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Abstract Preserving topological properties of binary objects during thinning procedures is

an important issue in the field of image analysis. In this context, we present the new notion

of simple set which extends the well-known notion of simple point. Similarly to simple

points, simple sets have the property that the homotopy type of the object in which they

lie is not changed when such sets are removed. This paper defines and justifies the concept

of simple sets and of a sub-family of such sets called minimal simple sets. It also briefly

describes some first results and work in progress on this subject.

Keywords Topology preservation, binary image reduction, n-D cubical complexes.

1 Motivation

Topology-preserving operators are used to transform an object while leaving unchanged its topo-
logical characteristics. In discrete grids (Z2 or Z

3), they can be defined and efficiently implemented
thanks to the notion of simple point [7, 1]. We say that a discrete object Y obtained from X by
iterative removal of simple points until stability is a homotopic skeleton of X. Such a set fulfils
a property of minimality: Y is minimal in the sense that it no longer contains simple points.
However, we could formulate a stronger minimality requirement: informally, Y should not strictly
include any set Z “topologically equivalent” to X .

In Z
2 a full rectangle X is topologically equivalent to a single point, thus all homotopic skeletons

of X should be singletons. Rosenfeld proved in [17] that any homotopic skeleton of X is indeed
reduced to a single point. However, in dimensions n ≥ 3, this property does not hold: if X is a full
cube, we may find a homotopic skeleton of X which is not reduced to a single point. A classical
example of such a skeleton is Bing’s house with two rooms [3] (see Figure 1).

Figure 1: A Bing’s house (considered in 26-adjacency), decomposed into slices for visualisation.

It could be argued that objects like Bing’s houses are unlikely to appear while processing “real”
images, because of their complex shape and their size. However, there exists a large class of objects
- of any possible topology - presenting similar properties [13], some of them being quite small (see
Figure 2): such objects (precisely defined in Definition 10) will be called lumps.

Two questions now arise: is it possible to detect when a thinning procedure gets stuck on a
lump, and then, is it possible to find a way towards a homotopic skeleton? For performing the
latter task, a solution consists of identifying subsets of X which can be removed without altering
its topology: such subsets will be called simple sets.
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Figure 2: Examples of lumps of various topologies (considered in 26-adjacency). Some simple-
equivalent subsets (see Sec. 4) are depicted in light grey.

x

y

(a)

x

y

(b)

x

y

(c)

Figure 3: A 3-D set X (in 26-adjacency) including several kinds of simple sets Si (in light grey).
(a) Left: S1 ⊂ X , right: X \ S1. (b) Left: S2 ⊂ X , right: X \S2. (c) Left: S3 ⊂ X , right: X \ S3.

Intuitively, a simple set can be defined as a subset S ⊂ X whose removal from X “does not
alter the topology of X”. Following this informal definition, the sets Si of Figure 3 are simple for
the set X in which they lie.

The set S1 is composed of two points x and y both simple for X . The removal of x (resp. y)
from X then does not alter its topology. Moreover, this is also true for the iterative (or parallel)
removal of x and y from X . Such points, called P-simple points, have been characterised in [2].
Any set S composed of points being P-simple for a set X can be removed from X without altering
its topology: such a set is then a simple set for X .

The set S2 is composed of two points x and y such that x is simple for X while y is simple for
X \ {x} but not for X . Consequently, the iterative removal of x, then y from X does not alter its
topology. The sets composed - as S2 - of “successively” simple points have been described and/or
studied in [16, 10, 5, 4]. Any set S composed of such successively simple points for a set X is a
simple set for X .

The set S3 is composed of two points x and y which are both non-simple for X . However, S3

can be removed from X in a way which corresponds to a reduction of X consisting in iteratively
removing “successive parts of x and y” until obtaining X \ S3 without altering its topology. Such
a set S3 is then a simple set for X , despite the fact that it does not contain any simple point. The
set S3 (which can be found in Figure 2(a) and (b)) provides a counter-example to the conjecture
proposed by Kong et al. in [8], emphasising the fact that simple points are not sufficient to
completely deal with the problem of topology-preserving reduction of discrete images.

