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Abstract Magnetic resonance angiography (MRA) provides 3-dimensional data of vascu-
lar structures by finding the flowing blood signal. Classically, algorithms dedi-
cated to vessel segmentation detect the cerebral vascular tree by only seeking the
high intensity blood signal in MRA. We propose here to use both cerebral MRA
and MRI and to integrate a priori anatomical knowledge to guide the segmenta-
tion process. The algorithm presented here uses mathematical morphology tools
(watershed segmentation and grey-level operators) to carry out a simultaneous
segmentation of both blood signal in MRA and blood and wall signal in MRI.
It is dedicated to the superior sagittal sinus segmentation but similar strategies
could be considered for segmentation of other vascular structures. The method
has been performed on 6 cases composed of both MRA and MRI. The results
have been validated and compared to other results obtained with a region grow-
ing algorithm. They tend to prove that this method is reliable even when the
vascular signal is inhomogeneous or contains artefacts.
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1. Introduction
Magnetic resonance angiography (MRA) is a technique [5] frequently used

to provide 3D images of cerebral vascular structures. The availability of pre-
cise information about brain vascular networks is fundamental for planning
and performing neurosurgical procedures, but also for detecting pathologies
such as aneurysms and stenoses. Since all classical image processing tools
have been applied more or less successfully to the case of vessel segmenta-
tion, it might be interesting to explore new kinds of algorithms involving a
priori knowledge. In a previous paper [8] we proposed a first attempt to use
anatomical knowledge as a way to guide a segmentation algorithm. A major
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breakthrough of this work was the creation of an atlas dividing the head into
different areas presenting homogeneous vessel properties. The use of this atlas
enables to store a priori knowledge concerning the vessels located in each area
and then to propose ad hoc segmentation algorithms. In this paper, we propose
an algorithm dedicated to one of these areas, containing a main vessel of the
venous tree: the superior sagittal sinus (SSS). This algorithm is based on math-
ematical morphology tools (watershed segmentation and grey-level operators).
It also integrates a priori anatomical knowledge and uses both MRA and MRI
data in order to take advantage of both acquisition techniques. It uses a multi-
resolution slice by slice process, simultaneously segmenting the flowing blood
signal in MRA and the blood and vessel wall in MRI. This paper is organized
as follows. In Section 2, we review previous approaches concerning vessel
segmentation. In Section 3, we describe the way to use anatomical knowlege.
In Section 4, the proposed algorithm is described. In Section 5, technical de-
tails concerning the method and the database used for validation are provided.
In Section 6, the method is tested and compared to a region growing algorithm.
Discussion and projects are presented in Section 7.

2. Related work
The vessel segmentation methods can be divided into several categories,

corresponding to the main strategies used to carry out the segmentation. The
first proposed strategies were based on filtering [4]. Method based on math-
ematical morphology (hysteresis thresholding in [7], grey level erosions and
dilations in [3] or grey-scale skeletonization in [10]) and region growing [11]
have also been proposed. More recently, methods based on vessel tracking [6],
and crest line detection [1] have also been proposed.

It has to be noticed that very few vessel segmentation methods have been
designed to process multimodal data. A method proposed in [9] for cerebral
vascular structures visualization, uses both 3D MRA and 2D X-ray images. A
method has been proposed by us in [8], where angiographic and non angio-
graphic data are involved in an atlas-based region growing algorithm. Nev-
ertheless, the simultaneous use of images from different modalities is quite
unusual. The algorithm presented here, based on watershed [2] segmentation
and mathematical morphology operators, proposes to uses both MRA and MRI
to take advantage of anatomical knowledge concerning the brain superficial ve-
nous structures.

