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Topology-preserving discrete deformable model:
Application to multi-segmentation of brain MRI
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Abstract. Among the numerous 3D medical image segmentation meth-
ods proposed in the literature, very few have intended to provide topo-
logically satisfying results, a fortiori for multiple object segmentation.
In this paper, we present a method devoted to parallel segmentation of
the main classes of cerebral tissues from 3D magnetic resonance imaging
data. This method is based on a multi-class discrete deformable model
strategy, starting from a topologically correct model, and guiding its evo-
lution in a topology-preserving fashion. Validations on a commonly used
cerebral image database provide promising results and justify the fur-
ther development of a general methodological framework based on the
concepts exposed in this preliminary work.

Key words: Topology preservation, multi-segmentation, discrete deforma-
ble model, medical imaging.

1 Introduction

When performed on medical data, segmentation consists in decomposing the
image support into two sets: the searched structure, and the “useless” part of
the image, usually by using photometric and/or shape knowledge related to the
anatomical elements and the image acquisition process. However complex organs,
such as the brain, require more sophisticated segmentation strategies. Indeed,
the brain is composed of several different tissues and anatomical structures pre-
senting non-trivial shapes and organised in a complex fashion. Consequently,
in order to provide results enabling to facilitate the analysis of brain images,
segmentation methods have to correctly divide such images into k£ > 2 classes
corresponding to the several anatomical and pathological elements visualised.
The determination of multiple classes, and the complex shape and organisation
of brain structures require to base the developed strategies not only on “classi-
cal” intensity and shape hypotheses, but also on more sophisticated geometrical,
relational and topological ones. In this context, the notion of deformable model
can deal with these different kinds of a priori anatomical knowledge, and then
lead to the creation of efficient tools.

In the sequel, a method devoted to brain structure segmentation from 3D
magnetic resonance imaging (MRI) data is described. It relies on a multi-class
discrete deformable model strategy, starting from a topologically-correct model,



and evolving without topology modifications until segmenting the brain into
four classes corresponding to the four main intracranial structures. This method
constitutes a preliminary attempt to illustrate and validate the potential effi-
ciency of a general methodology consisting in developing complex - and realistic
- anatomical models of the brain and deforming them under high-level a priori
anatomical knowledge to obtain accurate segmentation results.

2 Related work

In [8,10], some strategies are described for vascular networks segmentation.
Based on the assumption that these networks are organised as tree structures,
they propose to monotonically modify a simply connected model by addition (or
subtraction) of simple points [2]. Using the same idea, brain surface segmenta-
tion methods [6,5] use the assumption that the cortex is a topological hollow
sphere. They thicken/thin a subset/superset corresponding to the white mat-
ter /intracranial volume to finally detect the cortex/cortical surface. Topology
preserving is handled by considering simple point [6] or complexes [5].

The first methods devoted to sequential multi-segmentation of 3D brain im-
ages are described in [9,7]. They segment cerebral anatomical structures in a
coarse to fine way, the result of each segmentation step enabling to initialise
the next one. Recently, the first parallel cerebral structure multi-segmentation
method [1] has been proposed. Based on a topological model of the brain, it
iteratively performs a classification/homotopic skeletonisation/homotopic thick-
ening process. The initialisation requires a rigid-registration of a precomputed
topological model which has to present structures sufficiently large not to be
topologically altered by the deformation field. Moreover, the issue of modelling
and preserving the topology of a non-binary image is not clearly considered
(all classes are handled in a 6-adjacency framework, and some voxels may be
unclassified). Finally, the iteration of numerous steps is computationally quite
expensive.

As in [1], the work described hereafter is based on a topological model of the
brain structures which evolves, thanks to the notion of simple point, in a topology
preserving fashion. However, it presents several major differences. The topolog-
ical model is more simple than the one of [1] (both still being non-anatomically
compliant) but it enables to correctly model and preserves topological proper-
ties during the deformation process. The deformation algorithm is not based on
successive monotonic processes, but on a smooth non-monotonic one, leading
to a low computation time method. Finally, this work constitutes a preliminary
study devoted to assess the potential efficiency of the proposed methodology.

