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Cerebral Vascular Atlas Generation for Anatomical Knowledge Modeling and
Segmentation Purpose

N. Passat, C. Ronse

LSIIT, UMR 7005 CNRS-ULP
Strasbourg I University
Illkirch-graffenstaden, France

Abstract

Magnetic resonance angiography (MRA) is currently
used for cerebral flowing blood visualization. Many seg-
mentation methods have been proposed for brain vessel seg-
mentation, in order to help analyzing the huge data (gen-
erally more than 107 voxels) provided by MRA acquisi-
tions. Recently, a new family of segmentation algorithms,
involving high level anatomical knowledge, has been stud-
ied. These new algorithms require a way to model and store
this knowledge. An efficient and general approach to reach
that goal consists in using atlases. In this paper a method is
proposed to create vascular atlases of the brain, containing
information useful for vessel segmentation purpose. This
atlas creation process, designed for phase-contrast MRA
(PC-MRA), is composed of four steps: segmentation, quan-
tification, registration and data fusion. It uses a region-
growing algorithm for vessel segmentation, a skeleton and
vessel size determination algorithm, based on discrete ge-
ometry, for determination of quantitative properties, and a
topology preserving non-rigid registration method to fuse
the information. This method, which has been applied to
a 18 PC-MRA database, enables to create vascular atlases
containing information on brain vessels position, density,
size and orientation. The generated atlases are essentially
devoted to segmentation purpose but can also be used for
anatomical description or pathology detection.

1. Introduction

Magnetic resonance angiography (MRA) is a family of
non-invasive image acquisition processes providing 3D data
of the flowing blood. One of these techniques, called phase-
contrast MRA [1] (PC-MRA), is frequently used to study
the cerebral vascular structures. Indeed, the availability of
precise information about brain vascular networks is fun-
damental not only for planning and performing neurosurgi-
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cal procedures, but also for detecting pathologies such as
aneurysms and stenoses. Many vessel segmentation meth-
ods [2, 3, 4] have been proposed during the last 15 years
(see [5] for an overview). Recently, a new family of seg-
mentation algorithms [6] has been studied, involving high
level anatomical knowledge. These algorithms are based on
the hypothesis that a priori knowledge concerning the ves-
sels and their relations to other brain structures can be used
to guide classical segmentation tools. This kind of strategy
requires an accurate way to model and store such anatom-
ical information. A common way generally consists in us-
ing atlases. Nevertheless, since vessels are structures ex-
hibiting a high variability, vascular atlas creation is a real
challenge. We propose here a method to create such atlases
(essentially devoted to vessel segmentation purpose) from
a PC-MRA database. This method is composed of four
successive steps: a region-growing vessel segmentation, a
quantitative vessel analysis (determining vessels centerline
and size), a non-rigid registration of the different images on
a same reference, and the fusion of these registered images
into a single one.

This paper is organized as follows. In Section 2, we re-
view previous results concerning cerebral vascular atlases
formation and use. In Section 3, we describe knowledge
generally used by vessel segmentation algorithms and the
high level anatomical knowledge that we propose to inte-
grate in the atlas. Section 4 describes the different steps
of the atlas generation algorithm. In Section 5, the method
is applied on a 18 PC-MRA database, the resulting atlas is
then described and analyzed. Some possible applications
are then discussed in Section 6. Discussion and projects are
finally presented in Section 7.

2. Previous Work

Atlases have already been designed for non vascular
cerebral structure segmentation [7]. Nevertheless, the tor-



tuosity and variability of brain vessels make the creation of
vascular atlases a hard task. Despite these difficulties, two
atlases have already been proposed.

In [8, 9], Chillet et al. and Cool et al. propose an atlas
generation process. Vessels are extracted from an image
database. An inverted distance map is then computed for
each segmented image, providing a blurred vasculature. An
arbitrary image is defined as the reference template. All the
other ones are then mapped on this template, using affine
registration. The mean and variance images finally obtained
constitute the atlas.