Conjecture 1 ([8], Conjecture 1, p. 383) Suppose X ′ ⊆ X are finite subsets of Z
3 and X is

collapsible to X ′. Then there are sets X1, X2, . . . , Xn with X1 = X, Xn = X ′ and, for 0 < i < n,
Xi+1 = Xi \ {xi} where xi is a simple point of Xi.

Any subset S ⊂ X which may be removed from X by successive “partial removal” of its points
(corresponding to the notion of collapse described in Sec. 2) is then simple. The notion of simple set
considered here1 will be defined in this way, which extends the simple sets defined in [16, 10, 5, 4]
or from [2], since they may now be composed of simple points but also of non-simple points.

The purpose of this paper is to define the notion of minimal simple sets in a sound fashion (Secs.
3, 4), and to describe first results and work in progress (Sec. 5). Definitions and results will be

1Another definition of simple sets (authorising a simple set to be removed by a non-monotonic transform) could
be proposed; see [14] for a discussion about the algorithmic interest of both definitions.

2



proposed in the framework of cubical complexes [9] (Sec. 2) which enables to model Z
n (n ∈ N

∗),
retrieving the main notions and results of digital topology (such as the notion of simple point),
but also to define more general objects composed of parts of various dimensions and structured
on regular grids.

2 Cubical complexes

Let Z be the set of integers. We consider the families of sets F
1
0, F

1
1, such that F

1
0 = {{a} | a ∈ Z},

F
1
1 = {{a, a + 1} | a ∈ Z}. A subset f of Z

n (n ≥ 1) which is the Cartesian product of exactly m

elements of F
1
1 and (n−m) elements of F

1
0 is called a face or an m-face of Z

n, m is the dimension
of f , and we write dim(f) = m.

We denote by F
n the set composed of all m-faces of Z

n (m = 0 to n). Let f be a face in F
n.

We set f̂ = {g ∈ F
n | g ⊆ f}, and f̂∗ = f̂ \ {f}. Any g ∈ f̂ is a face of f , and any g ∈ f̂∗ is a

proper face of f . If F is a finite set of faces of F
n, we write F− =

⋃
{f̂ | f ∈ F}, F− is the closure

of F .
A set F of faces of F

n is a cell or an m-cell if there exists an m-face f ∈ F , such that F = f̂ .
The boundary of a cell f̂ is the set f̂∗. A finite set F of faces of F

n is a complex (in F
n) if for any

f ∈ F , we have f̂ ⊆ F , i.e., if F = F−. Any subset G of a complex F which is also a complex is
a subcomplex of F . If G is a subcomplex of F , we write G � F . If F is a complex in F

n, we also
write F � F

n.
A face f ∈ F is a facet of F if there is no g ∈ F such that f ∈ ĝ∗. We denote by F+ the set

composed of all facets of F . Observe that (F+)− = F− and thus, that (F+)− = F whenever F is
a complex.

If G is a subcomplex of F , and G+ ⊆ F+, then G is a principal subcomplex of F , and we write
G ⊑ F . To explicitly express the fact that G ⊑ F and G 6= F , we write G ⊏ F .

The dimension of a non-empty complex F in F
n is defined by dim(F ) = max{dim(f) | f ∈ F+}.

We say that F is an m-complex if dim(F ) = m. We say that F is a pure complex if for all f ∈ F+,
we have dim(f) = dim(F ).

Definition 2 (Detachment) Let n ≥ 1. Let F � F
n be a cubical complex. Let G � F be a

subcomplex of F . We set F ⊘ G = (F+ \ G+)−. The set F ⊘ G is a complex which is the
detachment of G from F .

Definition 3 (Attachment) Let n ≥ 1. Let F � F
n be a cubical complex. Let G � F be a

subcomplex of F . The attachment of G to F is the complex defined by Att(G, F ) = G ∩ (F ⊘ G).