3. A priori knowledge integration
The SSS presents many invariant properties (i.e. properties being identical

for every subjects) which can be useful for guiding a segmentation process.
These properties and a way to use them are described as follows.
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Trajectory properties: A way to guide normal planes computation. The
regular trajectory of the SSS and its position relatively to the cerebral median
plane and the surface of the head theoretically enable to compute successive
planes being perpendicular to the sinus axis. Indeed, if the surface of the head
and the sagittal median plane of the brain can be found, then their intersection
provides a curve. A normal plane computation using the points of that curve
finally gives planes being normal to the sinus axis too. Using that strategy, it
becomes possible to perform a segmentation of the sinus slice by slice.

Structures intensity and relative positions: A way to guide watershed seg-
mentation. Observing MRA slices (Figure 1, right lower pictures), one can
see that only the flowing blood is generally quite visible as it presents the high-
est intensity. In MRI, more structures can be observed in an easier way (Figure
1, right upper pictures). Although the flowing blood does not present a very
high intensity, it can be observed surrounded by the dura mater. The brain
hemispheres present a nearly identical intensity, such as a part of the skull.
These four structures are separated by areas of low intensity and their relative
positions are globally invariant.

MRA and MRI intensity properties can then be used to perform watershed
segmentation on slices of the sinus region. Indeed, a gradient computation on
the MRA should correctly delineate the blood from the remaining structures. A
watershed segmentation could also be directly used on the MRI images to seg-
ment the different structures (considering low intensity regions as the frontier
between them). Since the main problem of watershed segmentation remains
oversegmentation, it is important to choose correct markers to initialize it. This
could be done here by sharing information between MRA and MRI segmenta-
tion (the segmentation of blood in MRA could be used to find a marker for the
dura mater in MRI, and vice versa) or by sharing information between succes-
sive MRI or MRA segmentations.

Structure homogeneity along the sinus trajectory: Justifying an iterative
slice by slice strategy. The sinus and its neighboring structures present quite
invariant position properties. By observing slices at different points on the SSS
trajectory, we can also observe that their size and distance from each other
are different (Figure 1 right pictures) but vary smoothly. This property could
be efficiently used to start from one slice and successively generate markers
to initialize segmentation of the neighbor slices. This is generally done in
vessel tracking algorithms. A weakness of the vessel tracking approach is that
a segmentation error in one slice will generally have consequences on all the
following ones. In order to avoid such problems, an alternative could be to
propose an iterative approach. For each slice, it consists in starting, from an
average image of the current slice and its neighbors. A segmentation of this
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Figure 1. Left: T1 MRI sagittal slice of the whole head. Middle: MRA sagittal slice of the
top of the head. Right: slices of MRA and MRI data at various positions on the SSS.

average slice can then be used to generate markers for a new segmentation of
a new average slice, closer from the current slice. This process can then be
iterated until segmenting the real slice.

4. Method
Input and output. The method takes as input a classical MRI and a MRA
of the same patient. They must contain at least the top of head and have to be
correctly superimposed. If they are not, they can be superimposed by perform-
ing a rigid registration (using translations and rotations). Figure 1 illustrates an
example of such data. The method provides two resulting images: a segmenta-
tion of the flowing blood detected in the MRA and a segmentation of the dura
mater surrounding the blood and then forming the sinus wall, from the MRI.

Preprocessing. The segmentation process is not carried out on the global
images but on slices that must be normal to the sinus axis. A first step then
consists in computing these slices. The sinus axis is parallel to a curve obtained
by intersecting the cerebral sagittal median plane and the head surface. The
surface of the head can be easily found by thresholding, while the sagittal
median plane of the brain can be found by an histogram analysis of the MRA
image. The intersection of that plane and the surface of the head then provides
a discrete curve. A normal vectors computation on the points of the curve
finally enables to compute planes being normal to the curve and also to the
sinus axis.