In [10], the proposed atlas has been designed from a PC-
MRA magnitude image (similar to a classical MRI), using
manual and semi-automated segmentation tools. Its goal
was to propose a set of regions presenting homogeneous
properties concerning vessel size, orientation and position
relative to non vascular brain structures. This atlas was then
used for segmentation purpose.

To the best of our knowledge, these two atlases consti-
tute the very first attempts to model anatomical informa-
tion concerning cerebral vascular structures. Despite their
originality, both present drawbacks. The atlas proposed in
[8, 9] is automatically generated by directly registering the
segmented vessels. Thus, it does not take into account the
anatomy of the neighboring cerebral structures. Moreover,
the registration used is an affine transform, less reliable than
non-rigid registration. Finally, the proposed atlas is not
devoted to segmentation purpose. The atlas proposed and
fully described in [10] is designed for segmentation purpose
and takes into account information concerning the vessels
in relation with other cerebral structures. Despite these ad-
vantages, it has not been automatically generated, and can
contain imperfections. It also has to be noticed that it di-
vides the brain into a finite set of vascular areas separated
by fuzzy frontiers. This finite number of regions could be
considered as a weakness. The method proposed hereafter
has been designed to avoid all these drawbacks.

3. Useful knowledge for segmentation

Many methods have been proposed for vessel segmenta-
tion purpose [5], and more especially for brain vessel seg-
mentation. Nevertheless, nearly all these methods use very
little a priori knowledge. Indeed, they are generally based
on three main hypotheses: vessels (i.e. flowing blood) cor-
respond to the voxels of highest intensity in angiographic
data; vessels are assumed to have a tubular shape; vascular
networks are organized in a tree structure.

Although these information can be useful to guide seg-
mentation algorithms, many other criteria could be taken
into account, such as vessel size, orientation, and position
according to non vascular cerebral structures. As an exam-
ple, arteries located in the falx cerebri and vessels located

Figure 1. PC-MRA sagittal slices. Left: magnitude image slice.
Right: phase image slice. Since images are generated during the
same acquisition, they are perfectly superimposed.

in the neck have very different sizes and orientations, the
first ones being small and oriented in a sagittal plane while
the others are vertical and are much larger. The probability
of detecting a vessel at a precise position, or the probability
to find a vein or an artery can also be important for ves-
sel segmentation and labeling. In the present approach, we
propose to model information concerning vessel size and
orientation but also the probability to find vascular struc-
tures at a given position. These pieces of knowledge are
then stored in a cerebral vascular atlas. This atlas is gen-
erated using PC-MRA data (see Figure 1), enabling to take
advantage of the bimodality of the acquired images during
the generation process. Its main goal is to be used for MRA
segmentation guidance. Nevertheless, it could also be used
as a reference in order to detect abnormal or pathological
vascular structures.

4. Method
4.1. Definitions and notations

A PC-MRA data is composed of two 3D images: a mag-
nitude image, similar to a classical MRI, and a phase image,
only containing moving structure signal (flowing blood,
plus noise and artifacts). Sagittal slices of PC-MRA mag-
nitude and phase images are illustrated in Figure 1. In the
following, a PC-MRA data will be denoted by p while a set
of PC-MRA will be denoted by P. The magnitude image
(resp. phase image) associated to p will then be denoted by
Pmag (T€SP. Ppha). Since phase and magnitude images of p
are 3D grey-level images, they can be defined as functions.
Then, if dg, dy, d, are the dimensions of p, we have:

Pa: [0,ds—1]x[0,dy —1]x[0,d. —1] — N
(2,y,2) =

?

where a = mag or pha and v is the grey-level value of the
image at the current point. For simplicity’s sake, we will



Figure 2. 3D visualization of the computed parameters for an image p® of the database P. From left to right: segmented vessels (pieg),

skeleton (pl.), vessel diameter (piy;).

consider that for a given set P, all p € P have the same
dimensions dg, d,, d,. The set [0,d, — 1] x [0,d, — 1] X
[0, d, — 1] will be denoted by I while an element (z,y,2) €
I will be denoted by x from now on.

