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1 Context

Medical images provide, at each point of the visualized space, some information re-

lated to given physical/chemical properties of tissues. The signal related to specific

anatomical structures can be improved by using contrast media. Nevertheless, despite

of such image acquisition optimisations, the detection of these structures of interest

(i.e., their segmentation) remains very hard to carry out in an automatic and reliable

fashion. In particular, due to the variability of the signal and the noise induced by

the image acquisition devices, the use of (local) photometric information is actually

insufficient to efficiently perform this fundamental task.

The purpose of segmentation is to help the medical expert by enabling an easy

detection of specific structures. Consequently, the designed methods have to rely on

efficient strategies for extracting anatomical, pathological or functional structures, es-

pecially by determining not only what is sought, but also where and how it should be

searched. It is then no longer sufficient to deal with the signal of images; it becomes

important to also carefully consider their semantics.

When analysing anatomical structures that present a high level of complexity, it is

possible to take into account semantic aspects by studying notions such as shape, po-

sition, size or orientation, which can be expressed in terms of morphology (set-based

operations, relying on structuring elements) and geometry (length, curvature, diam-

eter, etc.). Based on these considerations, some solutions are proposed hereafter, to

develop segmentation tools relying on mathematical morphology operators guided by

high-level knowledge elements. By focusing on the case of angiographic imaging (i.e.,

the imaging devoted to vascular structures), this chapter illustrates –non exhaustively–

the way to take into account and formalize anatomical knowledge elements in mathe-

matical morphology. In particular, in the following two sections, two concepts enabling

to tackle this problem are described: the anatomical knowledge models, and the hit-or-

miss transform. Two examples of segmentation methods based on these concepts are

then presented, in order to emphasize the soundness of the proposed approach [11].

2 Anatomical knowledge modelling

In order to process spatial information contained in medical images, the use of robust

anatomical hypotheses is essential. It is in particular necessary to allow the modelling
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of this knowledge to express both anatomical invariants and inter-individual variabil-

ity. Indeed, in mathematical morphology, it is important, to be able to adapt the used

structuring elements to the objects assumed to be present in the processed image at the

considered point. To this end, the structuring element can, for instance, be chosen with

respect to a model of the search object, obtained beforehand by a learning process.

A first approach can consist in creating shape models, which describe the general

shape of structures of interest. Such models can be defined by computing the mean

image of data obtained from the segmentation of a (learning) image database. This

mean image of binary functions is then a grey-level function taking its values in the

interval [0, 1]. An example of this kind of models, built from a base composed of

15 segmented images of the portal vein entry, is illustrated in Figure 2(a), and can be

expressed as:

M : E → [0, 1]

x 7→ M(x)

where E is the space on which the anatomical structure is defined, and M(x) is the

mean presence ratio of the structure at point x, with respect to the learning base. The

sets M−1({1}) and M−1(]0, 1]) constitute a subset and a superset of the considered

anatomical structure, respectively. Such a model can lead to the generation of structur-

ing elements which enable the extraction of this anatomical structure in images which

do not belong to the learning base, but which are similar. In [12], these elements are

made of cylinders and horizontal/vertical concentric discrete circles.

A second approach consists in using simpler morphological hypotheses (for in-

stance a tubular model in the case of vessels) and to focus more accurately on quanti-

tative criteria. This strategy is illustrated by the notion of statistical atlas, which aims

at estimating the value of a series of parameters according to the position in the image.

The parameters proposed in the atlas presented hereafter, related to the cerebral vascu-

lar network, deal with the presence probability, the size and the orientation of vessels.

An example of atlas, obtained from a learning database composed of 18 images [14],

is illustrated in Figure 2(b), and can be expressed as:

A : E → [0, 1] × P(R+) × P([0, π[×[0, π[)

x 7→ (Ad(x),At(x),Ao(x))

where Ad, At and Ao represent the fields related to presence probability1, size and

orientation, respectively (the last two fields are expressed as intervals modelling the

inter-individual variability). Such an atlas is meaningful only if it is associated to an

anatomical reference which can, for instance, be an image R : E → Z visualizing

related anatomical structures. The information provided by A(x) then correspond to

the anatomical area visualized in R(x).

The two knowledge models presented here illustrate the ability to take into con-

sideration some non-trivial morphological and geometric information. It has to be

remarked that, by construction, these models can provide information elements which

1Although Ad and M can both be expressed in terms of probability maps, they do not have the same

semantics. This difference results in particular from the nature of the structures modelled by these fields: a

vessel segment and a whole network, respectively.
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can be quite accurate, since they are expressed at the same level of details than the

resolution of the images from which they are extracted.

Figure 1: Knowledge modelling. First row – Shape model for the portal vein entry, in

the liver (M). From left to right: three orthogonal slices (sagittal, coronal and axial).

Second row – Statistical atlas (A) of the cerebral vascular network. From left to right:

vessel presence probability (Ad), mean size (part ofAt), and anatomical reference (R).

