Minimal simple sets: A new concept for topology-preserving transformations

Nicolas Passat¹, Michel Couprie², Loïc Mazo¹, Gilles Bertrand²

¹LSIIT, UMR 7005 CNRS/ULP - Strasbourg ²IGM-A2SI, UMR 7049 CNRS/UMLV - Paris

CTIC 2008 - Poitiers - 16-17/06/2008

Homotopic skeletonisation in cubic grids

Homotopic skeletonisation: used to transform an object without topology modification.

In discrete grids (\mathbb{Z}^2 , \mathbb{Z}^3 , \mathbb{Z}^4), defined and implemented thanks to the notion of simple point.

Algorithm

```
Input: X \subset \mathbb{Z}^n

Output: S \subseteq X (S topologically equivalent to X)

Let S = X

while \exists x \in S, simple(x, S) do

Choose x \in S, simple(x, S) according to some criterion

S = S \setminus \{x\}

end while
```

(日) (同) (三) (三)

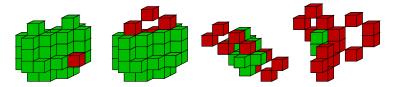
Simple points do not guaranty "correct results"

Proposition

There exist objects $X, Y \subset \mathbb{Z}^n$ such that:

- X does not contain any simple points;
- $Y \subset X$ is however topologically equivalent to X.

Conclusion: reduction algorithms only based on simple points may fail to lead to "minimal results".



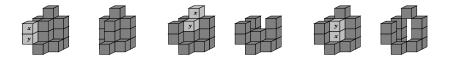
A solution: the simple sets

Definition (Unformal and partial)

Let $X \subset \mathbb{Z}^n$. Let $S \subset X$. If S can be removed from X "without altering its topology", we say that S is a simple set for X.

Remark

The notion of simple set extends the notion of simple point (simple points are "singular" simple sets).



/⊒ > < ∃ >

Three simple sets $S = \{x, y\}$ for the same object X.

Different kinds of simple sets...

▲□ ► ▲ □ ► ▲ □

- Left: simple set based on P-simple points: x (resp. y) is simple for X; x (resp. y) is simple for X \ {y} (resp. X \ {x}).
- Middle: simple set based on "successively" simple points: x is simple for X; y is simple for X \ {x} but not for X.
- Right: simple set without simple points: x (resp. y) is not simple for X but {x, y} is simple for X.

Purpose

The last set P is a counter-example to following conjecture.

Conjecture (Kong et al., 1990)

Suppose $X' \subseteq X$ are finite subsets of \mathbb{Z}^3 and X is collapsible to X'. Then there are sets X_1, X_2, \ldots, X_n with $X_1 = X, X_n = X'$ and, for $0 < i < n, X_{i+1} = X_i \setminus \{x_i\}$ where x_i is a simple point of X_i .

- Simple points are not a sufficient concept to handle simple sets.
- Purpose: study of simple sets (and especially the *minimal* ones, which do not include simple points).
- Study in the context of cubical complexes (more general than \mathbb{Z}^n).

・ロト ・同ト ・ヨト ・ヨト

Cubical complexes Simple sets Lumps

Cubical complexes: basic notions

$$\begin{split} \mathbb{F}_0^1 &= \{\{a\} \mid a \in \mathbb{Z}\}.\\ \mathbb{F}_1^1 &= \{\{a, a+1\} \mid a \in \mathbb{Z}\}. \end{split}$$

Definition (Face)

- A (*m*-)face of Zⁿ is the Cartesian product of *m* elements of F¹₁ and (*n* − *m*) elements of F¹₀.
- The dimension of f is dim(f) = m.
- \mathbb{F}^n is the set composed of all *m*-faces of \mathbb{Z}^n (m = 0 to n).



A (1) > A (1) > A

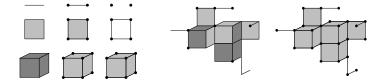
Cubical complexes Simple sets Lumps

Cubical complexes: basic notions

Definition (Closure)

Let f be a face in \mathbb{F}^n .