Two distinct faces f and g of F
n are adjacent if f ∩ g 6= ∅. Let F � F

n be a non-empty
complex. A sequence (fi)

s

i=0 (s ≥ 0) of faces of F is a path in F (from f0 to fs) if fi and fi+1 are
adjacent, for all i ∈ [0, s − 1]. We say that F is connected if, for any two faces f, g ∈ F , there is
a path from f to g in F . We say that G is a connected component of F if G ⊑ F , G is connected
and if G is maximal for these two properties (i.e., we have H = G whenever G ⊑ H ⊑ F and H

is connected). We denote by C[F ] the set of all the connected components of F . We set C[∅] = ∅.
We now define the notion of collapsing, which is a well-known operation of topology that

preserves homotopy type. The notion of simple set will be defined thanks to this operation.

Definition 4 (Elementary collapse) Let n ≥ 1. Let F � F
n be a cubical complex. Let f ∈ F+.

If g ∈ f̂∗ is such that f is the only face of F which strictly includes g, then we say that (f, g) is a
free pair for F . If (f, g) is a free pair for F , the complex F \ {f, g} � F is an elementary collapse
of F .

Definition 5 (Collapse) Let n ≥ 1. Let F � F
n be a cubical complex. Let G � F be a

subcomplex of F . We say that F collapses onto G, and we write F ց G, if there exists a sequence
of complexes 〈Fi〉ti=0 (t ≥ 0) such that F0 = F , Ft = G, and Fi is an elementary collapse of Fi−1,
for all i ∈ [1, t]. The sequence 〈Fi〉ti=0 is a collapse sequence from F to G.

3



3 Minimal simple sets

Intuitively a set G � F is simple if there is a topology-preserving deformation of F over itself onto
the relative complement of G in F .

Definition 6 Let n ≥ 1. Let F � F
n be a cubical complex. Let G � F be a subcomplex of F .

We say that G is simple for F if F ց F ⊘ G 6= F . Such a subcomplex G is called a simple
subcomplex of F or a simple set for F .

Minimal simple sets constitute a sub-family of simple sets presenting minimality properties.

Definition 7 Let n ≥ 1. Let F � F
n be a cubical complex. Let G � F be a subcomplex of F . The

complex G is a minimal simple subcomplex (or a minimal simple set) for F if G is a simple set
for F and G is minimal (w.r.t. �) for this property ( i.e. ∀H � G, H is simple for F ⇒ H = G).

The notion of minimal simple set is useful since (i) the existence of a simple set necessarily
implies the existence of at least one minimal simple set, and (ii) by definition, a minimal simple
set is necessarily easier (or, at least, not harder) to characterise than a “general” simple set. In
particular, we can hope that in several cases (depending on the value of n, and/or on the dimension
of F , for example), the study of minimal simple sets could be sufficient to deal with the problem
of detaching all simple sets from a complex.

Simple cells are (minimal) simple sets containing exactly one facet. The following definition of
simple cells can be seen as a discrete counterpart of the one given by Kong in [6].

Definition 8 Let n ≥ 1. Let F � F
n be a cubical complex. Let f ∈ F+ be a facet of F . The cell

f̂ ⊑ F is a simple cell for F if F ց F ⊘ f̂ .

4 Simple-equivalence and lumps

From the notion of simple cell, we can define the concept of simple-equivalence, leading to the
notion of lump.

Definition 9 Let n ≥ 1. Let F, F ′ � F
n be cubical complexes. We say that F and F ′ are simple-

equivalent if there exists a sequence of sets 〈Fi〉ti=0 (t ≥ 0) such that F0 = F , Ft = F ′, and for
any i ∈ [1, t], we have either:
(i) Fi = Fi−1 ⊘ Hi, where Hi ⊑ Fi−1 is a simple cell for Fi−1; or
(ii) Fi−1 = Fi ⊘ Hi, where Hi ⊑ Fi is a simple cell for Fi.

Definition 10 Let n ≥ 1. Let F � F
n be a cubical complex. Let F ′ � F be a subcomplex of F

such that F and F ′ are simple-equivalent. If F does not include any simple cell outside F ′, then
we say that F is a lump relative to F ′, or simply a lump.