That step then provides two sets of slices of the SSS. The first set is com-
posed of MRI slices while the second contains MRA slices, the � -th slice of the
first set corresponding to the � -th slice of the second. It has been experimen-
tally observed that sets of 256 slices were sufficient to carry out the segmenta-
tion. Moreover, we sample the slices to keep

���
	����
voxel-slices located 11

mm away from the head surface, assuming that small slices centered on the si-
nus and containing neighboring structures enable to obtain correct results with
a lower computation time.
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Definitions and notations. In the following, a slice 
 of � 	�� voxels will
be considered as a function of � ����������� 	 � ��� � ��������� . We will always
assume that � �"! �$#�% � �$#'&�( . Let !)
)*,+�-. (0/.2143 and !)
5*,+ .. (0/.6143 be sequences of
MRA and MRI slices. It has to be noticed that for any

% �87)�:9;�<� ����=>� such that%@? 7 ? 9 the slice 
)AB is physically located between 
'A- and 
)AC . For each& �D� ����=>� let !5E .F (HG F 143 (in our case I<J@K'� ) be a sequence of intervals around
&
,

decreasing from � ����=>� to ! &�( :
E .3 JL� ����=>�M�

NPO ��QR�D� ����IS�M� O ? QUTVE .WYX E .Z �
E .G JL� & � & �M[

The lenght of an interval E will be denoted by \ E4\ . For each
& �]� ����=^� let

!)
0*�+_-. � F ( G F 143 and !)
5*�+ .. � F ( G F 143 be the averaged sequences over E .F :

 A. � F J �

\ E .F \
`
*badc8ef


 A* �

In the following, for
& � � ����=^� the result of the segmentation of 
gA. will be de-

noted 7 A. . Similarly, for
& �"� ����=^� and hi�"� ����IS� , the result of the segmentation

of 
)A. � F will be denoted 7jA. � F . Then we will obtain:

7 A. � G Jk7 A. [
General description. For each slice 
 *�+�-. , we have defined two sequences
!)
0*�+_-. � F ( G F 143 and !)
5*,+ .. � F ( G .6143 . These sequences start respectively from an aver-
age image of all the MRA and MRI slices and finally come respectively to the&
-th MRA and MRI slice. Assuming that both sequences will smoothly con-

verge from an average image to the current slice, we propose the following
segmentation strategy based on an iterative process:

1 initial segmentation of 
d*,+�-. � 3 and 
5*,+ .. � 3 ;

2 for hlJL� to I :

(a) segmentation of 
 *,+ .. � F , using 7 *�+_-. � F)m � and 7 *,+ .. � F)m � ;
(b) segmentation of 
 *,+�-. � F , using 7 *,+�-. � F5m � and 7 *�+ .. � F .

The process starts from average images and iteratively uses previous segmen-
tations of both modalities to carry out the current segmentation. This current
segmentation is carried out by using a watershed algorithm while previous seg-
mentations are used for creation of markers dedicated to watershed initializa-
tion. In the following paragraphs, the segmentation process is more precisely
described. The gradient computation and template creation steps are explained
in specific paragraphs.
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Figure 2. Initialization process. From left to right: MRI average slice ( n8o4p ee2q r ); MRI with four
markers; first segmentation; MRI gradient; MRI gradient with five markers; final MRI segmen-
tation ( s otp ee2q r ); MRA average slice ( n otpMue2q r ); MRA gradient; MRA gradient with two markers;
MRA segmentation ( s o4pvue6q r ).

Initialization. The first step consists in performing the segmentation of

0*�+_-. � 3 and 
5*,+ .. � 3 for

& �w� ����IS� . By definition, for all
& �^x<�y� ����IS� , 
�A. � 3 Jz
5A{ � 3 .

Thus the initialization step only requires to segment two average slices, one for
the MRA and the MRI. The initialization is organized as follows (Figure 2):

1 grey-level opening of the MRA slice with a flat structuring element (
�|	}�

cross): the points of maximum value become the markers for the flowing
blood in the MRA and MRI slices;

2 successive grey-level openings of the MRI slice with three flat structur-
ing elements (a one voxel width line and two K 	 K circular elements):
the points of maximum value become the markers for the brain and the
bone in the MRI slices;

3 watershed segmentation of the MRI slice using the four markers;

4 gradient computation of the MRI slice and watershed segmentation of
the gradient MRI slice using the four markers plus a new marker pro-
vided by the frontier between the four regions of the previous segmenta-
tion;

5 gradient computation of the MRA slice and watershed segmentation of
the gradient MRA slice using one marker plus a new marker provided
by the frontier between the four regions of the first MRI segmentation.