- $\hat{f} = \{g \in \mathbb{F}^n \mid g \subseteq f\}$ is the set of the *faces* of *f*.
- $\hat{f}^* = \hat{f} \setminus \{f\}$ is the set of the *proper faces* of f.
- $F^- = \bigcup \{ \hat{f} \mid f \in F \}$ is the *closure* of F (F finite).



(日) (同) (三) (三)

Cubical complexes Simple sets Lumps

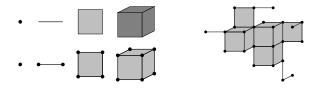
Cubical complexes: basic notions

Definition (Cell)

A set $F \subset \mathbb{F}^n$ is a an *(m-)cell* if there exists an *m*-face $f \in F$, such that $F = \hat{f}$.

Definition (Complex)

A set $F \subset \mathbb{F}^n$ (*F* finite) is a *complex* if for any $f \in F$, we have $\hat{f} \subseteq F$, *i.e.*, if $F = F^-$. We write $F \preceq \mathbb{F}^n$.



A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cubical complexes Simple sets Lumps

Cubical complexes: basic notions

Definition (Subcomplex)

A subset $G \subseteq F \preceq \mathbb{F}^n$ which is also a complex is a *subcomplex* of F. We write $G \preceq F$.

Definition (Facet)

A face $f \in F \preceq \mathbb{F}^n$ is a *facet* of F if there is no $g \in F$ such that $f \in \hat{g}^*$. F^+ is the set of all facets of F.

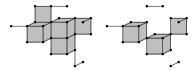
Image: A math a math

Cubical complexes Simple sets Lumps

Cubical complexes: basic notions

Definition (Principal subcomplex)

If $G \leq F \leq \mathbb{F}^n$ and $G^+ \subseteq F^+$, then G is a *principal subcomplex* of F. We write $G \sqsubseteq F$ (and $G \sqsubset F$ if $G \neq F$).



Definition (Dimension, purity)

The dimension of $\emptyset \neq F \preceq \mathbb{F}^n$ is dim $(F) = \max{\dim(f) | f \in F^+}$. F is a *pure* complex if for all $f \in F^+$, we have dim $(f) = \dim(F)$.

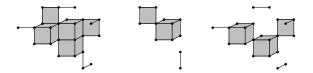
イロン 不得と イヨン イヨン

Cubical complexes Simple sets Lumps

Cubical complexes: basic notions

Definition (Detachment)

Let $G \leq F \leq \mathbb{F}^n$. The complex $F \otimes G = (F^+ \setminus G^+)^-$ is the *detachment of G from F*.

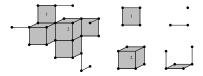


Cubical complexes Simple sets Lumps

Cubical complexes: basic notions

Definition (Attachment)

Let $G \leq F \leq \mathbb{F}^n$. The complex $Att(G, F) = G \cap (F \otimes G)$ is the *attachment of G to F*.



Cubical complexe Simple sets Lumps

Cubical complexes: topological notions

Definition (Elementary collapse)

Let $f \in F^+$, with $F \preceq \mathbb{F}^n$. If $g \in \hat{f}^*$ is such that f is the only face of F which strictly includes g, then we say that (f,g) is a *free pair* for F. If (f,g) is a free pair for F, the complex $F \setminus \{f,g\} \preceq F$ is an *elementary collapse* of F.

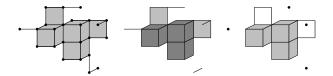


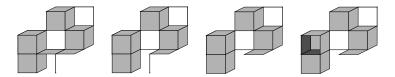
Image: A (1) → A (

Cubical complexes Simple sets Lumps

Cubical complexes: topological notions

Definition (Collapse)

Let $G \leq F \leq \mathbb{F}^n$. We say that F collapses onto G, and we write $F \searrow G$, if there exists a sequence of complexes $\langle F_i \rangle_{i=0}^t$ $(t \geq 0)$ such that $F_0 = F$, $F_t = G$, and F_i is an elementary collapse of F_{i-1} , for all $i \in [1, t]$. The sequence $\langle F_i \rangle_{i=0}^t$ is a collapse sequence from F to G.



