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Abstract
3D CT scan images of coronary arteries are complex to
analyze because they provide a 3D object that is visual-
ized through 2D projections. Medical diagnosis suffers
from inter- and intra-clinician variability. Therefore, reli-
able software for the 3D reconstruction and labeling of the
coronary tree is strongly desired [4]. Finding appropriate
methods is known to be a challenging problem because of
data imperfections: noise, heterogeneous intensity [14]...

In this paper we propose a fully automatic algorithm
for coronary artery extraction from X-ray data sequences
of a cardiac cycle (3D-CT scan, 64 detectors, 10 phases)
introduced in [2, 3].

Our method is based on the blur grey-level HMT, and
it is guided by anatomical knowledge. Our segmentation
gives good result on 90% of the images, while those where
it fails are very noisy. It is therefore a promising tool for
the automatic 3D reconstruction of the coronary tree from
3D temporal angiographic sequences.

Index Terms— coronary arteries, segmentation, anatomi-
cal knowledge, hit-or-miss transform, region-growing.

1 Introduction
Vessel segmentation algorithms are the key components of
automated radiological diagnosis systems. Segmentation
strategies vary depending on the imaging modality, appli-
cation domain, automation requirements, and other spe-
cific factors [13, 6]. Most image processing concepts have
been involved in the development of segmentation meth-
ods for coronary arteries. Among them, mathematical mor-
phology is one of the most recently considered approaches
[2, 3], following its successful application to the segmen-
tation of hepatic [9, 10] and cerebral [12, 11] vascular net-
works.

In this paper we propose an extension of a morpholog-
ical operator, to improve a fully automatic method of seg-
mentation of the coronary arteries in large X-ray images
[2, 3]. Processing images which may be noisy and present
variable contrasts between the different acquisitions [7],
the main idea of this extension is to make these differ-
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ences from an image to another minimized. Our results
have been validated by an expert.

2 Background
We used a large anatomical knowledge. In [2, 3] two meth-
odologies are combined: an improved grey-level hit-or-
miss transform, and region-growing. The segmentation is
performed in three steps. The same steps are considered in
this paper, but applied in another way, using a new mor-
phological operator.

Region-growing methods are based on two main con-
cepts: seed-point(s) and expansion criterion. Starting from
the seed-point(s), and iteratively exploring - until stability
- the currently segmented object neighborhood, if the ex-
pansion criterion is satisfied for a given point, this point is
added to the object, see [2, 3].

3 Hit-or-miss transform
Formally, the binary HMT transform by the pair(A,B)
associates to a binary imageX the setX ⊗ (A,B) of posi-
tions where the translate ofA fits insideX and at the same
time the translate ofB fits inside the complementXc of
X:

X ⊗ (A,B) = {p ∈ E | Ap ⊆ X, Bp ⊆ Xc}
= (X ⊖ A) ∩ (Xc ⊖ B) .

(1)

For the grey-level HMT operator, we use a definition
[8] that assigns toA andB grey-levelsa and b, respec-
tively. Following this definition, the grey-level (GL) HMT
compares at each pointp the minimum intensityamin in
Ap to the maximum intensitybmax in Bp:

St
s = Is ⊗ (A,B)(p) =











(Is ⊖ A)(p) − a if (Is ⊖ A)(p) − a

≥ (Is ⊕ B̌)(p) − b ,

⊥ otherwise .

(2)

If amin > (bmax + a− b), then the point is selected by the
GL HMT. An example of HMT is illustrated in Fig. 1.

4 Blur hit-or-miss transform
Although the HMT is sensitive to the types of noise found
in scanned images, including both boundary and random
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Figure 1:Left: The foreground structuring functionV has value
a onA and and−∞ elsewhere, while the background structuring
functionW has valueb on B and+∞ elsewhere. Right: Given
amin, the minimum grey-level ofI in Ap andbmax, the maxi-
mum grey-level ofI in Bp, we haveamin − a + b ≥ bmax, so
the pointp is selected with grey-levelamin − a.

noise, a simple extension, the blur HMT, is relatively ro-
bust. The noise immunity of the blur HMT derives from
its ability to deal with both types of noise together, and to
remove them by appropriate dilation or erosion. Thus the
blur HMT (B HMT) can be used as a fast heuristic to avoid
more expensive integer-based matching techniques, and it
is implemented efficiently with morphological image op-
erators.

The blur binary hit-or-miss transform (BB HMT) was
introduced in [1]. In the binary HMT, cf. (1), a pointp may
not belong toX ⊗ (A,B) because of small holes or nar-
rowings inX or Xc, due to noise. They can be eliminated
by dilating the foregroundX and backgroundXc by two
structuring elementsG andH that depend on image noise
and pattern variability. Thus we compute

X ⊗ (A,B;G,H)
= {p ∈ E | Ap ⊆ X ⊕ G andBp ⊆ Xc ⊕ H}
=

(

(X ⊕ G) ⊖ A
)

∩
(

(Xc ⊕ H) ⊖ B
)

=
(

(X ⊕ G) ⊖ A
)

\
(

(X ⊖ Ȟ) ⊕ B̌
)

.