Standard shape and size of the different structuring elements have been chosen
in order to fit the different structures to find. That step finally provides 7d*,+ .. � 3
and 7 *�+_-. � 3 then enabling to initialize the iterative process for each

& �"� ����=>� .
Iterative process. For each

& �~� ����=>� , at the step h , the iterative process
consists in first segmenting the current MRI slice ( 
 *,+ .. � F ) by using the MRA and
MRI segmentation of the previous step ( 7H*�+_-. � F)m � and 7�*�+ .. � F)m � ). Then the current
MRA slice can be segmented using the current MRI segmentation ( 7)*,+ .. � F ) and
the previous MRA segmentation ( 7 *�+_-. � F)m � ). A step calculating 7 *�+_-. � F and 7 *�+ .. � F can
be decomposed as follows (Figure 3):
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Figure 3. A step of the iterative process for one slice. From left to right: MRI average
slice ( n o4p ee2q f ); MRI with four markers; first segmentation; MRI gradient; MRI gradient with five
markers; final MRI segmentation ( s o4p ee6q f ); MRA average slice ( n o4pvue6q f ); MRA gradient; MRA
gradient with two markers; MRA segmentation ( s o4pvue2q f ).

1 creation of four markers to initialize 
 *,+ .. � F segmentation;

2 watershed segmentation of 
 *,+ .. � F , using the four markers;

3 gradient computation of 
 *,+ .. � F and watershed segmentation of 
 *,+ .. � F gra-
dient, using the four markers plus one marker provided by the frontier
between the four regions found by the previous watershed segmentation;

4 creation of one marker to initialize 
 *,+�-. � F segmentation;

5 gradient computation of 
 *,+�-. � F and watershed segmentation of 
 *,+�-. � F gra-
dient, using the marker plus one marker provided by the frontier between
the four regions found by the first watershed segmentation of 
�*�+ .. � F ;

Gradient computation. For each step, the segmentation of both MRA and
MRI slices requires the computation of gradient images. Concerning the MRI
slices, the gradient is computed by choosing the maximum intensity variation
in the four principal directions, then correctly delineating the four main struc-
tures from the low intensity regions. This gradient calculation gives correct re-
sults as the four regions of interest have homogeneous intensity levels. This is
not the case of the flowing blood in the MRA slices. Indeed, the blood present
a very high but heterogeneous level. Since computing a simple gradient does
not allow to obtain well defined frontiers, a solution consists in dividing the
gradient value calculated at a pixel by the pixel value. This normalized gra-
dient will present low values in homogeneous high intensity regions and high
values for the background points located at the frontier with the flowing blood.

Markers generation. At each step of the iterative process and for each slice,
it is necessary to generate markers to initialize the watershed segmentations.
The segmentation of the MRI slice requires four markers: one for the dura
mater, one for both hemispheres and one for the skull. For any MRI slice 
g*,+ .. � F ,
the markers are generated as follows. First, three templates, for hemispheres
and skull are created from 
d*�+ .. � F)m � . They are obtained by performing a grey-
level erosion with a flat structuring element (

��	��
square) on 
 *�+ .. � F)m � . For each
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template, 7 *�+ .. � F)m � is used as a mask to indicate what are the regions where the
erosion has to be performed. A fourth template, for the dura mater, is obtained
by performing a grey-level erosion with a flat structuring element (

��	l�
cross)

on 
 *,+ .. � F)m � . Both 7 *,+ .. � F5m � and 7 *,+�-. � F5m � are used as mask to indicate what are the
regions where the erosion has to be performed. Then, for each template a
grey-level erosion of 
 *�+ .. � F using the current template as a grey-level structuring
element is performed. After the erosion, a dilation using the template as a
binary element is carried out at the maximum point of the eroded image, then
providing a marker for watershed initialization.