Remark

Collapsing is an homotopy-preserving operation.

Cubical complexes Simple sets Lumps

Simple set

A set $G \leq F$ is simple if there is a topology-preserving deformation (*i.e.* a collapse) of F over itself onto the relative complement of G in F.

Definition

Let $G \leq F \leq \mathbb{F}^n$. We say that G is simple for F if $F \searrow F \otimes G \neq F$. Such a subcomplex G is called a simple subcomplex of F or a simple set (SS) for F.

Cubical complexe Simple sets Lumps

Minimal simple set

Minimal simple sets (MSSs) are a sub-family of simple sets presenting minimality properties.

Definition

Let $G \leq F \leq \mathbb{F}^n$. The complex G is a minimal simple subcomplex (or a minimal simple set) for F if G is a simple set for F and G is minimal (w.r.t. \leq) for this property (*i.e.* $\forall H \leq G$, H is simple for $F \Rightarrow H = G$).

Remark

(i) The existence of a simple set implies the existence of a minimal simple set.

(ii) A minimal simple set is easier to characterise than a simple set.

・ロト ・同ト ・ヨト ・ヨト

Cubical complexes Simple sets Lumps

Simple cells

Simple cells are simple sets with exactly one facet. The following definition can be seen as a discrete counterpart of the one given by Kong (DGCI'97).

Definition

Let $F \preceq \mathbb{F}^n$ be a cubical complex. Let $f \in F^+$ be a facet of F. The cell $\hat{f} \sqsubseteq F$ is a simple cell for F if $F \searrow F \otimes \hat{f}$.

Remark

Simple cells are minimal simple sets.

・ロト ・同ト ・ヨト ・ヨト

Cubical complexes Simple sets Lumps

Simple-equivalence

From the notion of simple cell, we can define the concept of *simple-equivalence*...

Definition

Let $F, F' \leq \mathbb{F}^n$. We say that F and F' are simple-equivalent if there exists a sequence of sets $\langle F_i \rangle_{i=0}^t$ $(t \geq 0)$ such that $F_0 = F$, $F_t = F'$, and for any $i \in [1, t]$, we have either: (i) $F_i = F_{i-1} \otimes H_i$, where $H_i \sqsubseteq F_{i-1}$ is a simple cell for F_{i-1} ; or (ii) $F_{i-1} = F_i \otimes H_i$, where $H_i \sqsubseteq F_i$ is a simple cell for F_i .

Cubical complexes Simple sets Lumps

Lumps

 \ldots and from the notion of simple-equivalence, we can define the notion of $\mathit{lump}.$

Definition

Let $F' \leq F \leq \mathbb{F}^n$ such that F and F' are simple-equivalent. If F does not include any simple cell outside F', then we say that F is a *lump relative to* F', or simply a *lump*.

Remark

A lump F relative to F', although not including any simple cell which can be detached to provide a monotonic reduction converging onto F', can sometimes (but not necessarily...) include simple sets.

(日) (同) (三) (三)

Some first results in 3-D Some results in 1-D / 2-D (WIP)

3-D minimal simple pairs in 3-D space

- First result on "non-trivial" 3-D SSs in 3-D spaces.
- Characterisation of *minimal simple pairs* (MSPs) in pure 3-D complexes (~ Z³, with a (26,6)-adjacency), in linear time.
- Algorithmic improvements ("simple points + simple pairs" better than "simple points").

Proposition (DGCI'08, JMIV)

The set $P \sqsubseteq F \sqsubseteq \mathbb{P}^3$ is a minimal simple pair for F if and only if all the following conditions hold: (i) the intersection of the two facets of P is a 2-face, (ii) $\forall g \in P^+, |C[Att(\hat{g}, F)]| = 1$, (iii) $\forall g \in P^+, \chi(Att(\hat{g}, F)) \le 0$, (iv) |C[Att(P, F)]| = 1, (v) $\chi(Att(P, F)) = 1$.