3 Background

3.1 Anatomical and physical notions

Brain anatomy The brain is mainly composed of three kinds of tissues: grey
matter, white matter and cerebrospinal fluid. It is constituted of several struc-



tures located in the intracranial volume: brainstem, cerebellum, ventricles, cor-
tex, etc. Most of them have complex shapes, but are quite invariant from one
brain to another, particularly from topological and relational points of view.
In a macroscopic and simplified way, the brain is surrounded by a layer of tis-
sues and cerebrospinal fluid. Except on its inferior face (where are located the
cerebellum and the brainstem), the external surface of the brain is composed of
the cortex, which is a thick convoluted ribbon of grey-matter. Under this corti-
cal surface, white matter surrounds the ventricles, which are cavities containing
cerebrospinal fluid, linked together by thin tunnels.

Magnetic resonance imaging Magnetic resonance imaging (MRI) is a class
of medical image acquisition protocols taking advantage of the magnetic proper-
ties of hydrogen atoms located in living tissues to visualise internal anatomical
structures. There exist several modalities of MRI, each one presenting specific
properties. The most commonly used for brain visualisation is T1 MRI, enabling
to discriminate the white matter, the grey matter and the cerebrospinal fluid,
which present decreasing and globally homogeneous intensities in such data. An
example of T1 MRI axial slice is illustrated in the 1st picture of Fig. 1, where
we can observe three classes of intensity corresponding to the three classes of
tissues previously enumerated.

3.2 Notations and hypotheses

Notations In the sequel, the grey matter, white matter, and cerebrospinal fluid
will be denoted by GM, WM, and CSF, respectively. A 3D MRI data will be
considered as a function I : E — N (a MRI data having discrete positive values),
where E is the support of I, and has the form [0, d, — 1] x [0,d, — 1] x [0,d, — 1],
dg, dy, d, being the dimensions of I (generally 256, for brain millimetric data).

Hypotheses The purpose of this work is the evaluation of the potential effi-
ciency of parallel segmentation of the different cerebral structures, based on a
discrete topology-guided deformable model process. In order to lead to a final
application which will be fully efficient, such a strategy will require to deal with
several issues, some of them still being open problems (this will be discussed in
Section 6). To be able to evaluate the feasibility and efficiency of this strategy
before dealing with these issues, we chose to made two main simplifying as-
sumptions: (1) the three different tissues constituting the brain present a quite
homogeneous signal, i.e. MRI noise and signal distortion are low, and (2) the
brain presents a relational and topological structure more simple than the real
one (by omission of the smallest structures), i.e. the brain will be considered
as composed of four “tissue layers” hierarchically surrounded by each others.
It has to be noticed that these simplifying hypotheses do not alter the general
segmentation methodological framework which will be illustrated hereafter. The
first hypothesis will enable to provide a simple constraint to deform the topo-
logical model during the segmentation process, while the second one will allow
the development of a tractable multi-class topological model.



Fig. 1. From left to right: axial slice of a T1 MRI restricted to the intracranial volume
(I1g+); topological model (from white to dark grey: ci, i, C} and C?); initialisation
of the segmentation process of the MRI (C*); expected result of the segmentation of
the MRI (from white to dark grey: C%, C%,, C’;, and C?).

4 Method

4.1 Input/output

The method takes as input a T1 MRI of the brain, I : E — N, from which
the intracranial volume E’ C E has been extracted! (Fig. 1, 1st picture), and
two threshold values p; < ps € N delimiting the T1 signal intensity between
CSF/GM, and GM/WM, respectively. The method output is a partition C' =
{Cs,C4,Cy, Cy} of E', where Cs, Cy, Cy, and C,, correspond to the sulcal (i.e.
external) CSF, GM, WM, and ventricular (i.e. internal) CSF classes, respectively
(Fig. 1, 4th picture).

4.2 Initialisation

The segmentation process has to be initialised from a topological model C? of E’
having the desired topology: C? is simply connected (1 connected component, 0
hole, 0 cavity), and successively surrounded by C? | C;, and C! which are topo-
logical hollow spheres (1 connected component, 0 hole, 1 cavity), hierarchically
organised, as illustrated in a 2D fashion in Fig. 1 (2nd picture).

In order to generate this initial model, a distance map is computed from
E’. This discrete map (providing the chamfer distance of each point of E’ to
its border, i.e. to the brain hull) is then used to guide a homotopic reduction
process. Simple points are iteratively removed from E’, with a highest priority to
the points being the closest from the border of E’. These removals are performed
until reaching a distance d,, > 0 corresponding to an approximation of the sulcal
CSF thickness (which can be expressed as a ratio of the highest distance of the
map). The set composed by the removed points (necessarily presenting a hollow
sphere topology) corresponds to the sulcal CSF class C?, while the remaining

! Justified by the existence of efficient tools, the preliminary extraction of the in-
tracranial volume is a frequent preprocessing procedure before cerebral structure
segmentation [5,6,4].



set of B’ corresponds to C? C} and C!. The same process is iterated on this
remaining set, with distances dg,d,, > 0, to successively generate C’; (GM)
and C% (WM) which, by construction, also present a hollow sphere topology.
The finally remaining component, thus presenting a simply-connected topology,
corresponds to the “central” part of the model, i.e. C? (ventricular CSF). A 2D
axial slice of an example of initial model is illustrated in Fig. 1 (2nd picture).

