.J., Viergever, M.A.: Fast delineation and visualization of
vessels in 3D angiographic images. IEEE Transactions on Medical Imaging
19(4), 337–346 (2000)

[110] Wong, W.C.K., Chung, A.C.S.: Probabilistic vessel axis tracing and its appli
cation to vessel segmentation with stream surfaces and minimum cost paths.
Medical Image Analysis 11(6), 567–587 (2007)

[111] Wörz, S., Rohr, K.: A new 3D parametric intensity model for accurate segmen
tation and quantification of human vessels. In: Medical Image Computing and
ComputerAssisted Intervention  MICCAI 2004, Lecture Notes in Computer
Science, vol. 3216, pp. 491–499. Springer (2004)

[112] Wörz, S., Rohr, K.: Segmentation and quantification of human vessels using a
3D cylindrical intensity model. IEEE Transactions on Image Processing 16(8),
1994–2004 (2007)

[113] Wyatt, C., Bayram, E., Ge, Y.: Minimum reliable scale selection in 3D. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28(3), 481–487
(2006)

[114] Yim, P.J., Choyke, P.L., Summers, R.M.: Grayscale skeletonization of small
vessels in magnetic resonance angiography. IEEE Transactions on Medical
Imaging 19(6), 568–576 (2000)

[115] Zahlten, C., Jürgens, H., Evertsz, C.J.G., Leppek, R., Peitgen, H.O., Klose, K.J.:
Portal vein reconstruction based on topology. European Journal of Radiology
19(2), 96–100 (1995)
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