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Introduction
Cerebral structure segmentation from 3D MRI data is an
important task for several medical applications. Brain seg-
mentation methods are primarily based on the classification
of the intracranial volume into classes corresponding to the
main cerebral tissues: cerebrospinal fluid (CSF), grey matter
(GM), and white matter (WM). These classes present com-
plex geometrical properties. However, they can be discrimi-
nated thanks to their distinct signal in modalities such as T1
or T2 MRI; moreover, the cerebral tissues present invariant
and specific topological properties. Based on these assump-
tions, some topology-driven brain tissue classification tech-
niques have been proposed [1,2,3]. The method described in
this poster belongs to the same family of techniques, since
its purpose is the classification of the brain into four classes:
sulcal CSF, GM, WM, and ventricular CSF. These classes
are modelled (with some simplifying hypotheses) as hierar-
chically included spheres. Starting from a presegmentation
based on this model, the four classes then evolve under pho-
tometric constraints. This process can be formalised as a
discrete multi-class deformable model.

Method
Input/output

The method takes as input a T1 MRI of the brain,I : E→ N
(with E = [0,dx − 1] × [0,dy − 1] × [0,dz − 1], generally
[0,255]3), from which the intracranial volumeE′ ⊂ E has
been extracted, (Fig. 1, 2nd picture), and two threshold val-
uesµ1 < µ2 ∈ N delimiting the T1 signal intensity between
CSF/GM, and GM/WM, respectively. The method output is
a partitionC = {Cs,Cg,Cw,Cv} of E′, whereCs, Cg, Cw, and
Cv correspond to the sulcal CSF, GM, WM, and ventricular
CSF classes, respectively.

Initialisation

The method starts from a presegmentationCi of E′ having
the desired topology:Ci

v is simply connected (1 connected
component, 0 hole, 0 cavity), and successively surrounded
by Ci

w, Ci
g, andCi

s which are topological hollow spheres (1
connected component, 0 hole, 1 cavity), hierarchically or-
ganised, as illustrated in a 2D fashion in Fig. 1 (1st picture).
In Z3, such a model implies to choose dual adjacencies for
the successive classes. The 6-adjacency has been considered
for Ci

g (and thusCi
v), since GM is geometrically organised

as a “thick” ribbon, while the 26-adjacency has been con-
sidered forCi

w,C
i
v, since they both present thin details near

the cortex. The initial presegmentationCi is composed of a
simply connected volume corresponding toCi

v, surrounded
by three “thick” closed surfaces, modellingCi

w, Ci
g andCi

s,
their thickness corresponding to a coherent anatomical ap-
proximation (Fig. 1, 3rd picture).

Deformable process

From a topological point of view,Ci, although composed of
four distinct classes, can be considered as a binary image
constituted of an objectX = Ci

s∪Ci
w and of the background

X = Ci
g∪Ci

v, in a (26,6)-adjacency framework. Based on this
assumption, the segmentation process consists in modifying
the frontier betweenX andX in a topology-preserving fash-
ion, under photometric constraints. This discrete deformable
model process is formalised in Alg. 1. It firstly modifies the
classification of the points which are, from a photometric
point of view, the “most misclassified”. In order to preserve
the topology of the initial model, only simple points [4] can
be switched from a class to another. For simplicity’s sake,
the algorithm is presented using set-based notations. How-
ever, it was implemented using efficient data structures (or-
dered FIFO lists), enabling to reach an optimal algorithmic
complexity O(|E′|), linear w.r.t the size of the intracranial
volume, since each point can be switched from one class to
another only twice (the classification only depending on two
threshold values).

Fig. 1 - From left to right: topological model (from white to dark green:
Ci

v, Ci
w, Ci

g, andCi
s); T1 MRI (I |E′: axial slice); initialisation of the

segmentation process of the MRI (Ci); result of the segmentation (C).

repeat
1 - Frontier point determination
FP{s,g} = (Ci

s∩ N∗6(Ci
g)) ∪ (Ci

g ∩ N∗26(C
i
s))

FP{g,w} = (Ci
g ∩ N∗26(C

i
w)) ∪ (Ci

w ∩ N∗6(Ci
g))

FP{w,v} = (Ci
w ∩ N∗6(Ci

v)) ∪ (Ci
v ∩ N∗26(C

i
w))