In Z3, the use of such a model, organised as a set of “hierarchically included”
connected components, implies to choose dual adjacencies for these successive
components (i.e. classes). The 6-adjacency has been considered for C; (and thus
C?), since the GM is geometrically organised as a “thick” ribbon, while the 26-
adjacency has been considered for C% | C?, since they both present “thin” details
near the cortex.

From a topological point of view, C?, although composed of four distinct
classes, can be considered as a binary image made of an object X = C? U C?,
and of the background X = C’; U C!, in a (26,6)-adjacency framework. This is
justified by the fact that each class is adjacent to - at most - two other classes
(the surrounded and surrounding ones), which are not adjacent with each other.
Both adjacent classes then locally correspond to the “background” of this class,
considered as a binary structure.

4.3 Discrete deformable model

The discrete deformable model, which constitutes the main part of the method,
consists in “deforming” the four classes without altering their topology until
reaching the segmentation of the searched structures. This deformation is per-
formed by modifying the frontiers between the classes, which is actually equiva-
lent to modify the frontier between the sets X and X. The - topology preserving -
evolution of the frontier of a binary object can be performed by adding/removing
simple points to/from this object. Adding/removing a point to/from X is equiv-
alent to add/remove a point to/from C? or C!, while removing/adding it from/to
Cg or C. For a given point, the binary growth/reduction of X then corresponds
to a reclassification (class modification between two “adjacent” classes) in C*.
It has to be noticed that, given the chosen dual adjacencies for the successive
classes, a simple point of X or X is only adjacent to one connected component
of X and one connected component of X, i.e., only adjacent to its own class and
the class where it could be reclassified. Consequently, (1) such points are located
at the frontier between two classes, and (2) there is no ambiguity regarding their
potential reclassification.

The proposed deformation model aims at iteratively reclassifying the points
located at the frontiers between classes, making all these frontiers parallely evolv-
ing in a smooth and non-monotonic way. The deformation is guided by photo-
metric constraints. A cost is provided for each point z € E’: if the grey-level value
I(x) of x is not coherent w.r.t. the expected value interval (provided by the input
threshold values pq and ps) of the class it belongs to, the - positive - distance
between I(z) and this interval is assigned as cost for z. The deformation model



Algorithm 1 - Deformable model algorithm.
repeat
1 - Frontier point determination
FP(,gy = (C:N N§(C3) U(C} N N3o(C)
FPyuy = (Ch 0 Nig(C3)) U (Ch 1 Ng (Ch)
FPpy. = (Ch 0 NG (CL) U (C30 Nig(Ch))
/* N (A) is the set of points of A k-adjacent to A */
2 - Simple point determination
SPy = {x € X | x is 26-simple for X}
SPs = {z € X | x is 6-simple for X}
3 - Candidate point determination
CP = (SPG @] SP26) N (FP{Syg} @] FP{g’w} @] FP{w’U})
/* C'P: Simple points at the frontier between two classes */
4 - Cost evaluation
for all x € CP N FP, 4y (resp. CP N FPyy 3, resp. CPN FPy, ;) do
v(x) = I(x) — p1 (vesp. I(z) — po, resp. I(x) — p1)
if x € Cy (resp. C,,, resp. Cy,) then
v(z) = —v(x)
end if
end for
/* Correctly classified points have a negative cost v */
5 - Point selection and reclassification
if max(v(CP)) > 0 /* with max(v()) = —oo */ then
Let y € CP such that v(y) = max(v(CP))
Let C}, € {Ci,Cy, Cl,, Ci} such that y € C,
Let CZ; € {C;,C;,CL,C,?} such that y € F'Prq 5
Co =Ca \{y}
Cs=CsU{y}
end if
until max(v(CP) < 0)
c=c

iteratively switches “misclassified” simple points from one class to another, giv-
ing the highest priority to the “most misclassified” ones (i.e. those having the
highest cost), until no simple point or no misclassified point is detected. This
process, informally explained here, is clearly detailed in Alg. 1

