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Topology-preservation in 3-D image deformation and

registration: Methodology and medical applications
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Abstract To obtain correct topological properties when analysing a 3-D image, a solution

consists in using an a priori model presenting satisfying properties w.r.t. the object to

analyse, and to “fit” the model on this object. We propose a methodological framework

which tackles this problem by fusing two classical approaches: image deformation, and image

registration, which consider discrete and continuous topology preservation, respectively. The

methodology, applied on medical data, provides quite satisfactory results.
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1 Introduction

Obtaining correct topological properties is often an important requirement in 3-D image analysis.
To deal with this issue, a solution generally consists in using an a priori model presenting satisfying
properties w.r.t. the object to analyse, and to fit this model on the object. This can be done by:
image deformation (which considers discrete topology preservation), or image registration (which
considers continuous topology preservation).

1.1 Topology-preserving image deformation

Methods based on image deformation often consist in progressively modifying a discrete object
M ⊂ EZ (with EZ ⊂ Z

3) in a homotopy-preserving fashion (typically by addition/removal of
simple points [3]), under the guidance of a priori knowledge: generally a constraint set K ⊂ EZ

(i.e. a “geometrically correct” target to reach) and a cost or priority function f devoted to guide
the deformation (see Alg. 1). The purpose of such methods is then to obtain a resulting set
X ⊂ EZ having the same topology as M while being “as similar as possible” to K.

This framework presents several challenges: (i) How to handle objects having a complex topol-
ogy? (ii) How to define a cost function modelling high-level a priori knowledge? and (iii) How to
enable a flexible deformation while guaranteeing its convergence?

Most of the methods based on this framework omit one or several of these requirements in
order to deal with the other ones. In particular, many of them (i) consider objects of non-complex
topology (generally simply connected) [5] or use simplifying hypotheses to lead to simpler topology
[9], (ii) use cost functions based on low-level or local knowledge (distance maps, intensity, etc.)
[13], and/or (iii) use a monotonic deformation process, which aims at either adding (growing
processes) or removing (thinning processes) simple points [4], thus requiring that either M ⊂ K

or K ⊂ M (forbidding, in particular, automatic generation of M for complex topologies). Note
that most of these methods are devoted to cerebral or vascular structure detection from 3-D MRI
or CT-data. By lack of room, we do not present here a state of the art of the methods based on
these concepts. A (hopefully) complete one will be proposed and discussed in further works.

In order to develop efficient topology-preserving deformation methods, it would actually be
important to authorise the use of complex objects M , evolving non-monotonically onto targets K

possibly having also complex topologies by guidance of high-level priority functions f , with low
algorithmic complexities. To our knowledge, this issue has not frequently been addressed.
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Algorithm 1 Topology-preserving image deformation - general framework.
Input: M ⊂ EZ (“topological” model), K ⊂ EZ (“geometrical and/or topological” target), f (cost function)
Output: X ⊂ EZ (final binary image)
X = M

repeat

Choose x ∈ {y ∈ EZ | y is simple for X} according to f .
if x ∈ X then

X = X \ {x}
else

X = X ∪ {x}
end if

until the process converges w.r.t. f and K.

1.2 Topology-preserving image registration

Image registration aims at estimating consistently a mapping between two (binary or grey-level)
images. An important issue in nonrigid image registration is to enforce the estimated transforma-
tion to preserve the topology. The property of topology preservation is related to the continuity
and invertibility of the transformation, which should be a one-to-one mapping. Enforcing such
property requires to constraint the Jacobian of the transformation to be positive. This problem
has already been successfully tackled for B-spline-based deformation fields in the 3-D case [11] by
solving the corresponding constrained optimisation problem. An alternative to these approaches
is to consider deformation fields that are solutions to Ordinary Differential Equations (ODEs) [8].
This ensures, under some conditions on the smoothness of the velocity fields, that the estimated
displacement fields are diffeomorphic. A comprehensive review of the registration methods that
enable to preserve topology can be found in [7]. However, it should be noticed that all these meth-
ods enforce topology preservation in the continuous domain (i.e. ER ⊂ R