/* N∗k(A) is the set of points ofA k-adjacent toA */
2 - Simple point determination
S P26 = {x ∈ X | x is 26-simple forX}
S P6 = {x ∈ X | x is 6-simple forX}
3 - Candidate point determination
CP= (S P6 ∪ S P26) ∩ (FP{s,g} ∪ FP{g,w} ∪ FP{w,v})
/* Simple points at the frontier between two classes*/
4 - Cost evaluation
for all x ∈ CP∩ FP{s,g} (resp.FP{g,w}, FP{w,v}) do

v(x) = I (x) − µ1 (resp.I (x) − µ2, I (x) − µ1)
if x ∈ Ci

g (resp.Ci
w, Ci

w) then
v(x) = −v(x)

end if
end for
5 - Point selection and re-classification
if max(v(CP)) > 0 /* with max(v(∅)) = −∞ */ then

Let y ∈ CP such thatv(y) = max(v(CP))
Let Ci

α ∈ {C
i
s,C

i
g,C

i
w,C

i
v} such thaty ∈ Ci

α

Let Ci
β
∈ {Ci

s,C
i
g,C

i
w,C

i
v} such thaty ∈ FP{α,β}

Ci
α = Ci

α \ {y}
Ci
β
= Ci

β
∪ {y}

end if
until max(v(CP) ≤ 0)
C = Ci

Alg. 1 - Multi-class topology-preserving deformable process algorithm.

Fig. 2 - 3D visualisation of brain segmentation from a BrainWeb image,
provided by the proposed method. From top to bottom:Cg (GM), Cw
(WM), andCv (ventricular CSF).

Results and discussion
An example of segmented image is available in Fig. 2. De-
pending on two parameters (µ1 andµ2), and relying on a lin-
ear complexity process, the proposed segmentation method
enables to obtain results in a fast and easy way (computation
time lower than 2 min. for a 2563 image).
In order to validate the method, T1 MRI data provided by
the commonly used BrainWeb database have been consid-
ered. BrainWeb enables to generate synthesis - but realis-
tic - brain MRI data which are obtained from an anatomical
ground truth by simulating the chosen MRI acquisition pro-
tocol (possibly integrating noise and artifacts).
The results obtained for images corresponding to noise ratios
varying from 0% to 9% of corrupted voxels have been anal-
ysed by considering, for each class of tissue, three classical
statistical measures: sensitivity (T P/(T P+ FN)), specificity
(T N/(T N+ FP)) and similarity (2.T P/(2.T P+ FP+ FN)),
with T N, T P, FN andFP corresponding to the number of
true negative, true positive, false negative and false positive
voxels, respectively. The obtained values of these measures
are summarised in Tab. 1. The result illustrated in Fig. 2 cor-
responds to the measures of the first line (0% noise) of this
table.

Sensitivity (%) Specificity (%) Similarity (%)
Noise CSF WM GM CSF WM GM CSF WM GM
0% 88.5 99.4 81.599.4 98.2 99.883.6 91.8 89.0
1% 88.9 99.3 83.299.3 98.5 99.883.2 93.1 90.0
3% 89.7 95.4 85.998.9 99.6 99.479.8 95.7 90.4
5% 89.8 87.2 81.298.6 99.7 98.576.4 91.6 84.8
7% 90.0 80.0 75.998.3 99.6 97.774.0 87.1 79.2
9% 82.3 62.1 66.997.7 99.6 95.765.6 75.0 68.1

Tab. 1 - Sensitivity, specificity and similarity measures ofsegmentation

results provided by the proposed method when applied on the BrainWeb

database, for various noise ratios.

This method constitutes preliminary works, and is then not
yet fully satisfying. The deformation process is only guided
by photometric constraints, neglecting high-level anatomi-
cal knowledge such as volumetric or thickness information.
Moreover, the initial topological model does not perfectly
take into account structures such as the brainstem and the
cerebellum, providing good results on the superior part of
the brain (cortex), but less correct ones on its inferior part.
A more sophisticated version of the method, involving a
presegmentation topologically and anatomically closer from
the reality, and using both photometric and geometric con-
straints to guide the deformable model process is under de-
velopment and will be further submitted for publication.
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