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ABSTRACT

Phase-contrast magnetic resonance angiography (PC-MRA) can produce phase images which are 3-dimensional
pictures of vascular structures. However, it also provides magnitude images, containing anatomical - but no
vascular - data. Classically, algorithms dedicated to PC-MRA segmentation detect the cerebral vascular tree by
only working on phase images. We propose here a new approach for segmentation of cerebral blood vessels in PC-
MRA using the two types of images. This approach is based on the hypothesis that a magnitude image contains
anatomical information useful for vascular structures detection. That information can then be transposed from
a normal case to any patient image by image registration. An atlas of the whole head has been developed in
order to store such anatomical knowledge. It divides a magnitude image into several “vascular areas”, each
one having specific vessel properties. The atlas can be applied on any magnitude image of an entire or nearly
entire head by deformable matching, thus helping to segment blood vessels from the associated phase image.
The segmentation method used afterward is composed of a topology-conserving region growing algorithm using
adaptative threshold values depending on the current region of the atlas. This algorithm builds the arterial and
venous trees by iteratively adding voxels which are selected according to their greyscale value and the variation of
values in their neighborhood. The topology conservation is guaranteed by only selecting simple points during the
growing process. The method has been performed on 15 PC-MRA of the brain. The results have been validated
using MIP and 3D surface rendering visualization; a comparison to other results obtained without atlas proves
that atlas-based methods are an effective way to optimize vascular segmentation strategies.

Keywords: atlas-based segmentation, adaptative region growing, simple points, magnetic resonance angiog-
raphy, cerebral vascular tree

1. INTRODUCTION

Magnetic Resonance Angiography (MRA) is a non-invasive technique! providing high-quality 3D images of
vascular structures. The two kinds of techniques designed to visualize venous and arterial blood vessels are
Time-Of-Flight MRA? (TOF-MRA) and Phase-Contrast MRA® (PC-MRA). Those techniques are frequently
used to study the vascular structures of the brain. Indeed, the availability of precise information about the brain
vascular network is fundamental for planning and performing neurosurgical procedures, but also for detecting
pathologies such as aneurysms and stenoses. Despite of the development of numerous methods to perform blood
vessel segmentation from MRA, there is still none being able to provide completely satisfactory results for a
whole cerebral vascular tree, which contains large and small vessels presenting very different and sometimes
inhomogeneous intensity values. Since all classical image processing tools have been applied more or less success-
fully to the case of vessels segmentation, it might be interesting to explore a new kind of algorithms, involving
a priori knowledge about image acquisition or anatomic structures. In this paper, we propose a first attempt to
use anatomic knowledge as a way to guide a segmentation algorithm. The result of this attempt is a new method
for segmentation of vascular structures of the brain and the entire head from 3D PC-MRA. It is composed of
an adaptative region growing algorithm using an atlas of vascular areas of the head. This paper is organized
as follows. In Section 2, we review previous approaches concerning vessels segmentation in 3D angiographic
images. In Section 3, the way to integrate a priori knowledge in such algorithms is discussed and an atlas is
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described as a solution to modelize anatomic knowledge. In Section 4, we describe the proposed algorithm, based
on this vascular atlas and an adaptative region growing method. In section 5, technical details concerning the
segmentation process and the database used for its validation are provided. In Section 6, the method is tested
on this 15 PC-MRA database. The results are analyzed and compared to results obtained with two other region
growing algorithms. Discussion and projects are presented in Section 7.

2. RELATED WORK

Several methods related to vascular network segmentation from 3D angiographic data have been published for
the last 15 years. They can be divided into eight categories, corresponding to the main strategies used to carry
out the segmentationt: filtering, mathematic morphology, region growing, vessel tracking, differential analysis,
deformable models, statistical analysis and artificial intelligence. The following description only gives a tiny part
of the existing methods for each category.