(3)

In the grey-level case, the dilation of the dark back-
ground is obtained by eroding the image. HereG andH

are flat structuring elements. Thus we compute for an im-
ageI the following blur GL HMT (B GL HMT):

ηS
[V,W ;G,H](I)(p) =











[

(I ⊕ G) ⊖ A
]

(p) − a if
[

(I ⊕ G) ⊖ A
]

(p) − a

≥
[

(I ⊖ Ȟ) ⊕ B̌
]

(p) − b ,

⊥ otherwise .

(4)
Indeed, the dilationI ⊕ G eliminates dark noise in the
bright foreground while the erosionI⊖H eliminates bright
noise in the dark background. Often one can take the two
smoothing structuring elements equal,G = H, and sym-
metrical,Ǧ = G.

In this paper, we will apply the B GL HMT to low qual-
ity 3D grey-level images obtained from heart scanners of
several patients.

5 Segmentation method — Applica-
tion on the coronary arteries

The method requires as input a 4D X-ray image covering
the cardiac cycle on ten phases. The coronary arteries do
not introduce the same contrast and dimension on all stages
of the cardiac cycle. An optimum choice of the phases
proves to be necessary. During the diastole, the coronary
arteries are the most dilated, so they present a better size
and contrast in that stage. The diastole corresponds to the
7th, 8th and9th phases of the 4D image. We are therefore
going to choose these three phases to search the coronary
arteries, and keep the best segmentation.

Selecting one of these phases of the heart, we obtain a
3D imageI which can be considered as a functionI : E →
Z (with E = [0, 511]3), associating to each pointx ∈ E its
grey-levelI(x) in the image. Since the method is fully au-
tomatic, no other parameter is required. The method pro-
vides as output a binary imageS ⊂ E corresponding to
the segmented coronary arteries detected inI.

The heart zone is detected in the same way as in [2, 3],
the imageI has huge dimensions so a sub-sampling is ap-
plied. Here we don’t need a blur HMT, only an ordinary
GL HMT is applied. The idea was then to use a GL HMT
on a subsampled image, considering the lungs as back-
ground and the heart as object. The GL HMT (2) results
in a subsetSh

s ⊂ Es = [0, 127]3, which corresponds to
the heart region (Fig. 2 Right). Then an over-sampling fol-
lowed by anAND with the original image, allows to come
back to the original size (5123). A over-sampled version
Sa of Sa

s is then obtained asSa =
⋃

x∈E(4.x + [0, 3]3).
As result, the search zone is reduced to one third com-

paring to the original size, and then we can start the coro-
nary arteries segmentation.

Figure 2: Heart zone detection. Left: Original image. Mid-
dle: Structuring element used for the heart zone detection. Right:
Heart zone.

The pre-processing (illustrated in Fig. 3) consists in the
detection of the heart zone followed by filtering the images,
to produces two new images:IB for the background freed
from “salt” noise, andIF for the foreground freed from
“pepper” noise. We use a filter with a window forming
a 43-cube; forIB we keep the lowest intensity,IB(x) =
min{I(y) | y ∈ x + [0, 3]3}, while for IF we keep the
highest intensity,IF (x) = max{I(y) | y ∈ x + [0, 3]3}.
Then we erodeIB and dilateIF , as required by the blur GL
HMT, see (4). Thus we apply the GL HMT, cf. (2), with
two images instead of only one: at each location, the fore-
ground structuring element has to fit inIF and the back-
ground structuring element has to fit inIB ; if the difference
of grey-levelsamin−bmax exceeds the required minimum



a− b, the point is selected. This application of the blur GL
HMT (B GL HMT) is slightly more complicated than in
theory (4).

Figure 3:Image pre-processing.

Starting from the previously obtained subsetSh
s (cor-

responding to the heart region) we create a new subsetSa
s

representing the aorta. Our goal is to locate this circular
shape using a B GL HMT with multi-sized structuring el-
ements. A horizontal diskA with a variable radius models
the object. To model the background, we surround this
disk with 8 points regularly sampled on a discrete circleB

(Fig. 4 Right).

Figure 4: Aorta Segmentation. Left: Structuring elements for
the circular axial section detection. Right: The aorta.

It is easy to notice that in the original image, the dark
space where the background structuring element should
fit is relatively narrow, thus the pre-processing performed
above (Fig. 3: Right) would allow to widen this region be-
fore we apply the B GL HMT using the structuring ele-
ments in Fig. 4: Left. Once this circular shape is detected,
we calculate the average value of the intensities on this cut.
The center of the detected circular shape will be used as
seed for a first region-growing, the expansion criterion of
which will involve two parameters: intensity thresholding
and variance [5], and will evolve in the direction of the be-
ginning of the aorta, stopped by the aorta wall on the sides
and by the aortic valve below (Fig. 4: Middle). The B GL
HMT followed by the region-growing results in the subset
Sa

s ⊂ Sh
s which corresponds to the aorta segment.