As stated in Sec. 1, a lump F relative to F ′, although not including any simple cell which can be
detached to provide a monotonic reduction converging onto F ′, can sometimes (but not necessarily)
include simple sets.

5 Results and work in progress

The study of simple sets presents an interest from a theoretical point of view but also from a
practical one, since a knowledge - and easy characterisations - of such sets can lead to the devel-
opment of efficient reduction algorithms enabling, in particular, to improve the results provided
by algorithms only based on simple points.

The first obtained results deal with the smallest non-trivial 3-D simple sets in 3-D spaces
(corresponding to the “classical” case of binary images in Z

3 considered with a 26-adjacency for
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objects), called the simple pairs, and in particular the minimal ones (i.e. those composed only of
non-simple points). The set P = {x, y} of Figure 3(c) is an example of minimal simple pair. The
results presented in [12] propose a characterisation (see Proposition 11) of minimal simple pairs
which enables to detect all of them in a set X with a linear algorithmic complexity O(|X |).

Proposition 11 The set P ⊑ F ⊑ F
3 is a minimal simple pair for F if and only if all the

following conditions hold (note that χ is the Euler characteristic):

the intersection of the two facets of P is a 2-face,

∀g ∈ P+, |C[Att(ĝ, F )]| = 1,

∀g ∈ P+, χ(Att(ĝ, F )) ≤ 0,

|C[Att(P, F )]| = 1,

χ(Att(P, F )) = 1.

Experiments have shown that reduction algorithms based on both simple points and simple pairs
provide significantly better results (i.e. with less lumps) than algorithms based on simple points
only (see [12], Appendix A).

These first works on simple sets have been related to 3-D images since the applications which
led to consider this new notion were actually devoted to such 3-D (medical) data. Since then, other
works on simple sets in 2-D spaces [15] (“classical” or embedded in spaces of higher dimensions)
and of 2-D simple sets in n-D (n ≥ 2) spaces [11] have started. Their results will be presented soon,
and will enable (i) to generalise known results in 2-D and (ii) to characterise new families of objects
(such as the minimal simple set depicted in Figure 4) presenting quite interesting properties.

Parallely, a study of properties of simple sets and minimal simple sets which are general (i.e.
not sufficient to lead to a characterisation) but true in any dimension, is currently being considered,
and will be presented in [14]. In this study, it will notably be proved that minimal simple sets
verify several structural properties, including principalness and connectedness, and forbid certain
configurations, especially related to their attachment. By fusion of results proved in [14, 15, 11]
we will also obtain the following propositions.

Proposition 12 Let n ≥ 1. Let F � F
n be a cubical complex. Let G ⊑ F be a simple set for F .

If n ≤ 2 or dim(G) ≤ 1, then ∃H ⊏ G such that H is a simple cell for F .

Proposition 13 Let n ≥ 1. Let F � F
n be a cubical complex. Let G ⊑ F be a simple set for F

such that dim(G) ≤ 2. Then ∀H ⊏ G such that H is a minimal simple set for F , G ⊘ H is a
simple set for F ⊘ H.

Proposition 12 states that the notion of simple set can be fully handled thanks to the notion
of simple cell/point for n ≤ 2 or dim(G) ≤ 1 (i.e. any simple set is necessarily “composed of”
simple cells), which will no longer be true for n ≥ 3 and dim(G) ≥ 2, and will then require to
carefully study the notion of simple sets in such conditions. Proposition 13 states that simple

Figure 4: A (pure) 2-D minimal simple set S. The dark line represents the attachment of S to its
superset (not depicted here). The arrow enables to visualise the “missing” 2-faces of the object.
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sets of dimension lower than 2 can be “broken” by successive removal of any sequence of minimal
simple sets, independently of the dimension of the space where they lie, which is a quite interesting
result, that will - hopefully - enable to develop efficient reduction techniques for such sets.

Our last efforts have focused on the study of (minimal) simple sets of “low dimension”. Once
these studies will be complete, we will consider at new the study of 3-D (and hopefully higher
dimension) simple sets, which will probably be a quite hard - and quite interesting - issue.
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