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Introduction

The well-known structure ofcomponent-treemodels some structural characteristics
of an image by considering its “binary slices” obtained by threshold operations at
successive levels. We explore new ways for the use of component-trees by not only
considering images taking their values in completely-ordered sets (“grey-level” im-
ages), but more generally inpartially-orderedones, such as colour images.

Definitions, notations

Let E be a discrete set. Let (V,≤) be a partially ordered set, let⊥ be its infimum.
An image onE taking its values inV is notedI : E → V (or I ∈ VE). The set
of the connected components of a binary setX ⊆ E is notedC[X]. The threshold
operator at the valuev ∈ V is notedXv : VE → P(E). We define the cylinder function
CX,v : E → V by CX,v(x) = v if x ∈ X and⊥ otherwise. An imageI ∈ VE can be
expressed asI =

∨
v∈V
∨

X∈C[Xv(I )] CX,v.
LetK =

⋃
v∈V(C[Xv(I )] × {v}). Let ⊆K be the relation defined by (X, vX) ⊆K (Y, vY)

if X ⊂ Y or (X = Y andvY ≤ vX). The inclusion relation⊆K is a partial order onK .
(By abuse of notation, we will also noteX ∈ K for (X, vX) ∈ K , and⊆ for ⊆K .)
Let B = Xv(I ) ⊆ E. Let C ∈ C[B] be a connected component ofB. There may exist
severalvaluesvi ≤ v (i ∈ N), such thatC ⊆ Ci ∈ C[Xvi(I )], andvi is maximal w.r.t.≤
for these properties. Consequently, the Hasse diagram of the partially-ordered set
(K ,⊆) is not necessarily a tree. Such a diagram (calledcomponent-graphin the
sequel) has however a supremal element (which can be assimilated to its “root”),
namelyX⊥(I ) = E.

Component-graphs

Let I ∈ VE. The component-graphof I is the “rooted” oriented graph (K , L,R)
defined such that (K , L) is the Hasse diagram of the partially-ordered set (K ,⊆), and
R= sup(K ,⊆) = X⊥(I ) = E. K , RandL are the set of thenodes, theroot and the set
of theedgesof the graph, respectively.
Similarly to component-trees, attributes can be stored at each node of a component-
graph. The preservation/removal of nodes of the graph w.r.t. such attributes can then
lead to filtering strategies. However, the less restrictiveproperties of component-
graphs (by opposition to those of component-trees) do not enable to straightforwardly
apply classical filtering strategies designed for component-trees.

Filtering strategy

Let ρ be a predicate onK . The following strategy is devoted to the filtering ofI by
“pruning” its component-graph w.r.t.ρ.
Let K ′ = K \ {R}. In case ofnon-increasingcriteria, the following policies can be
considered to select a subsetKρ ⊆ K of nodes to be preserved in the component-
graph:

Min1 : Kρ = {R} ∪ {N ∈ K
′ | ρ(N) ∧ ∀(P,N) ∈ L,P ∈ Kρ} (1)

Min2 : Kρ = {R} ∪ {N ∈ K
′ | ρ(N) ∧ ∃(P,N) ∈ L,P ∈ Kρ} (2)

Max : Kρ = {R} ∪ {N ∈ K
′ | ρ(N) ∨ ∃(N,C) ∈ L,C ∈ Kρ} (3)

Direct : Kρ = {N ∈ K | ρ(N)} (4)

OnceKρ has been computed, a new set of edgesLρ can straightforwardly be defined
by building the Hasse diagram of (Kρ,⊆).
By considering theMin1 andMin2 (resp.Max, Direct) policy(ies) proposed above, in
the case of a completely-ordered set, we obviously retrievethe “classical”Min (resp.
Max, Direct) policy on component-trees.
However, in the considered case of a partially-ordered set (V,≤), it may be impossible
to reconstruct an imageIρ =

∨
(X,vX)∈KρCX,vX defined byIρ(x) = max(X,vX)∈Kρ{CX,vX(x)}

for all x ∈ E, since such a maximum may be undefined, due to the partiality of (V,≤).
In order to deal with this issue, acoherence recoveryprocedure has to be proposed
to define unambiguously max(X,vX)∈Kρ{CX,vX} for all x ∈ E. This procedure consists
in adding to the current graph (Kρ, Lρ) a set of nodes and their associated edges,
such that the resulting corrected graph (Kc

ρ
, Lc
ρ
) enables the generation of awell-

definedimage. Practically, this can be done by computing iteratively - and until
stability -Kc

ρ
(initialised toKρ) as follows. Choose a pointx ∈ E and two nodes

Ni = (Xi, vXi) ∈ K
c
ρ

(i ∈ {1,2}) (with N1 * N2, N2 * N1) such thatx ∈ X1 ∩ X2 and
∀N = (X, vX) ∈ Kc

ρ
\ {Ni}, x ∈ X ⇒ (N * Ni). Then, there existsN = (X, vX) ∈

K \ Kc
ρ

such thatx ∈ X ⊆ X1 ∩ X2 andvX1, vX2 ≤ vX. Choose such a nodeN and set
Kc
ρ
= Kc

ρ
∪{N}. OnceKc

ρ
has been computed,Lc

ρ
is obtained by computing the Hasse

diagram of (Kc
ρ
,⊆).
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Component-graph – First row: (left) a label imageI : [0,10]2→ V (whereV ⊂ [0,2]3 is
composed of 11 distinct values) visualised as an RGB image; (right) the component-graph
of I . Second row: some threshold imagesXv(I ) (from left to right,v = (0,0,2), (0,1,0),
(1,0,0), (0,1,2), (1,1,0), (2,0,2), (2,2,2).
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Filtering strategies – First column:I and its component-graph, with nodes verifying a
given predicateρ (grey-background). From second to fifth column: light-greyback-
ground: graph (Kρ, Lρ) obtained with theMin1, Min2, Max, andDirect policies; light/dark-
grey background: corrected graph (Kc

ρ
, Lc
ρ
).

Experiments – Left column: original image (Lenna,c©Playboy). First row (centre and
right): noisy images (10% and 15% random noise corruption, respectively). Second row
(centre and right): filtered images obtained by removing theconnected components of
size smaller than 10 pixels.