5 Experiments and results

5.1 Complexity and computation time

For simplicity’s sake, the segmentation algorithm detailed in Alg. 1 is presented
in a “non-optimal” fashion, using set-based notations. However, it was imple-
mented using efficient data structures and strategies (based on ordered FIFO
lists), enabling to reach its optimal - linear - algorithmic complexity O(|E’|).
The proposed method has been implemented in C++, and integrated into
the multidimensional medical image processing and analysis software platform



developed by the LINC. The tests and validations were performed on a 3 GHz
processor / 2 GB memory personal computer. In such conditions the compu-
tation time for processing a 2563 3D T1 MRI vary between 1 and 2 minutes,
depending on the quality of the data. This relatively low computation time, as-
sociated to the automation of the process, results in an easy use of the method

for clinicians.

Fig. 2. 3D visualisation of brain segmentation results provided by the proposed
method. From left to right: Cy (GM), C, (WM), and C,, (ventricular CSF).

Table 1. Sensitivity, specificity and similarity measures of segmentation results on the
BrainWeb database, for various noise ratios.

Sensitivity Specificity Similarity

Noise| CSF | WM GM CSF | WM | GM | CSF | WM | GM
0% | 88.5% | 99.4% | 81.5% | 99.4% | 98.2% | 99.8% | 83.6% | 91.8% | 89.0%
1% | 88.9% | 99.3% | 83.2% | 99.3% | 98.5% | 99.8% | 83.2% | 93.1% |90.0%
3% | 89.7% | 95.4% | 85.9% | 98.9% | 99.6% | 99.4% | 79.8% | 95.7% |90.4%
5% | 89.8% | 87.2% | 81.2% | 98.6% | 99.7% | 98.5% | 76.4% | 91.6% |84.8%
7% | 90.0% | 80.0% | 75.9% | 98.3% | 99.6% | 97.7% | 74.0% | 87.1% | 79.2%
9% | 82.3% | 62.1% | 66.9% | 97.7% | 99.6% | 95.7% | 65.6% | 75.0% |68.1%

5.2 Validations

In order to quantitatively and qualitatively validate the method, T1 MRI data
provided by the commonly used BrainWeb? database have been considered.
Results obtained for images corresponding to noise ratios from 0% to 9% of
corrupted voxels have been analysed by considering, for each class of tissue?,
2 http://www.bic.mni.mcgill.ca/brainweb
3 The classes Cs and C.,, both corresponding to CSF, have been fused, since the
BrainWeb ground truth does not discriminate them.



three statistical measures: sensitivity (tp/(tp + fn)), specificity (¢n/(tn + fp))
and similarity (2.tp/(2.tp+ fp+ fn)), with tn, tp, fn and fp being the number of
true negative, true positive, false negative and false positive voxels, respectively.
These measures are summarised in Table 1. The result illustrated in Fig. 2
corresponds to the first line of this table.

From a quantitative point of view, the obtained results are still not perfect.
For non-noisy data, they are similar to results proposed by other kinds of meth-
ods, such as the statistical one developed in [4]. For noisy data, the results are
less satisfactory, since the proposed method - in its primary version proposed
here - strongly relies on photometric constraints. From a qualitative point of
view, the results are, however, much better than those obtained from [4], and
more generally from methods which do not rely on anatomical (i.e. geometrical,
topological and/or relational) a priori knowledge. As an example, the cortex
presents here a real thick surface, while the ventricular CSF is fully surrounded
by the grey matter.

6 Conclusion

This method and encouraging results exposed in this paper, constitute prelimi-
nary works related to the parallel topology-preserving segmentation of structures
from medical data, in a discrete deformation model framework. This field of re-
search has not been extensively studied until now, probably because it requires
to find correct solutions to non-trivial theoretical and practical issues. Here, a
simplifying hypothesis enabled to consider a four label image of the brain as a
binary one. The real topology of brain structures will not allow to keep consid-
ering such an hypothesis. The most important issue is then the determination
of satisfying solutions for defining and modelling the topology of digital images
composed of more than two classes of labels, and to deform such images while
leaving unchanged their topological properties. Another way for further research
deals with the determination of more sophisticated constraints for guiding the
deformation process. Here, photometric parameters were considered. Other kinds
of a priori anatomical knowledge [3] should be involved in the guidance of the
deformation process, in order to make it as reliable as a human expert. The
main challenges will consist in determining and formalising them in a way fi-
nally enabling to obtain a method being robust, while not excessively altering
its algorithmic complexity and computation time.
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