3). Thus, deforming a
discrete binary image using such transformation does not ensure that the initial and the deformed
images have the same discrete topology, because of the discretisation process that occurs during
the (necessary) resampling operation. This is quite detrimental since one of the common applica-
tion of image registration is atlas-based segmentation [10]. Atlas-based segmentation consists in
registering a reference image IR : EZ → Z, associated with a reference segmentation map M ⊂ EZ

(the “atlas”), onto the image IT : EZ → Z to segment, thus generating a continuous deformation
field D : ER → ER (with ER ∩ Z

3 = EZ) and then to deform M using D in order to obtain the
segmentation of IT . Thus, the resulting segmentation X = Φ(D(M)) (where Φ : P(R3) → P(Z3)
is a discretisation operator) can unfortunately not be ensured to have the same topology as M ,
even if it relies on a topology-preserving image registration method.

1.3 Motivation

Surprisingly, several works have been devoted to develop registration methods providing 3-D defor-
mation fields which preserve the continuous topology, while the topology preservation of discrete
objects deformed by such fields has not been considered. Other works have proposed discrete
topology-preserving image deformation methods generally based on “simple” hypotheses, and in
particular not considering complex 3-D deformation fields.

Based on these considerations, we propose a methodological framework for deforming a binary
image M ⊂ EZ according to a topology-preserving deformation field D : ER → ER without altering
its discrete topology. This framework can be seen as an attempt to fuse the concepts of image
registration and topology-preserving deformation into an hybrid and sound methodology. This
kind of approach is essentially devoted to be used in the context of atlas-based segmentation.

To our knowledge, only one other attempt has been made (in parallel to our work) to reach
that goal by using a different modus operandi, first computing a “discrete” deformation field [1]
associated to a continuous one, w.r.t. a considered image, and then using it in a deformation
process [2] devoted to this image. By opposition, our approach computes the image which would
be obtained by registering a binary model without considering topology, and then performs a
topology-preserving deformation to make the initial model converge onto the registered one.
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2 Proposed methodological framework

Following the same notations as above, the proposed methodology consists in deforming M accord-
ing to a cost function f (depending on D and M) to finally obtain a result X presenting the same
topology as M and a geometry as close as possible to the one of the object K which would have
been obtained by a “standard” atlas-based strategy (i.e. without considering discrete topology
preservation). It fuses the advantages of the two families of methods: it is based on an arbitrary
(possibly non-trivial) topological model (M) which evolves in a non-monotonic and (discrete)
topology-preserving fashion under the guidance of a complex (and continuous) topology-preserving
deformation function.

The deformation of a binary image according to a topology-preserving deformation field can
be stated as the following constrained optimisation problem:

X = arg min
Y ∼M

d(Y, M, D) , (1)

where Y is a binary image constrained to be topologically equivalent (∼) to M and d(Y, M, D)
is a distance between Y and the continuous deformed image D(M). We introduce, in Sec. 2.1, a
distance d, which actually provides a cost function (f , following the above notations). In Sec. 2.2,
we explain how to constrain Y to be topologically equivalent to M during the optimisation process.
The optimisation strategy is detailed in Sec. 2.3. An overview of the method is proposed in Alg. 2.

Algorithm 2 Binary image topology-preserving deformation algorithm (see text).
Input: M ⊂ EZ (binary image to deform according to D), D : ER → ER (deformation field)
Output: X ⊂ EZ (deformed binary image)
X = M
Compute (D(i))n

i=1 (intermediate deformation fields obtained from D).

for D∗ = D(1) to D(n) do

L = {x ∈ EZ | x is simple for X}
repeat

while L 6= ∅ do

x = arg maxy∈L c(y, X, M, D∗)
if x ∈ X then

X = X \ {x}
else

X = X ∪ {x}
end if

Update L considering the new status of points in N26(x) (the neighbourhood of x).
end while

if ∃(x, x′) which can be translated and which maximises c(., X, M, D∗) then

if x ∈ X then

X = (X \ {x}) ∪ {x′}
else

X = (X \ {x′}) ∪ {x}
end if

Update L considering the new status of points in N26({x, x′}) (the neighbourhood of {x, x′}).
end if

until L = ∅

end for

2.1 Cost function

Since M and X have the same topology, there exists a one-to-one relation between the connected
components (CCs) of M and the ones of X . These CCs can be background (BCCs) or object
(OCCs) CCs, each one being associated to a distinct label. We define N (x, X, M) as the CC of
M which corresponds to the CC of X containing the point x. We define the distance d(X, M, D)
between X and the continuous deformed image D(M) as follows:

d(X, M, D) =
∑

x∈X

ρ(x, X, M, D) , with ρ(x, X, M, D) = min
y∈N (x,X,M)

