N

N

Topology preserving warping of binary images:
Application to atlas-based skull segmentation
Sylvain Faisan, Nicolas Passat, Vincent Noblet, Renée Chabrier, Christophe
Meyer

» To cite this version:

Sylvain Faisan, Nicolas Passat, Vincent Noblet, Renée Chabrier, Christophe Meyer. Topology pre-
serving warping of binary images: Application to atlas-based skull segmentation. Medical Image
Computing and Computer-Assisted Intervention (MICCAI), 2008, New York, United States. pp.211-
218, 10.1007/978-3-540-85988-8 26 . hal-01695012

HAL Id: hal-01695012
https://hal.univ-reims.fr /hal-01695012
Submitted on 26 Feb 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.univ-reims.fr/hal-01695012
https://hal.archives-ouvertes.fr

Topology preserving warping of binary images.
Application to atlas-based skull segmentation

Sylvain Faisan!, Nicolas Passat!, Vincent Noblet!, Renée Chabrier?, and
Christophe Meyer®

ILSIIT - UMR CNRS 7005, Strasbourg I University, France
2LINC - UMR CNRS 7191, Strasbourg I University, France
3University Hospital of Besancon, France

Abstract. Lots of works have been recently carried out in the field of
non-rigid registration to ensure the estimation of one-to-one mappings.
However, warping a binary image with such transformations may alter
its discrete topological properties if common resampling strategies are
considered. This paper proposes an original method for warping a bi-
nary image according to some continuous and bijective mapping, while
preserving its discrete topological properties. Results obtained in the con-
text of atlas-based segmentation highlight the interest of the approach.
Indeed, the method has been successfully applied to the segmentation of
skull structures from a database of 15 CT-scans, providing both geomet-
rically and topologically satisfactory results.

1 Introduction

Image warping is the process of applying some geometric transformation to an
image. Given an image M and a continuous deformation field h, the goal is
to compute the warped image S, so that for each voxel v, S(v) = M(h(v)).
Since h(v) does not necessarily correspond with grid point, some interpolation
techniques are required to evaluate M (h(v)).

Although several image interpolation techniques (linear, cubic) [1] have been
proposed for grey-level images, no specific attention has been paid to the case
of binary data. Common interpolation techniques, except the nearest neighbour
interpolation, do not guarantee the resampled image S to remain a binary im-
age. To circumvent this limitation, it is possible to use a thresholding as post-
processing of interpolation to get a binary image. Unfortunately, warping a dis-
crete image according to a continuous and bijective (i.e. topology-preserving)
deformation field with these common interpolation techniques may fail in pre-
serving its discrete topological properties. Quite surprisingly, many works have
been devoted to develop registration methods providing deformation fields which
preserve the continuous topology, while the topology preservation of discrete ob-
jects deformed by such fields has not yet been considered. Based on these con-
siderations, we propose an algorithm for warping a binary image according to a
topology-preserving deformation field without altering its discrete topology.



The proposed approach is inspired from concepts generally considered in the
context of segmentation, where topology preservation is a crucial issue. The seg-
mentation methods dealing with this constraint are often based on the concept
of 3-D simple points [2] (i.e. points whose addition or removal from a binary
object does not alter its topology), which can be locally characterised in con-
stant time, leading to fast algorithms. The basic idea of the proposed method
is to modify the initial image in a homotopy-preserving fashion by adding and
removing simple points until converging to a solution that is as close as possible
to the continuous warped image.

The paper is organised as follows. In Section 2, the proposed method is
described. In Section 3, results in the context of atlas-based segmentation are
presented. Conclusions and perspectives are provided in Section 4.

2 Method

The method of warping a binary image M according to a continuous and bijec-
tive deformation field h can be stated as the following constrained optimisation
problem:

S =arg gilz\r}[ d(S,M,h) , (1)

where S is a binary image constrained to be topologically equivalent to M and
d(S, M, h) a distance between S and the continuous warped image M (h). This
paper presents a method to tackle this problem. We first introduce in Sec. 2.1
the distance d(S, M, h). Then, we explain in Sec. 2.2 how to constrain S to
be topologically equivalent to M during the optimisation process. Finally, the
optimisation strategy is detailed in Sec. 2.3. A global overview of the method is
given in Alg. 1.