4.2. Input and output

The method takes as input a PC-MRA database P =
{p*}= of arbitrary size n and a PC-MRA magnitude im-
age pf,fg o used as a reference image for the registration step
(pref o can be chosen in P). It provides as output a vascular

atlas A defined by:

A: T —
X =

[0, 1] x P(R*) x P([0, x[x[0, x[)
(A% (x), A (x), A°(x)) = (d, t,0)

where P(X) = {z | x C X} stands for the set of all subsets
of a set X, and (d, t, 0) represents the probability to find a
vessel (d), the possible diameters of a vessel (¢), and the set
of its possible orientations (o) at the current position x.

4.3. Algorithm

Segmentation. The vessel segmentation is the first step
of the process. It takes as input P = {p‘}?' and com-
putes the segmentation of p? for i = 0 to n — 1. The seg-
mentation method, fully described in [10], is based on a
region-growing algorithm using anatomical a priori knowl-
edge and topological criteria. However, any vessel segmen-
tation method providing a discrete binary image as result
could be used. The segmentation of p* provides a 3D bi-
nary image pi, o containing the arterial and venous struc-

tures contained in p’:

pieg: I - {0,1}
X d ’

where d = 1 if a vessel is located at x, and 0 otherwise.
After the segmentation step, a new set Psoy = {pgeg ;’;01
of segmented images associated to P is available. A seg-
mented image example is illustrated in the left part of Figure

2.

Quantitative analysis. The set P;, 4 can be used to com-
pute the probability of finding a vascular structure at a given
position. Nevertheless, the segmentation step does not pro-
vide any information on properties such as vessel diameter
and orientation. In order to compute these parameters, ev-
ery binary image p?, o 18 processed by a diameter evaluation
method proposed by Chillet et al., and fully described in
[11]. This method is based on a skeletonization of the bi-
nary image. The skeleton, which contains information on
vessel orientation, also enables to compute normal discrete
planes used for vessel diameter evaluation. That step finally
provides, for all p* € P a 3D image pj,;:

pf mit I — RF
x = t 7
where pi,.(x) = t is the vessel diameter in the neighbor-
hood of x. It also provides a second 3D image p’,,:
Pt I — [0, 7[x[0, 7]
X = (p.zske,ﬂ(x)’p.zske,d)(x)) =0’

where p,_(x) = o is the 3D orientation of the vessel in
the neighborhood of x (p,;(x) and pi, (x) are defined if
and only if p&,,(x) # 0.). It has to be noticed that 6 rep-
resents the angular position of the vessel by comparison to
the vertical axis (where § = 0), while ¢ is the angular posi-
tion of the vessel by comparison to the sagittal axis (where
¢ = 0). After this step, two new sets Pip; = {pihi ?;01
and Py = {p’,,}7—4 of diameter and orientation images



associated to P are available. Examples of skeleton and di-
ameter images are respectively illustrated in the middle and
right parts of Figure 2.

Non-rigid registration. In order to correctly combine the
information of every image of the database, it is necessary
that the fused values correspond to the same position in the
brain or the head. Indeed, even though the principal parts
of the human brain are quite similar from one person to an-
other, their size and proportions can be different. It is then
fundamental to find, for every processed image, a correct
3D deformation field enabling to map them on a same ref-
erence. This is what is done by the non-rigid registration.
The registration algorithm used here is the one proposed by
Noblet et al. in [12]. It has been chosen for its ability to pre-
serve the topology of the registered anatomical structures.

For all i, ,, € P, the PC-MRA magnitude image pf,,,,
is registered on the reference magnitude image p7¢7 - This
registration provides a 3D deformation field D?. Then for
any x € I, p'(x) is assumed to be equal to pyef (D' (x)),
from an anatomical point of view.