Some first results in 3-D Some results in 1-D / 2-D (WIP)

Decomposition of SSs into simple cells

Proposition

Let $n \ge 1$. Let $F \preceq \mathbb{F}^n$ be a cubical complex. Let $G \sqsubseteq F$ be a simple set for F. If $n \le 2$ or dim $(G) \le 1$, then $\exists H \sqsubseteq G$ such that H is a simple cell for F.

"Simple sets can be handled by considering simple cell for $n \le 2$ or $\dim(G) \le 1$ (*i.e.* any SS is necessarily composed of simple cells)".

Remark

This is no longer be true for $n \ge 3$ and $\dim(G) \ge 2$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Some first results in 3-D Some results in 1-D / 2-D (WIP)

Decomposition of SSs into MSSs

Proposition

Let $n \ge 1$. Let $F \preceq \mathbb{F}^n$ be a cubical complex. Let $G \sqsubseteq F$ be a (non-minimal) simple set for F such that dim $(G) \le 2$. Then $\forall H \sqsubset G$ such that H is a minimal simple set for F, $G \odot H$ is a simple set for $F \otimes H$.

"Simple sets of dimension lower than 2 can be broken by successive removal of *any* sequence of minimal simple sets, independently of the dimension of the space where they lie".

Remark

This is no longer be true for $\dim(G) \ge 3$ (cf. Bing's house).

< ロ > < 同 > < 三 > < 三

Contribution Further works A small bibliography

Contribution

Done:

- Sound definitions of SSs, MSSs, lumps, etc. (tools for homotopy preserving transforms);
- a characterisation of 3-D MSPs in pure 3-D objects.

Work in progress (published soon, hopefully):

- Some general results on SSs/MSSs (in *n*-D spaces);
- A complete study of 2-D SSs/MSSs in "general" 2-D spaces (*i.e.* 2-D pseudomanifolds);
- A complete study of 2-D SSs/MSSs in n-D spaces (with a characterisation of MSSs in linear time!);
- A characterisation of 3-D MSPs in *n*-D spaces.

・ロト ・同ト ・ヨト ・ヨト

Contribution Further works A small bibliography

Further works

Coming latter (or not...):

- A complete study of 3-D SSs/MSSs in 3-D spaces?
- 4-D and more?
- A study of SSs with alternative definitions (cf. Bing's house, etc.)?
- Ad lib.

A (1) > A (1) > A

Contribution Further works A small bibliography

Related publications

- N. Passat, M. Couprie, G. Bertrand. *Topological monsters in* Z³: A non-exhaustive bestiary. ISMM 2007, Vol. 2, pp. 11-12.
- N. Passat, M. Couprie, G. Bertrand. Minimal simple pairs in the cubic grid. DGCI 2008, LNCS, Vol. 4992, pp. 165-176.
- N. Passat, M. Couprie, G. Bertrand.
 Minimal simple pairs in the 3-D cubic grid.
 Journal of Mathematical Imaging and Vision. In Press.

Image: A (1) → A (

Contribution Further works A small bibliography

Related publications

Available soon (as research reports in the next few weeks/months)

- N. Passat, M. Couprie, L. Mazo, G. Bertrand. An introduction to simple sets. Research Report IGM2008-xx.
- N. Passat, M. Couprie, L. Mazo, G. Bertrand. Simple sets in 2-D pseudomanifolds. Research Report IGM2008-xx.
- L. Mazo, N. Passat, M. Couprie, G. Bertrand.
 2-D simple sets in n-D cubic grids.
 Research Report IGM2008-xx.
- N. Passat, M. Couprie, G. Bertrand.
 3-D minimal simple pairs in n-D cubic grids.
 Research Report IGM2008-xx.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Contribution Further works A small bibliography

Thank you for your attention.

Contacts

- Nicolas Passat: passat@dpt-info.u-strasbg.fr https://dpt-info.u-strasbg.fr/~passat
- Michel Couprie: m.couprie@esiee.fr http://www.esiee.fr/~coupriem
- Loïc Mazo: loic.mazo@ulp.u-strasbg.fr
- Gilles Bertrand: g.bertrand@esiee.fr

▲ 同 ▶ → 三 ▶