Some of the proposed algorithms use filtering to segment blood vessels, or only to improve their visualization
in 3D medical images. Orkisz et al.* propose a 3D spatial filtering technique searching the local orientation
of the vessel and then performing nonlinear smoothing in this direction. Du et al.® approximate vessels as
cylinder segments of finite width in order to propose filters of specific size dedicated to noise removing. A
second kind of methods uses mathematic morphology. A grey-level morphological filter, based on erosion and
dilatation operators is proposed by Cline et al.® to segment coronary angiography images. Yim et al.” propose
small vessel path detection by performing a grey-scale skeletonization considering 3D images as acyclic graphs.
Watershed segmentation is also used by Kobashi et al.® as a first segmentation step before classifying primitives.
Region growing is another way to perform blood vessel segmentation. Zahlten et al.? use such a strategy to
segment the liver vascular tree and to generate a graph of its structure. Doklddal et al.!® add a constraint to
preserve the topology of this structure, only allowing simple points to be added during the growing process.
Vessel tracking methods have also been studied, especially by Flasque et al.!! who use an adaptative box
to iteratively detect the vessels and their bifurcations. Sato et al.!2 and Krissian et al.!® propose multiscale
tools for segmenting vessel centrelines by analyzing the differential properties of the images (eigenvalues and
eigenvectors). Lorigo et al.'* perform a segmentation of cerebral MRA by a deformable model based approach
using level sets. Deformable models using B-spline are also proposed by Frangi et al.!® to detect central vessel
axis and vessel walls. Some statistical approaches, developed by Chung et al.'® and Wilson et al.!” use gaussian
or rician intensity distributions to segment the vessels by applying an Expectation-Maximization algorithm. The
last category of methods integrates artificial intelligence concepts to perform vessel segmentation, as the one
proposed by Kobashi et al.,® where artificial neural networks are used while a minimum cost path approach is
performed to segment vessels even in case of stenosis.

The algorithm proposed in this article is inspired from the growing method described in Dokl4dal’s!? pa-
per. However, it is quite different while we propose to add an intensity variation criterion which makes the
segmentation more robust, and to use an atlas to allow adaptative threshold values.

3. A PRIORI KNOWLEDGE INTEGRATION
3.1. Currently used knowledge

As described in the previous section, there exist various methods dedicated to vascular structures segmentation,
using different strategies. Nevertheless all of them use very little a priori knowledge. Indeed they are generally
based on three simple concepts:

e vessels (i.e. flowing blood) correspond to the voxels of highest intensity value in MRA images;

o vessels are supposed to have a tubular shape (even if this assumption is approximative and sometime false);

tMany other criterions could be chosen to classify the existing algorithms: automaticity, kind of data being processed,
centreline or whole vessel detection, size of the searched vessels, general methods or methods dedicated to a particular
organ, etc...



Figure 1. Slices of the two images provided by one PC-MRA acquisition. The left picture is the magnitude image
containing anatomical, but no vascular information. The right picture is the phase image, only containing vascular
information plus noise and artefacts. Usually, only that second image is used during the segmentation process.

e vascular networks are organized in a tree structure.

Using high level a priori knowledge could be an efficient way to make segmentation tools more reliable than
they currently are. Two kinds of a priori knowledge can allow such improvement: knowledge concerning image
acquisition techniques and knowledge concerning the studied anatomic structures. We propose here to use that
second kind of knowledge in order to modelize and integrate parts of it in a segmentation method. Modelization
and integration are performed by using a vascular atlas of the head.