3 Hit-or-miss transform

The hit-or-miss transform is an operator enabling to detect some configurations of

points satisfying constraints related to two structuring elements [19]. Initially defined

for binary images, this operator has been extended to grey-level images under various

forms [16, 19, 10]. All these variants of the grey-level hit-or-miss transform can, in a

simple way, be unified and expressed as the composition V ◦ DA,B of a fitting operator:

DA,B : ZE → P(E × Z)

I 7→ {(p, t) ∈ E × Z | Ap,t ≤ I ≤ Bp,t}

and a valuation operator V : P(E × Z) → ZE . Here, ≤ is the pointwise order on the

functions E → Z while A, B : E → Z are structuring functions2 [17, 18]. In fact, as

Ap,t ≤ I ≤ Bp,t ⇔ (I ⊕ B∗)(p) ≤ t ≤ (I ⊖ A)(p) (where the structuring element B∗

is defined by B∗(x) = −B(−x)), the computation of the result provided by this operator

can be reduced to the computation of an erosion and a dilation. Finally, the purpose

of the valuation operator V is to associate to each point of the initial image, detected

by DA,B, a value expressing a given information; this valuation can have three forms:

2We mean, by structuring function, a numerical function which represents a grey-level structuring ele-

ment. Practically, structuring functions are often considered as flat, i.e., as having a constant value (generally

0) on their support (noted supp), and −∞ elsewhere.
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supremal [16], integral [19] or binary. An illustration of this operator is proposed in

Figure 3.

Figure 2: Grey-level hit-or-miss transform. Here, E = Z and T = [0 . . . t] ⊂ N. Two flat

structuring elements A and B (where the origin is the left pixel of A) are used. From top

to bottom are illustrated the grey-level hit-or-miss with supremal, integral and binary

valuation, respectively. The initial image is depicted with dash lines.
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The grey-level hit-or-miss transform is a quite interesting tool in the context of

medical image segmentation. Indeed, by definition, it enables to take into account not

only photometric information (the structuring elements being grey-level functions), but

also morphological and geometric information, thanks to the support of these structur-

ing elements. This kind of information can, moreover, be related either to the objects

or their neighbourhood.
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4 Application: two vessel segmentation examples

Segmentation of angiographic images is generally a hard issue. This is especially a

consequence of the small size and the complex structure of vessels, but also of the

specific properties and the quality of the images (resolution and signal to noise ratio,

which are generally low), which are then difficult to analyse, even for radiologists. The

use of a priori knowledge can enable to overcome these difficulties by taking advantage

of the whole available information related to an image and its content. Two examples of

segmentation algorithms based on this methodology, and dealing with different kinds

of images and vessels, are described hereafter.

Figure 3: Angiographic images. Left: axial slice of an X-ray CT scan, visualizing (on

the left part of the image) the hepatic structures and the portal network branches. Right:

sagittal slices of a phase-contrast MRA (magnitude and phase images).

4.1 Liver vascular network segmentation from X-ray CT-scan

The liver is composed of two main vascular networks: the portal network and the hep-

atic network. The segmentation of the portal network from X-ray Computed Tomogra-

phy scanner (CT-scan) images, such as the one illustrated in Figure 4 (left), is of high

importance. Indeed, the anatomical partitioning of the liver into anatomical segments,

which is crucial in hepatic surgery, is based on this network.

A portal network segmentation method, proposed in [12], is based on both region-

growing and hit-or-miss transform. It takes as input a CT-scan angiographic image

I : E → Z and a set of structuring elements designed from a set of knowledge related

to the portal network (formalized thanks to shape models). It provides as output a

binary image 3 S : E → {0, 1} of the vessels visualized in I.

The region-growing algorithms build a partition of the image from one or several

seeds by iteratively adding point which verify ad hoc criteria. The approach proposed

here consists in defining as seed the portal vein entry in the liver, which constitutes the

root of the vascular tree. It is detected in an automatic fashion, by using a combination

of grey-level hit-or-miss operators, the structuring elements of which are defined thanks

to a shape modelM such as the one described in Section 2. From the set G containing

3Such binary images are generally considered, by abuse of notation, as sets S ∈ P(E) actually corre-

sponding to S −1({1}).
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the points of the seed, the region-growing process can be defined as the generation of

a sequence of sets (S k)k∈N where S k ⊆ E

{

S 0 = G

S k+1 = S k ∪ {x} if ∃x ∈ Γ(S k) such that C(I, S k, x) = true

where Γ(S k) represents the set of the points forming the neighbourhood of the set S k,

and C if the considered growing criterion. The result of the segmentation is then defined

as S = limk S k =
⋃

k S k.

