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Abstract. The Fuzzy C-Means algorithm is a widely used and flexible
approach for brain tissue segmentation from 3D MRI. Despite its re-
cent enrichment by addition of a spatial dependency to its formulation,
it remains quite sensitive to noise. In order to improve its reliability
in noisy contexts, we propose a way to select the most suitable exam-
ple regions for regularisation. This approach inspired by the Non-Local
Mean strategy used in image restoration is based on the computation of
weights modelling the grey-level similarity between the neighbourhoods
being compared. Experiments were performed on MRI data and results
illustrate the usefulness of the approach in the context of brain tissue
classification.
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1 Introduction

Segmentation methods of brain MRI can be categorised into 3 groups: classi-
fication methods, region-based methods and boundary-based methods. A very
popular one is the K-mean algorithm which has been extended to fuzzy segmen-
tation by Pham et al. in [10]. This so called Fuzzy C-Means (FCM) clustering
algorithm is a powerful tool for MRI analysis since it authorises voxels to belong
to several clusters with varying degrees of membership. Due to its flexibility, this
segmentation framework has been intensively extended, for instance by including
topological properties [2], DTI handling [1] or prior knowledge.

A main drawback of the standard FCM algorithm remains its sensitivity
to noise in medical images. Many pixel-based regularisation term have been
proposed such as Tikhonov regularisation [12], Markov Random Field (MRF),
a priori image model or variational approaches. Inspired by works developed on
MRF basics, Pham has proposed [9] a spatial model to improve the robustness to
noise of FCM. However, the use of such pixel based regularisation terms assumes
a specific image model: for instance, variational approaches can be based on the
hypothesis that images are made of smooth regions separated by sharp edges.
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Recently, a non-local framework has been proposed to handle more efficiently
repetitive structures and textures, for denoising purpose [4] or inverse problems
[3,8,11]. In this work, we propose to introduce this non-local framework into the
regularisation term of the FCM algorithm.

The sequel of this article is organised as follows. In Section 2, we present the
segmentation problem and provide a short overview about FCM and regulari-
sation. Section 3 details the new non-local approach for image segmentation. In
Section 4, results obtained on the Brainweb database [5] are presented. Finally,
Section 5 discusses these results and brings up to further work.

2 Background

2.1 Fuzzy C-Means (FCM)

The basics of this algorithm have been presented in [10] and make the segmen-
tation equivalent to the minimisation of an energy function:

JFCM =
∑

j∈Ω

C∑

k=1

u
q
jk‖yj − vk‖

2
2. (1)

This formulation is used to perform a C-classes segmentation. The parameter
ujk represents the membership of the kth class into the jth voxel of the image,
the parameter q controls the “fuzziness” of the segmentation (if q gets close to 1,
the segmentation becomes more crisp and close to a binary result), vk represents
the centroid of the kth component and yj represents the grey-level of the jth

voxel of the image. ‖yj − vk‖2 represents the Euclidean distance between the
voxel’s grey level and the considered centroid. The proportions are constrained
so that:

∑C

k=1 ujk = 1.
Although this method has a fast convergence and provides reliable results in

a convenient environment (low level of noise), the performance of this approach
strongly decreases for noisy images. In such cases, anatomically hazardous struc-
tures may appear, for instance grey matter voxels among white matter volumes.
However, FCM has shown to be easily extended and several approaches have
been proposed in order to improve the robustness of FCM by introducing the
idea of regularisation into the segmentation framework.

2.2 Regularisation

Regularisation is a classic method in inverse problem to determine the most
accurate solution among many possible ones [12]. It introduces constraints to
eliminate irrelevant solutions. In particular, Pham et al. in [9] added a regu-
larisation term in Equation (1) to penalise unlikely configurations that can be
met in the image. They called this method: Robust Fuzzy C-Means Algorithm
(RFCM). The expression of the obtained energy function is then:

JRFCM =
∑

j∈Ω

C∑

k=1

u
q
jk‖yj − vk‖

2
2 +

β

2
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q
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∑

m∈Mk

u
q
lm (2)
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(a) (b)

Fig. 1. Comparison of the RFCM [9] (a) and the NL approach (b). In this example,
the area around the voxel j is more similar to the one of voxel k than the one of voxels
m and l. Therefore, the weight wjk will be higher than the weights wjm and wjl.

where Nj is the set of the neighbours of voxel j and Mk = {1, . . . , C}\{k}. The
new penalty term is minimised when the membership value for a particular class
is large and the membership values for the other classes at neighbouring pixels
are small (and vice versa).