3.2. Vascular atlas

The main purpose of this work is to take the advantage of the bimodality of the same PC-MRA, using the mag-
nitude image to integrate anatomical knowledge. The integration of anatomical knowledge into the segmentation
of vascular structures has two main implications: to find an accurate way of modelization and to determine the
rules for its correct use. The solution proposed here consists in using an atlas especially designed in order to
segment PC-MRA images. PC-MRA provides two different images for a same acquisition: a phase image only
containing information on flowing blood, and a magnitude image which does not contain any vascular informa-
tion but anatomical one, as a classical MRI image. An example of those two kinds of images is given in Figure
1. Therefore PC-MRA provides not only vascular data but also precious information concerning all the head
structures of the patient. This bimodality is quite important. Actually, between two patients, the main blood
vessels and their branches exhibit much variability, making it nearly impossible to design an atlas only based on
vascular structures contained in phase images. As it is quite impossible to find invariant properties by only using
vascular images of the head, an idea is to find such invariant properties concerning the relative positions of blood
vessels and non-vascular structures of the brain and the head, thus allowing using magnitude images. Indeed,
non-vascular structures of the head (and more especially of the brain) are much less variable from one patient to
another and easy to localize on anatomical images. This strategy has permitted to develop a vascular atlas no
longer based on a phase image, but on a magnitude one. This atlas uses a 256 x 256 x 170 PC-MRA magnitude
image of a healthy 25 year old male subject and has been created with semi-automated tools provided by the
Medimax software platform?. It first divides the image into four regions, containing arteries, veins, both arterial
and venous blood vessels, or no vascular structures. These four regions are then refined into smaller ones (14
different areas), each of them having relatively homogeneous properties according to:

e vessels size (which has a strong influence on their intensity in phase images);

e vessels orientation;

iMedimax is a 3D medical image processing software developed by the IPB. It is available on the internet at
http://wuw-ipb.u-strasbg.fr/.



Input:
Foha & [1,dima] X [1,dimy] x [1,dim.] — [a,b]: phase image
A: threshold value (a < A < b)
s: seed point (s € Def(fpra) =[1,dimz] X [1,dimy] X [1,dim-])
Output:
X: vascular binary image (X is considered as a set)
X = {s}
F:={Ls,Lat1,..., Ly} (set of empty FIFO lists)
for (all y € N(s)) (N(s) is the neighborhood of s in Def(fpha))
add y in prha(y)
repeat
i:= Maz{k € [a,b]|L # 0}
remove z from L;
if (z is simple) then
if (fpra(z) > A)
X =X U{z}
for (all y € N(z) \ X)
if (y € Lyppa)
add y in prha(y)

until (fora(z) < A)

Table 1. Region growing algorithm proposed in Doklddal’s'® paper.

e vessels position relatively to specific brain or head structures.

This atlas is then used in an adaptative region growing method presented in the following section.

4. METHOD
4.1. Initial algorithm: a region growing process

The method exposed in this paper is inspired from an algorithm!® proposed by Doklddal et al. It is a region
growing algorithm applied to the segmentation of the liver vascular tree from X-ray images. This algorithm
starts from a seed point interactively defined as making part of the vascular tree, and iteratively adds simple
points? chosen in a priority queue according to their intensity. The algorithm, which will be referred to as Alg;,
is summarized in Table 1.

The major advantage of this method is that the use of simple points guarantees that the segmented vascular
tree will be topologically correct, with no hole and no cavity. Nevertheless, this strategy also presents two main
drawbacks. First, it uses only one seed point. Thus it is possible that a whole part of the vascular tree may
be lost during the segmentation process if that part is disconnected from the part containing the seed point, for
example by an artefact or a signal loss due to aliasing. Second, the proposed algorithm uses only one constant
threshold value. Thus, in order to segment small vessels, presenting a low intensity, one has to accept to also
segment noisy areas of the same intensity, connected to the vascular tree. Such behavior can produce many
segmentation errors. On the contrary, choosing a high threshold value allowing removing noise will cause the
loss of small vessels.

4.2. Optimization: double threshold and intensity variation criterion

We describe here a preliminary optimization to correct the two problems described in the previous subsection.
The proposed optimization no longer uses one seed point but multiple seed points chosen by considering a first
threshold value Aj,q;- These points are then iteratively used to initialize region growing processes similar to
Doklddal’s one, with a second threshold A,,;, lower than A.,,;. In the previous algorithm, candidate points
presenting an intensity higher than the chosen threshold value A were considered as making part of vascular
structures, while the other were rejected. In that proposed optimization, three cases can occur: the candidate
point intensity can be lower than A,,;,, higher than A,,,, or between the two values. In the first case, the point
is rejected while it can be accepted as making part of the vascular structures in the second one, if it preserves

$Simple points are points that can be added to an object or removed from it without modifying its current topology.
The definition of simple points can be found in many papers'® dealing with discrete topology.



the vessels topology. In order to deal with the last case, an intensity variation criterion has been introduced to
decide whether a candidate point can be chosen or not. This criterion consists in comparing intensities of the
candidate point and its already segmented neighbors. The choice process including that criterion can then be
summarized as follows.