Data fusion. The last step consists in fusing the pieces of
knowledge of each image of the database. The first part of
the atlas:
Al T — [0,1]

X d ’

is defined such as:
1 n—1 ] )
vx € I, A%(x) = - > P, (DH™H(x)).
i=0

By definition, A%(x) € [0, 1] and provides the probability
to find a vascular structure at the current position x of pr¢7 .
The second part of the atlas:

At: I — P(RY)
X t ’

is defined such as:

Vx € I, A'(x) = [max{0,a(x) — 04(x)},a(x) + 04 (x)],

where:
0 if N(x) =0
a(x) = #]\}(x) 2ieN(x) P (D) 7H(x)
otherwise
with:

N(x) = {i € [0,n = 1] | pLe, (D") ™' (x)) = 1},

#X standing for the cardinal of a set X, and o,(x) stand-
ing for the standard deviation associated to a(x). This def-
inition, using the standard deviation and the average value

of the vessel diameters, enables to take into account their
variability between the different cases.
The last part of the atlas:

A°: I — P([0,7[x][0,n])
X 0 ’

is defined such as:

Vx € I, A°(x) = O(x) x ®(x),

where:
0 if N(x) =0
o) = J 0rl NG #Dandoy(x) > /4
[0(x) — 09(x),0(x) + 0p(x)] (mod 7) ~
otherwise
0 if N(x) =0
d(x) = [O’ﬂ-[ if N(x) # 0 and 0'¢,(X) 27‘(/4
[p(x) — O¢ (x), d(x) + 0¢(X)] (mod ) ’
otherwise
with:

)= 3 #N#(X)pikeﬂ(wi)*(x)),

1EN(x)

s = 3 #N#(X)piw((w)*(x)),

1EN(x)

and o (x) (resp. 04 (x)) standing for the standard deviation
associated to 6(x) (resp. ¢(x)). It has been chosen to set
O(x) (resp. ®(x)) to [0, 7, i.e. its maximum size, if the
standard deviation was higher than /4. Indeed, if this case
occurs, one can consider that there is no significant vessel
orientation at the position x. These three parts, A?, At and
A? finally provide the whole atlas A.

4.4. Implementation

The proposed method has been implemented on the
Medimax' software platform and use the ImLib3D? open
source C++ library [13]. The computer used to run the
method was composed of a 3 GHz Pentium IV processor
with 2 GB of memory. The successive steps of the algo-
rithms respectively required 45, 6, and 40 minutes for each
image of the database. The data fusion required 15 minutes
for a 18 image database. Since the non-rigid registration
step is independent from the segmentation and quantitative
analysis steps, it could be possible to simultaneously carry
out these steps on different computers, thus reducing the
computation time.

! Available at http://www—ipb.u-strasbg.fr.
2 Available at http://imlib3d.sourceforge.net.



It has to be noticed that the final atlas A can be modeled
by the following function:

A T — R
X = (daaaaaa0700a¢>a¢)(x) ’

which enables to store it in a simple way and to easily
recover any useful information it contains.

5. Atlas generation
5.1. Imaging and subjects

A 18 PC-MRA database has been used to create the atlas
proposed in this paper. The MRA exams were performed
on a 1 Tesla whole-body scanner (Gyroscan NT/INTERA
1.0 T from Philips, gradient slope 75 T/m/s). The flow en-
coding sequence called TIFFE/PCA uses a TR of 10 ms
and a TE of 6.4 ms. The pool of patients was composed
of males and females aged from 21 to 80 without any cere-
bral pathologies. The acquired images of dimensions vary-
ing from 2562 x 150 to 2562 x 180 voxels, were made of
non-isotropic voxels. The images have then been processed
to provide cubic voxels. Indeed, the determination of ves-
sel criteria such as diameter or centreline is more accurate
when performed on isotropic data.

5.2. Atlas description

The obtained atlas has been computed using a reference
PC-MRA magnitude image previously called p7¢/ o+ By def-
inition, the atlas presents the same properties as p;.5,. Itis
composed of 256 x 229 x 160 voxels. The voxels are cubes

of 1.13 mm edges.

Vascular density. The vascular density represents the
probability to find a vessel at a given position (A?). A spa-
tial representation of this probability field is illustrated in
the left part of Figure 3. One can clearly observe invariant
structures such as many veins and sinuses (superior sagittal
sinus, straight sinus, transverse and sigmoid sinuses, jugular
veins) but also arterial structures (carotid and pericallosal
arteries). Other vessels appear as “vascular clouds”, such as
many arteries located in the medial part of the brain. This
phenomenon can be explained by their high position vari-
ability.