The segmentation of the MRA slice requires one marker indicating the po-
sition of the flowing blood. For any MRA slice 
 *�+_-. � F , the marker is choosen
as being the pixel of maximal intensity in the region of 
�*,+�-. � F delimited by the
vascular region segmented in 7 *,+�-. � F)m � .
Postprocessing. The segmentation provides two sets of slices. The first
gives the segmentation of the flowing blood in the MRA set while the second
gives the segmentation of the sinus blood and wall in the MRI set. Then,
these slices have to be put back to their correct position in the initial images.
During this step, it might happen that small gaps appear between successives
slices. Since these gaps are quite small (their thickness is never larger than one
voxel), they can then be filled by using a binary closing with a linear structuring
element composed of 3 voxels and oriented according to the direction of the
axis. As a very last step, the user can also choose to apply a binary opening to
smooth the image (we propose here to use a

�l	��U	��
cross).

5. Experimental section
Data acquisition. A database of 6 patients has been used to validate the
efficiency of the proposed algorithm. For each patient, two MR data have been
provided (Figure 1): a T1 MRI of the whole head (

��� � 	��d� � 	�� K � voxels)
and a MRA of the top of the head ( �0� �
	�� � 	�� K � voxels). Voxels are cubes
of 1 mm edge.

Complexity and computation time. The proposed algorithm has a com-
plexity of �l��I}[�=�[ O [�Qt[ ��� , where I is the number of iterations, = is the number
of slices,

O
and Q are the slice dimensions and

�
is the maximum area of all

the used structuring elements (
��� O [�Q ). The images have been segmented

with a computer using a 2.4 GHz Pentium IV processor with 2 GB of memory.
The average computation time is then 6 minutes. It has to be noticed that the
proposed algorithm runs in an entirely automatic fashion.
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Figure 4. Left: flowing blood surrounded by the SSS wall. Right: results provided by the
proposed method and a region growing method. First column: MRA data. Second column:
region growing segmentation. Third column: proposed segmentation.

6. Results and discussion
The results obtained with the proposed method have been compared to those

provided by a region growing algorithm proposed in [8]. All the validations
have been carried out by a human specialist who qualitatively tested both al-
gorithms on each case of the previously described database.

During the validation, it has been observed that the method could segment
the flowing blood even when MRA signal was heterogeneous or low. The
right pictures of Figure 4 illustrate the main observations of the validations.
For highly homogeneous intensity regions, it has been observed that both al-
gorithms provide correct segmentations. Nevertheless, the region growing al-
gorithm is sensitive to aliasing artefacts while the proposed algorithm is more
robust, also segmenting the low intensity flowing blood in the middle of the
vessel. The proposed algorithm is also able to segment only the sinus while
the region growing algorithm also segments connected veins.

7. Conclusion
This paper presents a novel method, based on watershed segmentation and

mathematical morphology operators guided by anatomical knowledge. This
method is dedicated to SSS segmentation from brain multimodal MR data. It
has been tested on 6 cases, providing more precise results than a previously
proposed region growing algorithm, even in case of strong inhomogeneity of
signal in MRA data. The main originality of this work consists in integrating
high level anatomical knowledge, and using both MRA and MRI data in order
to guide mathematical morphology tools. A first attempt to integrate anatom-



10

ical knowledge in a vessel segmentation process had already been proposed
in [8], where an atlas was used to divide the brain into areas having homo-
geneous vascular properties. The method proposed here can be considered as
being dedicated to one of these areas (the SSS area), then proposing a reliable
strategy for the vessels it contains. This work makes part of a new kind of
segmentation strategies consisting in processing each part of a vascular tree in
a adapted fashion, instead of processing all the vessels in a global way. Further
work will now consist in using this method as a first step for segmentation and
topology recovery of the whole cerebral superficial venous tree.
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