‖y − D(x)‖ , (2)

where ρ(x, X, M, D) is the distance between D(x) and the CC of M which is associated to the CC
that contains x in X . To clarify the idea, the computation of the cost function is illustrated in
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a 2-D case in Figure 1. The value ρ(x, X, M, D) can be approximated by computing the chamfer
distance map (in M) of the CC that contains x in M and by evaluating its value at position
D(x) (linear interpolation is used for the computation of ρ(x, X, M, D), since this approximation
is largely sufficient for the algorithm convergence).

x1 x2 x3

x4 x5

x6

XM
first object

connected component

second object

connected component

background

connected component

a

b

c

Figure 1: Computation of ρ(., X, M, D) for 6 points. For i ∈ {2, 3, 5}, ρ(xi, X, M, D) = 0, since
D(xi) belongs to the same CC as xi. However, x6 belongs to the second OCC whereas D(x6)
belongs to the BCC so that ρ(x6, X, M, D) is equal to the distance between D(x6) and the second
OCC (in M), namely the value b. In the same way, ρ(x1, X, M, D) = a and ρ(x4, X, M, D) = c.

2.2 Topology handling

The method starts from S = M , which is modified by iterative removal/addition of simple points.
The label of a simple point is modified if it decreases the cost function. In case of change, the
uniqueness of the CC containing x is guaranteed by the fact that x is a simple point. To determine
this CC, two images representing the labels of S are used. They are updated during the whole
process with S.

It has to be noticed that the removal/addition of simple points is ill adapted when a point has
to be “translated”. That is why a concept of translation (which is often required in a deformation
process) is defined. This notion is interpreted here as the “simultaneous” modification of the status
of a pair (x, x′) of adjacent points such that (x, x′) or (x′, x) ∈ S × S. To guarantee topology
preservation, it is sufficient (but not necessary: some possible translations may then unfortunately
not be considered) to check that x (resp. x′) is simple for S and x′ (resp. x) is simple in S′ obtained
from S after the modification of x (resp. x′). The translation at point x is performed if it actually
reduces the cost function. If x can be translated in different ways, the translation which minimises
at best the cost function is chosen. The translation can be interpreted in terms of an addition
(resp. a removal) followed by a removal (resp. an addition) of simple points. Note that the cost
function is only estimated after the two label modifications (consequently, the first modification
may increase the cost function, which would be forbidden with the classical removal/addition of
simple points).

2.3 Optimisation strategy

The purpose of the optimisation strategy is to reach the minimal value of the cost function by
iterative removal/addition of simple points or by translations preserving the topology, i.e., to
converge to a model topologically equivalent and geometrically similar to the continuous deformed
image D(M). The selection of points to modify requires a set L of all simple points of S presenting
a positive cost. The cost is defined as the benefit to change the label of a simple point x. More
precisely, the modification of x in S enables to decrease the cost function from the value:

c(x, S, M, D) = d(S, M, D) − d(S′, M, D) = ρ(x, S, M, D) − ρ(x, S′, M, D) , (3)

where S′ is the image obtained from S by modifying the label of x.
During the dynamical scheme, when modifying a simple point x in S to obtain a new image S′,

there is no need to recompute L since (i) c(x′, S, M, D) = c(x′, S′, M, D) for all points x′ 6= x, and
(ii) simpleness of points can only be modified in the 26-neighbourhood of x. Consequently, the
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algorithm proceeds as follows until L is empty. The point of highest cost, denoted x0, is removed
from L. The label of x0 is then modified in S. This may change the simple points which are in the
26-neighbourhood of x0: points which were not simple (resp. simple) and which become simple
(resp. non-simple) are added if they have a positive cost (resp. removed) in (resp. from) L.