Let Auin and A0z be the two chosen threshold values. Let ayin and a;nq. be the two criterion values chosen
(with 0 < @min < Qmaz < 1). Let x be the candidate voxel and V(z) its neighborhood (the 26 adjacent voxels).
For any point a let I(a) be the intensity of a. Let S be the region already segmented. Then if z is a simple
point:

o if (I(z) > Amae) then z is accepted;
o if (

o if ()\min < I(.’L‘) < )\maz):

I(x) < Amin) then z is rejected;

1. if Iy eV(z)NS| (I(z) < aminl(y)) then z is rejected;
2. ifnot (1.) and (y € V(z) NS | I(z) > @mael(y)) then z is accepted;
3. if not (1.) and not (2.) then z is put back in a waiting list until V(z) NS is modified.

This criterion forbids to accept a point if its intensity is too low compared to its neighbors which already
make part of the segmented structure. This is justified by the fact that a strong reduction of signal generally
characterizes the vessel borders in angiographic images. It has been experimentally observed that values (%, %)
for (Amins Amaz) give satisfactory results.

The modified algorithm, using two threshold values and an intensity variation criterion is supposed to solve
the previous problems. Using several seed points allows segmenting multiple regions which would be lost by
using a unique seed point. Nevertheless, a consequence of using several seed points is that the final vascular
structure, if more complete, is composed of multiple connected components. Such a structure, that is no longer
a tree, is not topologically correct, and could be considered as less satisfactory than the results obtained with
the previous method. But even if the presence of multiple components can appear as a weakness, one has to
remember that:

e n — 1 of the n disconnected components segmented by that method would have been forgotten by the
previous one;

o the segmented structure still does not present any hole or cavity, thus preserving two correct topological
properties;

e using a double threshold is an effective way to segment structures presenting a low intensity while avoiding
to segment noise, which could not be correctly done with the first method.

This optimization, referred to as Algs, can be compared to the introduction of a hysteresis thresholding in
the growing process, in the way that two threshold values are used instead of one. If that new method can
be considered as theoretically better than the previous one, it still does not integrate any a priori knowledge.
Moreover, even if it now uses two threshold values, those values are still fixed. To make the algorithm more
robust to intensity variations, it might be interesting that these values be adaptative. This is what is done by
using the proposed vascular atlas.

4.3. Atlas-based algorithm

Blood vessels intensity varies according to blood velocity, which itself depends on vessels size. The size of vessels
of the brain, and more generally of the whole head exhibits much variability. It depends on the vessels position,
for example, carotid arteries in the neck, or vessels located in the falx cerebri have very different diameters.
One of the informations provided by the developed atlas is the way to estimate the expected intensity of vessels
according to their localization in each one of its 14 areas. The following atlas-based algorithm (which will be
referred to as Algs from now) can be divided into three steps:



Figure 2. Result provided by the non rigid registration used in the proposed algorithm. Left, magnitude image of the
standard case (used to create the atlas). Right, magnitude image of a patient case. Middle, result obtained by non-rigid
registration of the left image on the right one. The deformation field used here to obtain that image is then used to map
the atlas on the phase image of the patient.

1. First, the magnitude PCA image of a healthy subject is compared to the magnitude image of the current
patient, by deformable matching. This first step provides a 3D deformation field that is then used to modify
the initial vascular atlas, fitting it to the patient. The new obtained atlas will then give information adapted
to the patient’s blood vessels. A result provided by the non-rigid registration!? is illustrated in Figure 2.

2. The deformed atlas is superimposed on the phase image of the patient and the threshold values of each
region are then estimated. During this step, the threshold values of each region can be interactively
chosen by the user. Nevertheless, they can also be automatically computed using a histogram analysis.
This process consists in calculating the histogram for each region of the image. Each histogram is then
normalized, and two threshold values are chosen by using heuristic rules directly on the histogram or, more
frequently, on its derivative function. All the heuristic rules have been defined by observation and learning
on a 10 images database (the 10 images are not the same as the ones used for the final validation).