The parameter β controls the trade-off between the data-term and the smooth-
ing term. Note that if β = 0, we retrieve the classic FCM algorithm without any
regularisation term. If β > 0, the dependency on the neighbours causes ujk to be
large when the neighbouring membership values of the other classes are small.
The result is a smoothing effect that causes neighbouring membership values
of a class to be negatively correlated with the membership values of the other
classes. In [9], Pham et al. have proposed to estimate β using cross-validation to
obtain near-optimal performances, and they worked with a neighbourhood (Nj)
composed of the points 6-adjacent to the current point j. In the work proposed
hereafter, we focus on the use of a larger weighted neighbourhood relying on a
non-local framework.

3 Non-Local Regularisation

3.1 Non-Local Approach

The Non-Local (NL) Regularisation is a strategy that has been proposed first as
a denoising tool [4] and named as NL Mean denoising. Basically, it tries to take
advantage of the redundancy of any natural image, broadly speaking a small
neighbourhood around a voxel may match neighbourhoods around other voxels
of the same image.

The non-local framework proposed by Buades et al. [4] relies on a weighted
graph w that links together voxels over the image domain. The computation of
this graph w is based on the similarity between neighbourhoods of voxels (see
illustration in Fig. 1).

In the sequel, we will call such a neighbourhood a patch and denote the patch
around voxel j as Pj . The similarity of two voxels is defined as the similarity
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of the grey-levels contained into Pi and Pj . This similarity can be computed as
a Gaussian weighted Euclidean distance, but it has been shown that a simple
Euclidean distance is reliable enough [6]. The weight for the voxels i and j is
defined as follows:

wij =
1

Zi

e−
‖y(Pi)−y(Pj)‖

2
2

h2 (3)

where Zi is a normalisation constant and h is a smoothing parameter. The
distance between patches is defined as follows:

‖y(Pi)− y(Pj)‖
2
2 =

|Pi|∑

p=1

(y(p)(Pi)− y(p)(Pj))
2 (4)

where y(Pi) is the vector containing the grey-levels of the neighbourhood and
y(p)(Pi) is the pth component of this vector.

Note that it is possible to set the parameter h automatically [6] by setting:
h2 = 2ασ2|Pi|. The parameter σ2, namely the standard deviation of the noise,
can be computed directly from the image. If the noise in the image is Gaussian,
we can set the parameter α to 1 [6]. Otherwise, it can be adjusted to get a more
accurate result.

The NL Regularisation approach has already been successfully applied to
different kinds of image processing problems. Mignotte [8] used this procedure
to constrain a deconvolution process, Bougleux et al. [3] integrated it into the
resolution of inverse problems and Rousseau [11] applied it for super-resolution
reconstruction techniques.

3.2 Non-Local Fuzzy C-Means Algorithm (NL-FCM)

The key point of the NL approach is the capacity to handle a large neighbour-
hood without prior knowledge. We show in this work that such methodology
can be easily introduced into the FCM framework. We investigate larger neigh-
bourhoods to provide more information for the regularisation. Moreover, the
underlying assumption is that voxels who have similar patches in the research
area belong to the same tissue as shown in Fig. 1(b). We propose to define a NL
version of FCM as follows:

JNL−FCM =
∑

j∈Ω

C∑

k=1

u
q
jk‖yj − vk‖

2 +
β

2

∑

j∈Ω

C∑

k=1

u
q
jk

∑

l∈Nj

wjl

∑

m∈Mk

u
q
lm . (5)

Compared to Equation (2), a weight parameter is introduced in order to auto-
matically balance the influence of voxels in the neighbourhood Nj . Note also
that contrary to Pham et al. [9] where Nj was a six-neighbourhood system, we
investigate in this work larger neighbourhood systems such as the ones used in
non-local denoising approach of Buades et al. [4].

The regularisation term of the energy function defined in Equation (5) takes
into account the image content in an adaptive and flexible manner to smooth
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the current segmentation map. In other words, if two voxels neighbourhoods are
similar, there might be a chance that they belong to the same tissue and so, the
weight wjl increases. Conversely, if two voxels in the original image are quite
different, it is normal to decrease the influence of the regularisation term since
there is a lower probability that this voxel might have a good influence on the
classification of the current one.

The proposed method (and the other ones considered for validation: FCM
and RFCM) were optimised through Pham’s way [9]: we used the same analytical
expressions for the calculation of the centroids and of the membership functions.

4 Results

4.1 Influence of the Non-Local Parameters (α, Nj)

Experiments have been carried out on simulated brain MRI images provided
by the Brainweb database [5]. Notice that we perform a 3-class segmentation
(Cerebro Spinal Fluid (CSF), Grey Matter (GM), White Matter (WM)) on a
T1-weighted image corrupted by a 9 % Rician noise (characteristic from MRI
images) [7].

The Brainweb ground truth is used to assess the influence of parameters
(α,Nj) of the proposed non-local method. In order to quantify the quality of the
segmentation results, we use the following overlap measure:

KI =
2.TP

2.TP + FP + FN
(6)

where TP is the amount of true positives, FP is the amount of false positives
and FN , the amount of false negatives.