The region-growing criterion considered here relies on a hit-or-miss transform anal-

ysis of the neighbourhood of the considered point x, which enables to characterize this

point as belonging or not to a tubular structure. This analysis consists in exploring,

in x, the neighbourhood made of three discrete circles oriented according to the three

principal directions. The criterion is satisfied if, for at least one circle, the intensity of

all its points is lower than the intensity of the tested point x. More formally, we have

C(I, S k, x) =

{

true if x ∈ Γ(S k) and max3
i=1

[V ◦ DO,Ri
(I)](x) > 0

f alse otherwise

where O = i0,0 (ip,t representing the impulse function of value t at the point p), Ri

(i = 1 to 3) are flat structuring functions whose support is formed by three circles being

parallel to the axial, coronal and sagittal planes, respectively (and whose radius and

thickness of the support, such as the –positive– intensity can be parametrized), and V

is the integral valuation operator defined by:

V(X)(x) = |{t ∈ Z | (x, t) ∈ X}|

This method enables to provide a segmentation of the portal network presenting sound

anatomical properties (the generation of a tubular and tree-like structure is made pos-

sible by the growing process and the use of coherent structuring elements). Moreover,

it can also permit (by assigning, to each segmented point, the value provided by V) to

obtain a “confidence score” related to the photometric properties of the initial image.

This method has been applied on a database composed of 16 images, providing results

such as the one illustrated in Figure 4.2 (left).

4.2 Brain vessel segmentation from MRI data

There exist several kinds of angiographic MRI data (also called magnetic resonance

angiography –MRA). Among them, one of the most frequently used is phase-contrast

MRA, illustrated in Figure 4 (right). It presents the particularity to provide a bimodal

image (i.e. a couple of images, each one acquired according to a specific modality),

composed of a magnitude image, visualizing the morphological structures, and a phase

image, visualizing the flowing blood.

A segmentation method proposed in [15] consists in segmenting the MRA phase

images by performing a filtering based on grey-level hit-or-miss, the structuring ele-

ments of which are designed according to the tubular structure of the vessels. These

structuring elements are composed by a discrete sphere, for the object, and a sampled
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discrete circle having the same centre as the sphere, for the background. Such a defini-

tion leads to a family of structuring elements induced by the degrees of freedom (size,

orientation) of the model. The purpose of the method is to choose the elements to apply

according to the position in the image, in order to obtain results being similar to those

which would be computed by an exhaustive approach, but with a significantly lower

algorithmic/computational cost. The guidance of the method is based on an atlas and

the information provided by the magnitude image associated to the phase image to be

segmented.

The method takes as input a MRA composed of a magnitude image and a phase

image Im, Ip : E → Z, an atlas A such as proposed in Section 2, and its anatomical

reference R. It provides as output a binary image S : E → {0, 1} of the vessels visual-

ized in Ip. First, a non-rigid registration of R onto Im is performed, in order to obtain

a deformation fieldD : E → E establishing a correspondence between the anatomical

structures in Im and R. Once this deformation field is obtained, a new atlasA′ = D◦A

correctly fitted to the anatomical structures of I can be deduced. At each point x ∈ E,

a set ES x of structuring elements is then defined as:

ES x =

{

{(A, B) | rA, rB, θB, φB coherent withA′t(x),A′o(x)} ifA′d(x) > 0

∅ otherwise

where supp(A) is a discrete sphere of radius rA, and supp(B) is a sampled concentric

discrete circle of radius rB of orientation (θB, φB). Here, the elements A and B are

functions having constant values a and b, then we set a − b = 1 in order to give to the

geometric information a stronger influence than the one of photometric information

(which is quite unreliable in this kind of images). Then, for all x ∈ E and all (A, B) ∈

ES x, a grey-level hit-or-miss transform is applied to determine whether x corresponds

to a vessel, w.r.t. the anatomical knowledge at this position. If x is evaluated as being

vascular, its dilation by the element A involved in its detection is added to the result

image S . More concretely, S is defined as:

S =
⋃

{A ⊕ {x} | ∃(A, B) ∈ S Ex, [V ◦ DA,B(Ip)](x) > 0}

where V is defined as in Section 4.1. This method has been applied on a database of 15

images, providing results such as the ones illustrated in Figure 4.2 (right).

5 Conclusion

The integration of high-level knowledge in segmentation methods, and more gener-

ally in medical image processing ones, constitutes a recent and extremely promising

way towards the design of radiology-assistance tools actually usable in clinical rou-

tine. In this context, mathematical morphology proposes a methodological framework

perfectly fitted, especially thanks to its ability to take into consideration geometric and

morphological properties which naturally formalize several anatomical knowledge el-

ements.

This chapter has intended to illustrate this assertion by presenting few concepts

and methods (the relevance of which has been proved by validations carried out by
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Figure 4: Segmentation results. Left: method described in Section 4.1 (liver vascular

network). Right: method described in Section 4.2 (cerebral vascular network).

medical experts), which will be –hopefully– sufficiently representative to convince the

reader. Several other contributions could actually extend and complete this chapter.

The readers who are interested in other works related to mathematical morphology-

based segmentation methods of 3D angiographic data can also refer to the following

articles [21, 2, 20, 1]. More generally, besides the use of morphological and geometric

knowledge [9, 13], other solutions dealing with the integration of topological knowl-

edge [6, 5, 7], relational knowledge [3, 8], or even the use of temporal information [4]

(see also the previous chapter of this book) for the segmentation of medical images,

have been investigated during the last years, and have already led to quite interesting

results.
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