3. The last step is the vessel segmentation by region growing presented in Table 2. This step is quite similar
to Alga. The difference is the use of adaptative threshold values during the region growing process. They
permit to adapt the segmentation to the current region, allowing, for example, to remove more noise or to
detect more efficiently small vessels which could not be found with global threshold values.

All the algorithms presented in this section have been implemented on the Medimax software platform¥ and all
use the ImLib3D/l open source C++ library.

5. EXPERIMENTAL SECTION
5.1. Data acquisition

A 15 PC-MRA database has been used to validate the efficiency of the proposed atlas based-algorithm. The
MRA examinations were performed on a 1 Tesla whole-body scanner (Gyroscan NT/INTERA 1.0 T from Philips,
gradient slope 75 T/m/s). The flow encoding sequence called TIFFE/PCA uses a TR of 10 ms and a TE of
6.4 ms. The pool of patients was composed of males and females aged from 21 to 51. The acquired images of
dimensions varying between 2562 x 150 and 2562 x 180 voxels, are made of non isotropic voxels. It has to be
noticed that in each image, the vascular information only represents 50 000 to 150 000 voxels, i.e. approximately
1% of the image.

TAll figures presented in this paper have also been computed and visualized with Medimax.
Ihttp://imlib3d.sourceforge.net/



Input:
fpha & [1,dima] X [1, dimy] x [1,dim.] — [a,b]: phase image
Qmas: intensity variation value (0 < amaaz < 1)
Qmin: intensity variation value (0 < amin < Qmaz)
Data provided by atlas application:
Amae @ [1,dimg] X [1,dimy] x [1,dim;] — [a,b]: threshold value
Amin @ [1,dimg] X [1, dimy] X [1,dim.] — [a, b]: threshold value
Output:
X: vascular image (binary image) (X is considered as a set)
X:=0
for (all ¢ € Def(fpha) = [1,dimz] X [1,dimy] X [1, dim.])
if (Fpna(2) > Amas (2))
if (z ¢ X)
F:={La,Lat1,...,Lp} (set of empty FIFO lists)
Refused :=0
X :=XU{z}
for (all y € N(z) \ X)
add Yy in prha(m)

repeat
i:= Maz{k € [a,b]|Ly # 0}
remove z from L;
if ( simple) then
if (z ¢ Refused) then
case
(fpra(®) > Amaa (2))
X :=XU{z}
for (all y € N(z) \ X)
if (y & Ly,p,)
add y in prha(y)
(fora(2) < Amin(z))
do nothing
Amin () < fona() < Amaz(2))
if 32 € N(2) N X.fpha(®) < Amin (@) fona(2)
Refused := Refused U {z}
else if (3z € N(z) N X. fpha(T) > tmazfpra(?))
X :=XU{z}
for (all y € N(z) \ X)
if (¥ ¢ Liypa)
add Yy 1n prha(y)
else
do nothing
until (fpha(®) < Amaz(x))

Table 2. Third step of the atlas-based region growing algorithm.

5.2. Automaticity

Even if the heuristic values used in step 2 of the atlas-based algorithm do not necessarily provide the best
threshold values, they are generally relatively close to them. Steps 1 and 3 being automatic, it is then possible to
use the atlas-based algorithm in an entirely automatic fashion. Nevertheless one can choose to manually define
the threshold values, or to use the algorithm a second time after an automatic segmentation to correct some
of them. A full automation attempt has been carried out on Alg; and Algs, with no satisfactory results. This
failure has been attributed to the difficulty to find invariant criterions allowing to obtain good global threshold
values. This lack of automaticity is one of the drawbacks when trying to treat each specific part of an image in
the same way.

5.3. Segmentation complexity and computation time

Algy, Algs and the third step of Algs are quite similar and then have the same complexity of O(N) where
N is the number of voxels contained in the image. The second step of Algs also presents a complexity of
O(N). Concerning the first step of this algorithm, it is impossible to provide complexity information because the
algorithm is based on an energy minimization criterion. Then the complexity depends on the processed image.