In this work, Nj is considered as a cubic neighbourhood. Results for different
sizes of Nj (from 3 × 3 × 3 up to 13 × 13 × 13 voxels) are stated in Fig. 3(a).
These experiments emphasise that considering extended neighbourhoods is a
way to improve the segmentation results. Nevertheless, increasing Nj above a
5×5×5 size does not refine the segmentation results and slows the computation
down. Therefore, we chose to run the validations in subsection 4.2 with a 5×5×5
neighbourhood.

We have also investigated the influence of the smoothing parameter α (de-
fined in Section 3.1) on the segmentation results. Fig. 3(b) shows that, in agree-
ment with Buades et al. [4], values of α around 1 provide the best results. More-
over, the graph shows that the algorithm is not sensitive to this parameter if its
value is set slightly above 1 (α is set to 1.1 for the validations in subsection 4.2).

4.2 Evaluation of the Contribution of the Non-Local Framework

To evaluate the contribution of the non-local framework to the efficiency of the
segmentation process, we have also compared the following versions of FCM:

1. classic FCM [10];
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(a) (b) (c) (d) (e)

(f) (g) (h)

Fig. 2. Results of segmentations using a T1-weighted image with a 9 % Rician noise. (a)
Original image with zoom area, (b) Brainweb’s ground truth, (c) simple FCM segmen-
tation, (d) RFCM segmentation, (e) NL-FCM segmentation, (f) zoom on Brainweb’s
ground truth, (g) zoom on RFCM segmentation, (h) zoom on NLFCM segmentation.
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Fig. 3. Influence of the different parameters. Application on a Brainweb T1-weighted
image with 9 % Rician noise. (a) Overlap rate to the Size of Search Area Nj and (b)
overlap rate to Smooth parameter α. Legend: GM (◦), WM (▽), CSF (×).

Methods CSF GM WM

Classic FCM [10] 90.4635 84.3567 85.4812
RFCM without weights [9] 92.0914 91.1193 92.9095
RFCM with weights 92.7614 91.0874 92.4898
NL-FCM without weights 92.2247 92.2154 94.1175

NL-FCM with weights 93.6307 93.3486 94.7661

Table 1. Application of different segmentations on a Brainweb T1-weighted image
with a 9 % Rician noise. Comparison of the different overlap rates for CSF, GM and
WM.
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Fig. 4. Application of different techniques on the same Brainweb T1-weighted image
with different noise level. (a) Overlap rate of GM, (b) overlap rate of WM. Legend:
NL-FCM (◦), RFCM (▽) [9], FCM (+) [10].

2. RFCM [9];
3. RFCM with adaptive weights;
4. NL-FCM with fixed weights; and
5. NL-FCM with adaptive weights.

The results are reported in Table 1. The NL Regularisation approach improves
the segmentation results with respect to classic FCM and RFCM. The compar-
ison between RFCM and NL-FCM without weights shows that using a larger
neighbourhood leads to significant improvements especially for GM and WM
(approx. 1 %). Moreover, considering extended neighbourhood, introducing NL
approach results in a better overlap rate.

Fig. 2 provides a visual insight of these improvements, especially on GM
and CSF. This may be due to the low contrast between CSF and GM on a
noisy image which can however be correctly handled by the NL regularisation
framework. In addition, we observe that NL-FCM results resolve fine structure
more clearly such as the borders between ventricles and GM, and around cortical
sulci as shown by the zooms done on RFCM segmentation in Fig. 2(g) and on
NL-FCM segmentation in Fig. 2(h) compared to the ground truth in Fig. 2(f).

We carried out complementary experiments to determine the robustness to
noise for classic FCM [10], RFCM [9] and NL-FCM with Brainweb T1-weighted
images with varying noise levels (see Fig. 4). It can be seen that NL-FCM begins
to emerge as a strong approach at noise levels of 3 % and above, and becomes
more accurate compared to RFCM approach at a 5 % noise.

5 Conclusion

In this article, an extension of the Robust Fuzzy C-Means Algorithm method
[9] has been proposed, by introducing a non-local approach in the regularisa-
tion term, and by considering adaptive (i.e. possibly large) neighbourhoods for



8

computing this term. The method depends on parameters which do not require
a very fine setting. Experiments performed on several noisy brain MR images
(up to 9 % Rician noise) from the Brainweb database emphasise the usefulness
of this extension. Additional experiments are also needed to evaluate how the
regularisation strength is related to the underlying spatial resolution of the re-
constructed imaging data. Overall, this new approach may be particularly useful
in more challenging imaging applications such as those limited by the imaging
time, for example in imaging the moving human foetus.
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