When ρ(x, S, M, D) = 0, the point x belongs to the correct CC. A cost ρ(x, S, M, D) > 0
can result from the fact that D(x) is at the interface of objects, or from topological constraints.
However, it may also result from the convergence of the method to a local minimum. To deal with
this issue, we check for all points x verifying ρ(x, S, M, D) > 0 if it is possible to translate x to
reduce the cost function without topology modification.

In order to avoid convergence onto local minima (resulting from geometrical or topological con-
straints) which can appear with large displacements, the deformation is performed in a “smooth”
way by estimating n + 1 intermediate deformation fields D(i) computed from D such that:

{

D(0) = Id, D(n) = D , (i)

∀j ∈ [0, n − 1], ∀x, ‖D(j+1)(x) − D(j)(x)‖ < 1 . (ii)
(4)

Constraint (ii) provides a lower bound for n: n ≥ maxx∈M ‖D(x) − x‖. The deformation fields
D(i) (0 < i < n) are finally defined by:

∀x, (D(i)(x) − x) =
i

n
(D(x) − x) . (5)

Starting from S = M , simple points are then added/removed to/from S until convergence of the
dynamical scheme w.r.t. the cost function based on D(1). The same process is then iteratively
carried out with D(2), . . . , D(n) using the currently deformed image S.

3 Experiments and discussion

The proposed methodology has been considered for skull segmentation from 3-D CT data. In this
context, the atlas M is a skull template (see Figure 2, left) associated to a reference CT image IR.
This template has a complex topology: it is composed of one connected component without cavities
but with several holes (10, of various “sizes”) corresponding to anatomical structures (foramina,
etc.). This binary atlas M is then deformed according to a continuous 3-D field D (generated by
registering [11] IR onto the image IT from which the skull structures have to be segmented). The
method has been applied on 15 CT images of millimetric resolution (EZ = [0, 255]3).

The obtained results have been analysed from topological and geometrical points of view, by
comparison to “classical” atlas-based interpolation methods (nearest interpolation technique (M1),
and linear interpolation followed by a thresholding (M2): see Figure 2, right, and Table 1). A
more detailed analysis can be found in [6], from which we can conclude that the geometry of the
results is similar for the different methods, but only the proposed one correctly handles topology.

The proposed method is one of the first enabling to deform a 3-D object of arbitrary topology
by guiding the deformation process in order to geometrically converge onto the result obtained
by continuous topology-preserving image registration. In further works, some points will be more

erroneous

holes

Figure 2: Left: topological skull template (whole, and with its topological skeleton). Right:
segmentations obtained with M1 and M2 (left, see text) and the proposed method (right).
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dµ dmax b0 b1 b2

M0 3.44.10−3 1.06 1.00 10.0 0.00
M1 3.70.10−3 0.87 1.06 24.8 7.20
M2 3.44.10−3 0.50 1.33 109 150

Table 1: Comparison of the method (M0) with two other ones (M1, M2: see text): dµ (resp.
dmax): mean (resp. maximal) value of ρ(x, X, M, D); bi: Betti numbers of X (mean values).

specifically considered: How to correctly deal with all deformation fields (especially, how to effi-
ciently decompose them into successive intermediate fields)? How to avoid deadlocks caused by
topological constraints (considering other strategies than translations, for example, the use of min-
imal simple pairs [12])? etc. The case of label image deformation will also be carefully considered,
since it remains - to the best of our knowledge - an open problem.

References

[1] P.-L. Bazin, L.M. Ellingsen, and D.L. Pham. Digital homeomorphisms in deformable regis-
tration. In IPMI’07, volume 4584 of LNCS, pages 211–222, 2007.

[2] P.-L. Bazin and D.L. Pham. Statistical and topological atlas based brain image segmentation.
In MICCAI’07, volume 4791 of LNCS, pages 94–101, 2007.

[3] G. Bertrand and G. Malandain. A new characterization of three-dimensional simple points.
Pattern Recognition Letters, 15(2):169–175, 1994.

[4] X. Daragon and M. Couprie. Segmentation du néo-cortex cérébral depuis des données IRM
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