The images have been segmented with a computer using a 2.4 GHz Pentium IV processor and a memory
of 2 GB. The average computation time is 2 minutes for Alg; and 4 minutes for Alg,. The three steps of
Algs required 80, 2 and 4 minutes respectively. The atlas-based algorithm is then more time expensive than
the other ones. This is due to the non-rigid registration which is absolutely necessary in order to use the atlas



and then integrate a priori knowledge. Even if this apparently elevated time cost can appear as a drawback, it
must be balanced with the supplementary information contained in the segmented image and its higher quality.
Moreover, the atlas-based algorithm being automatic, it has to process each image only once, while multiple tries
must be carried out with the two other algorithms before finding a correct result**.

6. RESULTS AND DISCUSSION

The results obtained with the atlas-based algorithm have been validated by comparison to those provided by
Algy and Algs. The validation includes a qualitative study concerning the visual quality of the results and a
more quantitative analysis in order to know the amount of supplementary information provided by the proposed
method. The three algorithms have been tested on each one of 15 PC-MRA of the previously described database.
It has to be noticed that images have been automatically treated only once by the atlas-based algorithm, while it
has been necessary to process the images several times with the two other methods before finding the best results.
Moreover, Alg; was used here with multiple seed points, since using only one seed point yielded topologically
correct but very poor results.

6.1. Qualitative validation

Maximum Intensity Projection (MIP) and 3D visualization have been used for the qualitative validation, in order
to know if their quality was visually increased by the different algorithms.

The three segmentation processes make MIP visualization more easily readable by removing a large part of
background noise. As can be observed in the example of results displayed in Figure 3, Algs and Algs allow to
see small vessels structures which were mixed with noise in the initial images. Nevertheless, if the atlas based
algorithm provides better MIP visualizations than the two other algorithms, it is a hard task to estimate the
improvement. The visible difference becomes more important by observing the segmentation results as a 3D
object which can be interactively handled. A 3D visualization of an image segmented by the three algorithms
can be found in Figure 4. A visual analysis shows that the segmented images obtained with the atlas-based
algorithm generally seem to contain less noise and more details and are therefore easier to analyze.

6.2. Quantitative validation

The 15 segmented images provided by the atlas based algorithm have also been analyzed in a more systematic
fashion. They have been quantitatively compared to results obtained using Alg; and Algs. The results are
summarized in Table 3.

One can observe that Algs and Algs both detect more voxels than Alg;, with less segmentation errors.
Moreover, even if they both provide approximately the same quantity of false positives't (voxels erroneously
considered as being vascular), the atlas based algorithm provides, in the same time, a larger quantity of correct
positives. It has to be noticed that the set of voxels correctly segmented by Algs is nearly always included in
the set correctly segmented by Algs. Then, in most cases, there is no loss of information induced by the atlas,
while in rare cases, small parts of vessels located at the frontier between two regions have been lost. The parts
of the vascular tree only segmented by the atlas-based algorithm contain small vessels presenting a diameter
close to the voxels dimension, for example arteries located in the falx cerebri or under the brain. Detecting
those small vessels is a real improvement, because they are not distinguishable from the noise in the original
images. Those results tend to prove that adding information adapted to the currently processed region during the
segmentation process is an efficient way to obtain more detailed and precise vascular structures. Some examples
of such segmented vascular structures can be found in Figures 5-6.

**Five to ten attempts are necessary before finding correct parameters in Alg; and Algs. In addition, concerning Algs,
many successive seed points have to be manually defined in order to detect some important disconnected components.

#The main segmentation errors of Algs and Algs are always caused by very bright artefacts in images. Most of them
could be easily classified and removed by adapted post-processing treatments.