2.1 Cost function

Since M and S are constrained to have the same topology, there is a one-to-
one relation between connected components (CCs) of M and the ones of S.
These CCs can be background CCs (BCCs) or object CCs (OCCs), each CC
corresponding to a distinct label. We define N (v, S, M) as the CC in M which
corresponds to the CC in S that encloses voxel v. The distance d(S, M, h) be-
tween S and the continuous warped image M (h) is considered hereafter as the

cost, function, and is computed as follows:

d(S,M,h) =3 _ p(v, §, M, h) , with p(v, $, M, h) = Bin 0 =@
(2)

where p(v, S, M,h) is the distance between h(v) and the CC of M which is
associated to the CC that encloses v in S. To clarify the idea, the computation
of the cost function is illustrated in a 2-D case in Fig. 1. p(v, S, M,h) can be
efficiently evaluated by computing the chamfer distance map of the CC of M
(the one associated to the CC that encloses v in S) and by evaluating its value

veS



7 first object
A connected component

§ second object
A\

N connected component

D background
connected component

Fig. 1. Illustration of the computation of p(v, S, M, h) for 6 pixels. M is composed of
two OCCs and of one BCC. p(v, S, M, h) is equal to 0 for va, vs, and vs since h(v2),
h(vs), and h(vs) belong to the same CC as w2, vs, and vs, respectively. However, vs
belongs to the second OCC whereas h(vg) belongs to the BCC so that p(vs, S, M, h)
is equal to b, namely, the distance between h(vs) and the second OCC (in M). In the
same way, p(vi, S, M,h) = a and p(vs, S, M, h) = c.

at position h(v). Notice that the chamfer distance map can be computed one
time for each CC.

2.2 Topology handling

At the beginning of the method, S is initialized to M and is then modified by
iterative removal/addition of simple points. The label of a simple point is changed
if it decreases the cost function. When changing the label of v, it is associated
unambiguously to a unique CC, since it is a simple point. To determine this CC,
two images representing the labels of S are used. They are updated during the
whole process with S.

The removal/addition of simple points can be not appropriated when a voxel
has to be “translated”. The translation can be interpreted in terms of an addition
(resp. a removal) followed by a removal (resp. an addition) of simple points. How-
ever, the cost function is estimated after each label modification. Consequently,
the first modification may increase the cost function, leading to refuse this oper-
ation, whereas both modifications may decrease the cost function. That is why
the concept of topology-preserving translation is defined. This notion is inter-
preted here as the simultaneous modification of the status of a couple (v,v") of
adjacent voxels such that S(v) =1 — S(v'). To guarantee topology preservation,
it is sufficient to check that v (resp. v’) is simple for S and v’ (resp. v) is simple
in S’ obtained from S after the modification of v (resp. v’). The translation at
voxel v is performed if it actually reduces the cost function. If the point v can
be translated in different ways, the translation which minimises at best the cost
function is chosen.

2.3 Optimisation strategy

The purpose of the optimisation strategy is to reach the minimal value of the cost
function by iterative removal /addition of simple points or by topology-preserving



translations, i.e., to converge to a model topologically equivalent and - as much
as possible - geometrically similar to the continuous deformed image M o h. The
selection of simple points to remove/add requires a list £ which contains all
simple points of S presenting a positive cost. The cost is defined as the benefit
to change the label at simple point v. More precisely, the modification of S(v)
enables to decrease the cost function from the cost ¢(v, S, M, h):

c(v,S, M,h) =d(S,M,h) —d(S", M,h) = p(v,S, M,h) — p(v,S",M,h) , (3)

where S’ is the image obtained from S by modifying the value at v.

During the dynamical scheme, when modifying a simple point v in S to
obtain a new image S’, there is no need to recompute the whole list £ since
(i) e(v', S, M,h) = c(v',S', M, h) for all voxels v' # v, and (i) simple property
of points can only be modified in the 26-neighbourhood of v. Consequently, the
algorithm proceeds as follows until £ is empty. The point of highest cost, denoted
vg, is removed from the list. The label of S at vg is then modified. This may
change the simple points which are in the 26-neighbourhood of vg: points which
were not simple (resp. simple) and which become simple (resp. non-simple) must
be added if they have a positive cost (resp. removed) in (resp. from) L.