A more quantitative representation of these probabilities
is proposed in Table 1. It has to be noticed that the ves-
sels are localized in a very small part of the whole image.
Indeed, less than 4% of the atlas is assumed to contain ves-
sels sufficiently large to be visualized in MRA data. This
information can be of precious use for computation time re-
duction in segmentation processes.

Probability # voxels Ratio
p=20 9028698 | 96.18%
0<p<O0.1 209718 2.23%
01<p<0.2 87390 0.93%
02<p<0.3 27031 0.29%
03<p<L04 13192 0.14%
04<p<05 7092 0.08%
0.5<p 6719 0.07%
p#0 351142 3.74%

Table 1. Distribution of the probability (p) to find a vascular struc-
ture. First column: values of p; second and third columns: number
and ratio of voxels x such as A%(x) = p.

Vessel diameter. The generated atlas also provides infor-
mation concerning diameter of the different vessels. A MIP
of the diameter image of the atlas is proposed in the mid-
dle part of Figure 3. The biggest vessels are localized in
the neck and in the venous parts while the positions cor-
responding to arterial structures present smaller ones. The
distribution of vessel diameters is summarized in Table 2.
It has to be noticed that very few diameters lower than 1
mm are observed. This is explained by the limitations of
the acquisition process (MRA) which still does not enable
to obtain submillimetric data.

Diameter (mm) # voxels Ratio
0<t<1.0 5066 1.44%
1.0<t<2.0 80282 | 22.86%
2.0<t<3.0 111372 | 31.72%
3.0<t<4.0 80139 | 22.82%
4.0<t<5.0 56 547 16.10%
5.0<t<6.0 14411 4.10%

6.0 <t 3121 0.89%

Table 2. Distribution of the average diameter of the vessels in the
vascular part of the image (part presenting non zero values for A%).
First column: average diameter (¢); second and third columns:
number and ratio of voxels x such as a(x) = ¢.

Vessel orientation. The atlas finally provides information
concerning the orientation of the cerebral vascular struc-
tures. A 3D visualization of the orientations for the left part
of the atlas is illustrated in the right part of Figure 3. The
distribution of the orientations is summarized in Table 3.
One can observe that most of the voxels presenting a
defined @ orientation have a quite horizontal one (f €
[7/3,27/3]). These voxels belong to cerebral parts of
the atlas containing venous structures which are often ori-
ented in a nearly horizontal plane (superior sagittal sinus,
straight sinus). Most of these structures also present a ¢
orientation close to the sagittal plane which explains the
high ratio of voxels such as ¢ € [7/3,2n/3]. However,
a higher amount of voxels presenting a vertical orientation
(@ € [0,7/6] U [57/6,]) could have been expected. This
can be explained by the fact that many vessels presenting



Figure 3. Visualization of elements of the processed atlas. Left: probability to find a vessel (A%), visualized as a maximum intensity
projection of the sagittal slices; the brighter the region, the higher the probability to find a vessel. Middle: average vessel diameters (part
a of A"), visualized as a maximum intensity projection of the sagittal slices; the brighter the region, the larger the vessels. Right: 3D
visualization of a part of the orientation image (lines oriented according to 8 and ¢); the grey level linearly depends on the 8 value.

a vertical orientation are located in the neck (carotid arter-
ies, jugular veins). Indeed, the non rigid registration used
in this method, which is essentially devoted to brain regis-
tration, provides satisfactory results for cerebral structures,
but less accurate ones for those located in the neck. Then
the standard deviation values generally obtained in this area
were not sufficiently low to define the orientation.

More generally, the amount of voxels presenting de-
fined orientation could be significantly increased by no
longer considering the absolute orientation of the vessels
but their relative orientation according to adjacent non vas-
cular structures. As an example, the superior sagittal si-
nus relative orientation according to the surface of the skull
is quite invariant. The same property can be observed for
many vascular and non vascular structures (straight sinus
and superior frontier of the cerebellum, brain superficial
veins and cortex). In order to be modeled, such properties
would require a fusion between an atlas as the one presented
here and non vascular brain atlases.