The coronary arteries are the only tubular structures
that arise from the beginning of the aorta. The idea is to
search them in the wall of the aorta. Following a strat-
egy close to the one proposed in [9, 10], a B GL HMT
is applied, with a sphere as object and 8 points surround-
ing this sphere as background. These points belong to the
plane normal to the artery axis. The choice of these points
defines the axis direction of the searched coronary artery.

Thus 13 structuring elements, corresponding to the 13 dis-
crete principal directions, are used (Fig. 5: Left).

This B GL HMT is applied on the aorta wall, thus we
obtain two seed-pointsSl = (xl, yl, zl) andSr = (xr, yr,

zr) ∈ Sa for the left and right artery coronaries.

Figure 5:Coronary arteries segmentation. Left: Structuring ele-
ment used for the coronary arteries detection. Middle: Results of
the B GL HMT. Right: Results of the Adaptive B GL HMT.

Starting from the two seed-pointsSr andSl previously
detected on the aorta wall, a region-growing is performed,
applying the B GL HMT on every neighbor as criterion.
The involved structuring elements are the same as those
described above for the seed-point detection. The result is
a subsetS ⊂ E which corresponds to the coronary arter-
ies. An example of result (aorta and coronary arteries) is
illustrated in Fig. 5: Middle.

Using the B GL HMT with a fixed grey-level differ-
ence between the foreground and the background, does
not allow the region growth to go far enough in the ar-
teries. The more we advance in the coronary arteries, the
darker they become, because of their decreasing size and
the lower concentration of the injected contrast product. In
the small bifurcations they have a contrast with the cardiac
muscle which is less important than at the beginning of the
artery.

An adaptive application of the B GL HMT during the
region growing is necessary, in order to detect the greatest
part of this artery. The adaptive aspect will consist in the
reduction of the grey-level difference defined in the B GL
HMT; during the region growth, each time that the B GL
HMT fails, this difference is reduced by a small amount,
while the structuring elements keep the same geometric
form. This region growth stops when after 2 successive
reductions of the difference, the B GL HMT still fails.

We have thus applied an Adaptive B GL HMT, that
gives a better results and makes the method more efficient
(Fig. 5: Right).

We summarize here our algorithm, it is also illustrated
in Fig. 7.

Input: Original image:I : E → Z with 5123 size.

• Pre-processing:

– Under-sampling to get a1283 image:
Is(x) = min{I(y) | y ∈ 4.x + [0, 3]3}.

– Heart zone detection by GL HMT application:Sh

s
⊂ Es.

– High intensity filter application and dilation to get:IF (x) =
max{I(y) | y ∈ x + [0, 3]3} dilated.

– Low intensity filter application and erosion to get:IB(x) = min
{I(y) | y ∈ x + [0, 3]3} eroded.

• Coronary arteries segmentation.

– Aorta segmentation:Sa

s
⊂ E.



∗ Circular coronal section localization.

∗ Calculate the average intensity on this coronal section.

∗ Region-growing starting by the circular shape center and us-
ing the calculated average intensity as criterion, in the direc-
tion of the beginning of the aorta.

– Over-sampling of the aorta to a5123 image:Ia ⊂ Es.

– Search of the two coronary arteries seed-points on the aorta wall:
Sr andSl.

– Coronary arteries detection with a region-growing using the Adap-
tive B GL HMT as criterion:S ⊂ E.

Output: Coronary arteries5123 image:Ic.

Figure 6: Example of segmented image: Left: faulty image;
Middle: without post-processing; Right: with post-processing.

Figure 7:Method application.

6 Experiments and results
The method was tested on60 coronal scan images, for the
3 chosen phases of 20 patients, providing visually satisfac-
tory results. The first part of the method (the heart zone
detection) has been validated on20 other patients. In this
method, some dimensions had to be set, like the radius of
the horizontal disk in the aorta detection. Several radiuses
were tried on a set of images, and for each image the best
radius was selected. We obtained thus a range of radiuses
for the whole base. This allows to us adjust the radius to
each image of the base.

We can separate our results into three groups. A first
group composed of 50% of the tested images gives satis-
factory results. A second group composed of 40% of the
images provides less satisfactory results, the region growth
in the last step (for segmenting the coronary arteries) has
been diverted to give false positives, in most cases con-
sisting of the wall of the heart. Thus a post-processing
of this group of images becomes necessary, it consists in
adding a constraint on the GL HMT, namely the percent-
age of accepted voxels in the object structuring element,
we require 90% of these voxels to satisfy the difference of
grey-level between them and the maximum grey-level of
the background (Fig. 6); note that this added constraint has

no effect on the first group of images that already had sat-
isfactory results. The last group consists of the remaining
10% images, they are noisier and their variance is higher
than that of the others; thus some of the coronary arteries
in these images are completely blurred and present no con-
trast with the background, which makes the application of
the fully automatic segmentation just impossible Fig. 6.(1).

Finally we got satisfactory results for 90% of our image
base validated by an expert cardiologist.
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