When p(v,S,M,h) = 0, the voxel v belongs to the correct CC. A cost
p(v, S, M,h) > 0 can result from the fact that h(v) is at the interface of ob-
jects (h being a continuous field) or from topological constraints. However, it
may also result from the convergence of the method to a local minimum. To deal
with this issue, we check for all voxels v verifying p(v, S, M, h) > 0 if it is pos-
sible to translate v to reduce the cost function without topology modification.
It may happen that a translation generates new simple points in the neighbour-
hood of the involved points, enabling to keep deforming the current image S by
“classical” simple point modification.

In order to avoid convergence onto local minima (resulting from geometri-
cal or topological constraints) which can appear with large displacements, the
deformation is performed in a “smooth” way by considering N + 1 intermediate

deformation fields computed from h, namely (9, B . h(Y) such that:
RO =71d, BV =p (i) )
Vi€ [0,N —1], Yo €S, [[hUHD(v) — B9 (v)| < 1 (i4)

Constraint (i7) provides a lower bound for N: N > max,egs ||h(v) — v|| . The
deformation fields h(") (0 < i < N) are finally defined by:

Vo e §,h(v) = v + %(h(v) —v). (5)

The optimisation scheme just described is achieved by considering sequentially
R R@ . h(N) The algorithm is finally described in Alg. 1.



Algorithm 1 Topology-preserving warping of binary images.

Input: M (binary image to warp according to h), h (transformation field)
Output: S (warped binary image)

S=M
(iL”))fV:1 = transformation fields obtained from h
for h* = b to k™) do
L = list of simple points with positive cost c¢(v, S, M, h) in S
repeat
while £ # 0 do
v = point of highest cost in £
S(v) =1— S(v) /* switch the label of v in S */
Update £ considering the new status of points in the neighbourhood of v
end while
for all voxels v verifying p(v, S, M, h) > 0 and which can be translated with v’ by reducing
the cost function do
(S(v), S(v")) = (1 — S(v),1 — S(v")) /* perform the translation */
Update £ considering the new status of points in the neighbourhood of v, v’
end for
until £ =0

end for

3 Application: skull segmentation from CT scan data

3.1 Experiments

One important application of the proposed approach concerns atlas-based seg-
mentation [3]. Such methods rely on a binary model M of the structures of
interest which has been obtained from the segmentation of an image R. When
searching the structures of interest in a new image I, the first step consists in
estimating a deformation field h by registering R onto I. The structures of inter-
est in I, denoted S, are then obtained by transforming M according to h. The
binary image topology-preserving deformation is also of great interest since we
guarantee that M and S have the same topology. In the sequel, the method is
proposed for the segmentation of skull structures from CT-scan data.

The proposed strategy consists in deforming a pre-processed skull template
associated to a reference CT image R. This template models the parts of the skull
which have to be segmented in a geometrically and topologically correct fashion.
In particular, it is composed of one connected component, and has no cavity but
ten holes corresponding to the foramen magnum, the zygomatic arches, etc. (see
Fig. 2). This template is actually the binary image M which has to be warped
according to a 3-D deformation field h estimated by registering R onto the CT
image I to be segmented.

3.2 Results

The efficiency of the method is not evaluated in terms of segmentation accuracy
since it largely depends on the precision of the estimated deformation field. The
goal of this experiment is to validate the proposed method (PM) and to show
the benefit of the approach with comparison to other interpolation methods,
namely, the nearest neighbour interpolation (M7), and the linear interpolation



Fig. 2. Skull template used in the proposed application. Left, middle: whole template.
Right: template visualised with its topological skeleton. It has to be noticed that this
is a partial template: structures such as the vertebrae, for example, are not modelled
since their segmentation is not required here.

followed by a thresholding with a threshold of 0.5 (Ms3). These methods are
compared from two points of view, a topological one and a geometrical one.

From a topological point of view, the average number of OCCs (see by in
Tab. 1), of holes (b1), and of cavities (bo=number of BCCs —1) are computed
for the 15 transported segmentation maps obtained for each method. The pro-
posed method is the only one guaranteeing topology preservation: the topology
is strongly altered by methods M; and M> (leading to connected component
splitting, hole and cavity generations, etc.). For example, method M; generates
on average a number of 150 undesired cavities in the segmentation result. To
illustrate this point, Fig. 3 presents a typical result for the proposed method
(right) and for the My method (left).