Comm. Suppl. segmentation Segmentation errors Correct segmentation
Algy Algo Algs | Algy [ Algs [ Algs | Algy Algo Algs
1 30951 2384 27799 30960 1092 0 0 1292 27799 30960
2 44743 1448 24 349 35253 972 0 527 476 24 349 34726
3 46 669 2001 14013 19988 512 0 0 1489 14013 19988
4 24 045 3583 18609 17006 2216 0 0 1367 18609 17006
5 27275 1828 33625 34 480 1031 10 0 797 33617 34480
6 13454 2873 13888 44206 1956 0 2006 917 13888 42200
7 18728 3255 16 985 28464 2826 0 140 429 16985 28324
8 73780 6868 12012 29929 2074 2074 0 4794 9938 29929
9 83030 10156 2796 30949 3078 2547 2547 7078 249 28402
10 31166 2044 7282 23517 825 14 1424 1219 7268 22093
11 26213 1472 5970 17363 421 0 0 1051 5970 17363
12 34942 2506 17734 29 264 1588 0 0 918 17734 29 264
13 31136 3244 22461 29945 3093 7077 4079 151 15384 25 866
14 31931 5115 4988 27228 4104 0 0 1011 4988 27228
15 23974 7305 5315 26115 4925 0 40 2 380 5315 26075
Av. 36 136 3738 15189 28318 2048 782 718 1692 14408 27 596

Table 3. Atlas based algorithm (Algs) compared with Dokladal’s algorithm (Algi) and its optimization (Algs:). The
second column (Comm.) indicates how many voxels have been simultaneously segmented by the three algorithms. The
next three columns (Suppl. segmentation) indicate how many supplementary voxels have been segmented by each method.
The six remaining columns (Segmentation errors, Correct segmentation) indicate, for each method, how many of those
supplementary voxels are true or false positives of segmentation. The last line (Av.) provides the average values.

Figure 3. MIP visualization of 3D top view of brain vasculature. From left to right: reconstruction from the original
phase image, image segmented by Alg;, image segmented by Algs, image segmented by the atlas based algorithm. The
atlas based algorithm visibly gives the best results, removing more noise and conserving more vascular information than

Algr and Algo.

AP

Figure 4. 3D visualization. From left to right: image segmented by Alg:, image segmented by Alg>, image segmented
by the atlas based algorithm. The atlas based algorithm provides more vascular information than Alg: and Algs.




Figure 5. 3D visualization of cerebral vascular trees segmented by the atlas-based algorithm.

7. CONCLUSION

This paper presented a novel method, based on an atlas and an adaptative region growing process, dedicated
to blood vessels segmentation in PC-MRA images of the brain and of the whole head. The method has been
tested on 15 PC-MRA, providing significantly more precise results than two no atlas-based algorithms. The
main originality of this work consisted in using an atlas for vascular segmentation purpose, thus permitting to
include a priori anatomic knowledge in order to make the proposed region growing algorithm more adaptative
and thus more reliable. Atlas-based segmentation algorithms had already been designed?® for non vascular
brain structures, but never for vascular structures. Indeed, the determination of invariant properties directly
on blood vessels is a very hard task, hence forbidding to create an atlas directly on vascular data such as PC-
MRA phase images. Thus the proposed atlas, based on a PC-MRA magnitude image, contains information on
vessel properties relatively to non vascular brain and head structures. This was a first attempt to integrate



Figure 6. 3D visualization of cerebral vascular trees segmented by the atlas-based algorithm in relation to their environ-
mental anatomical head structures.

anatomical knowledge in a vessel segmentation process. The proposed method and the results it provides, give
the proof that anatomic knowledge integration can be a way to increase the efficiency of algorithms dedicated
to vascular segmentation. Further studies will consist in optimizing the reliability of the proposed atlas by
creating mixed areas at the frontier between different regions, in order to better modelize the probability of a
voxel to belong to one region or another. Another kind of threshold value determination will also be developed
to make the automatic version of the algorithm more robust. Moreover, the knowledge currently used in the
proposed algorithm only concerns the intensity of vascular structures to find. That information is used for
dynamic threshold evolution. Other kinds of high-level anatomical knowledge such as vessels orientation and
position relatively to non vascular structures, which can be modelized by the atlas will be integrated too. The
atlas will then be more intensively used to become the basis of new algorithms dedicated to brain vascular tree
segmentation.
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