Orientation [ @

(rad.) # voxels Ratio # voxels Ratio
Undefined 253978 | 72.33% 261496 | 74.48%
[0, /6] 3540 1.01% 7298 2.08%
[w/6,7/3[ 14931 4.25% 24873 7.08%
[w/3,7/2[ 31174 8.88% 21669 6.17%
[7/2,2r/3] 27679 | 7.88% 16898 | 4.81%
[27/3,57 /6] 13597 3.87% 14685 4.18%
[57/6, [ 6243 1.78% 4223 1.20%

Table 3. Distribution of the orientation of the vessels in the vas-
cular part of the image (part presenting non zero values for A%).
First column: values of 8 or ¢; second and third (resp. fourth and
fifth) columns: number and ratio of voxels presenting the current
orientation according to 8 (resp. ¢).

6. Possible use of atlases
6.1. Knowledge-based segmentation and filtering

The atlases that can be generated by the proposed
method are essentially devoted to segmentation purpose. In-
deed, reliable a priori information concerning vessel posi-
tion, diameter, and orientation can be very useful for guid-
ance of several kinds of methods.

Concerning methods based on filtering or application of
mathematical morphology operators, this knowledge can be
used to reduce the computation time without altering the
accuracy of the result. Indeed, these methods are generally
designed to filter each voxel of the image with a set of op-
erators presenting different parameters. A priori knowledge
can then be used to decide which areas of the whole image
need to be processed or not, and to choose specific sub-
sets among the whole set of possible parameters. Such an
approach is proposed in [6], for brain vessel segmentation
based on grey-level hit-or-miss transform.

A priori information can also be used in order to im-
prove the efficiency of deformable models algorithms. This
kind of methods generally requires an accurate initializa-
tion to provide correct results (an approximate initializa-
tion can lead to an erroneous segmentation). Information
on position, size and orientation of the vessels could then
allow to efficiently and automatically generate and position
an initial model shape close from the structures to be seg-
mented. These parameters could also be used to guide the
model evolution, by integrating them in the energy function
to minimize.

Other applications of vascular atlases could be cited,



such as automatic initialization of vessel tracking algo-
rithms, or guidance of region growing methods.

6.2. Computer-aided diagnosis and anatomical
comparison

Assuming that the method is applied on a set of people
without any cerebral pathologies, the resulting atlas could
be used as a reference for analyzing MRA of non-healthy
patients and detecting pathologies. The most common vas-
cular pathologies are aneurysms (broadening of vessels) and
stenoses (narrowing of vessels), corresponding to vessel di-
ameter abnormal modifications. Since an atlas provides an
estimation of the expected diameter for each main vessel
of the brain and the whole head, it could be a useful refer-
ence to help the clinicians to automatically detect possibly
pathological structures. Such an atlas could also be used
for anatomical comparison, in order to determine the vari-
ability of the different vascular structures of the brain. This
could lead to the creation of reliable and exhaustive descrip-
tions of these structures, taking into account all their differ-
ent configurations.

7. Conclusion

This paper has presented a novel method for automatic
generation of vascular atlases from any arbitrary PC-MRA
database. This method is composed of four steps involv-
ing vessel segmentation, quantification, non-rigid registra-
tion and data fusion. It enables to compute, in an automatic
fashion, atlases modeling high level anatomical informa-
tion (position, size, orientation) on brain vessels. Such at-
lases are then assumed to be more reliable and to contain
more useful information than those previously proposed.
Although these atlases can be used for computer-aided diag-
nosis, their main goal remains smart guidance of segmenta-
tion tools, such as those based on mathematical morphology
operators. Further work will now consist in modeling more
knowledge as vessel shape, or vein/artery discrimination for
labeling purpose, but also to obtain better results concern-
ing vessel orientation. Moreover the fusion of vascular and
non vascular atlases constitutes a promising research field
which could lead to quite accurate vessel description tools.
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