From a geometrical point of view, the segmentation maps obtained with the
proposed approach (Fig. 3, right) is satisfactory since similar to the result ob-

erroneous
holes

Fig. 3. Segmentation results obtained with method M> (left) and the proposed method
(right). The topology has been altered in the left image, but preserved in the right one.
Note that the surfaces are visually noisy since the real discrete results are visualised
here without mesh generation.



P | P P3| Py| Ps d dmax bo b1 ba

M; |[61.87[30.43[7.39]0.31]0.00[3.70.10~%[0.87|[1.33 & 0.59] 109 & 51.0 | 150 £ 71.0
M, ||62.18/37.82(0.00| 0.00 [ 0.00 3.44.1073| 0.50{|1.06 + 0.25(24.8 4 8.00(7.20 & 2.80
PM]||62.19]37.77|0.04|1073[107*|3.44.1073| 1.06 |{1.00 4 0.00{10.0 £ 0.00{0.00 =+ 0.00

Table 1. Comparison of the proposed method (PM) from a geometrical (P;, d, and
dmax) and from a topological (b;) point of view with the nearest neighbour interpolation
(M) and the linear interpolation with thresholding (M2). P;: ratio (%) of points v for
which p(v, S, M, h) is in |(i — 1),4].25.107% mm (this ratio is computed without con-
sidering voxels for which p(v, S, M, h) is equal to 0); d: mean distance of p(v, S, M, h);
dmax: maximal value of p(v, S, M, h) for the 15 cases; by (resp. b1, b2): number of object
connected components (resp. holes, cavities).

tained with My (the M; and Ms methods provide by construction geometrically
correct results). To provide quantitative comparison, the following strategy is
used. As M is composed of only one OCC and one BCC, the computation of
p(v, S, M, h) is possible for each method (to compute p(v,S, M, h) for the M;
and Ms approaches, voxels, for which S(v) = 1, are associated with the OCC,
and the others correspond to the BCC). We observe firstly that the ratios of
points for which p(v, S, M, h) = 0 are identical for the three methods (98.6%).
Results resumed in Tab. 1 provide the ratios of the other points (namely 1.4%)
in terms of distance. The inspection of the results shows that the three methods
are relatively similar. Note that the maximal distance is a little bit higher (but
still low) for the proposed method. More precisely, on the 15 considered cases,
5 segmentation maps have a unique voxel v whose value p(v, S, M, h) is lightly
greater than one (the maximal value encountered in the 15 cases for p is 1.06).
This is due to the fact that the topology preservation induces here geometric
constraints. Finally, we can conclude that the geometry is similar for the three
methods, but only the proposed approach can correctly handle topology. It has
to be noticed that the algorithm has also been tested with objects composed of
several CCs. Results are satisfactory but not presented in this paper.

3.3 Discussion

We can notice that medical image segmentation methods [4-6] based on topology-
preserving deformation of a binary model' have been proposed in the last years.
They generally rely on simple algorithmic processes and hypotheses: (i) they use
monotonic transformations which either remove or add simple points from/to
a model M necessarily surrounding/surrounded by S, (i¢) such models are pro-
posed for structures having a non-complex topology or topologically simplified,
and (#i7) only simple deformation functions (based on grey-level values or dis-
tance maps) are considered. The deformation strategy proposed here leads to a

! Some methods are based on label models, unfortunately with several approximations
[7, 8] resulting from still open theoretical problems on label image topology.



segmentation method based on the same concepts but presenting several impor-
tant improvements: the methods can use non-trivial topological models which
evolve in a non-monotonic and topology-preserving fashion under the guidance
of complexr deformation functions.

4 Conclusion

A new method for warping a binary image in a discrete topology preserving
fashion according to a continuous topology preserving deformation field has been
proposed. Further works will consist in extending this method to label images.
Such extension will require to develop a sound theoretical framework for topo-
logical modelling and deformation of such images.

The proposed method has been successfully applied to medical image segmen-
tation. Another perspective is to consider the proposed framework for devising
strategies whose behaviour may evolve during the deformation process, for ex-
ample by performing in parallel segmentation and registration, as proposed in

[9].
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