An extension of component-trees to partial orders

Nicolas Passat¹, Benoît Naegel²

¹LSIIT, UMR CNRS 7005, Strasbourg University, France ²LORIA, UMR CNRS 7503, Nancy 1 University, France

Introduction

The well-known structure of *component-tree* models some structural characteristics of an image by considering its "binary slices" obtained by threshold operations at successive levels. We explore new ways for the use of component-trees by not only considering images taking their values in completely-ordered sets ("grey-level" images), but more generally in *partially-ordered* ones, such as colour images.

Definitions, notations

Let E be a discrete set. Let (V, \leq) be a partially ordered set, let \bot be its infimum. An image on E taking its values in V is noted $I: E \to V$ (or $I \in V^E$). The set of the connected components of a binary set $X \subseteq E$ is noted C[X]. The threshold operator at the value $v \in V$ is noted $X_v: V^E \to \mathcal{P}(E)$. We define the cylinder function $C_{X,v}: E \to V$ by $C_{X,v}(x) = v$ if $x \in X$ and \bot otherwise. An image $I \in V^E$ can be expressed as $I = \bigvee_{v \in V} \bigvee_{X \in C[X_v(I)]} C_{X,v}$.

Let $\mathcal{K} = \bigcup_{v \in V} (C[X_v(I)] \times \{v\})$. Let $\subseteq_{\mathcal{K}}$ be the relation defined by $(X, v_X) \subseteq_{\mathcal{K}} (Y, v_Y)$ if $X \subset Y$ or $(X = Y \text{ and } v_Y \leq v_X)$. The inclusion relation $\subseteq_{\mathcal{K}}$ is a partial order on \mathcal{K} . (By abuse of notation, we will also note $X \in \mathcal{K}$ for $(X, v_X) \in \mathcal{K}$, and \subseteq for $\subseteq_{\mathcal{K}}$.)

Let $B = X_v(I) \subseteq E$. Let $C \in C[B]$ be a connected component of B. There may exist several values $v_i \le v$ ($i \in \mathbb{N}$), such that $C \subseteq C_i \in C[X_{v_i}(I)]$, and v_i is maximal w.r.t. \le for these properties. Consequently, the Hasse diagram of the partially-ordered set (\mathcal{K}, \subseteq) is not necessarily a tree. Such a diagram (called *component-graph* in the sequel) has however a supremal element (which can be assimilated to its "root"), namely $X_{\perp}(I) = E$.

Component-graphs

Let $I \in V^E$. The *component-graph* of I is the "rooted" oriented graph (\mathcal{K}, L, R) defined such that (\mathcal{K}, L) is the Hasse diagram of the partially-ordered set (\mathcal{K}, \subseteq) , and $R = \sup(\mathcal{K}, \subseteq) = X_{\perp}(I) = E$. \mathcal{K}, R and L are the set of the *nodes*, the *root* and the set of the *edges* of the graph, respectively.

Similarly to component-trees, attributes can be stored at each node of a component-graph. The preservation/removal of nodes of the graph w.r.t. such attributes can then lead to filtering strategies. However, the less restrictive properties of component-graphs (by opposition to those of component-trees) do not enable to straightforwardly apply classical filtering strategies designed for component-trees.

Filtering strategy

Let ρ be a predicate on \mathcal{K} . The following strategy is devoted to the filtering of I by "pruning" its component-graph w.r.t. ρ .

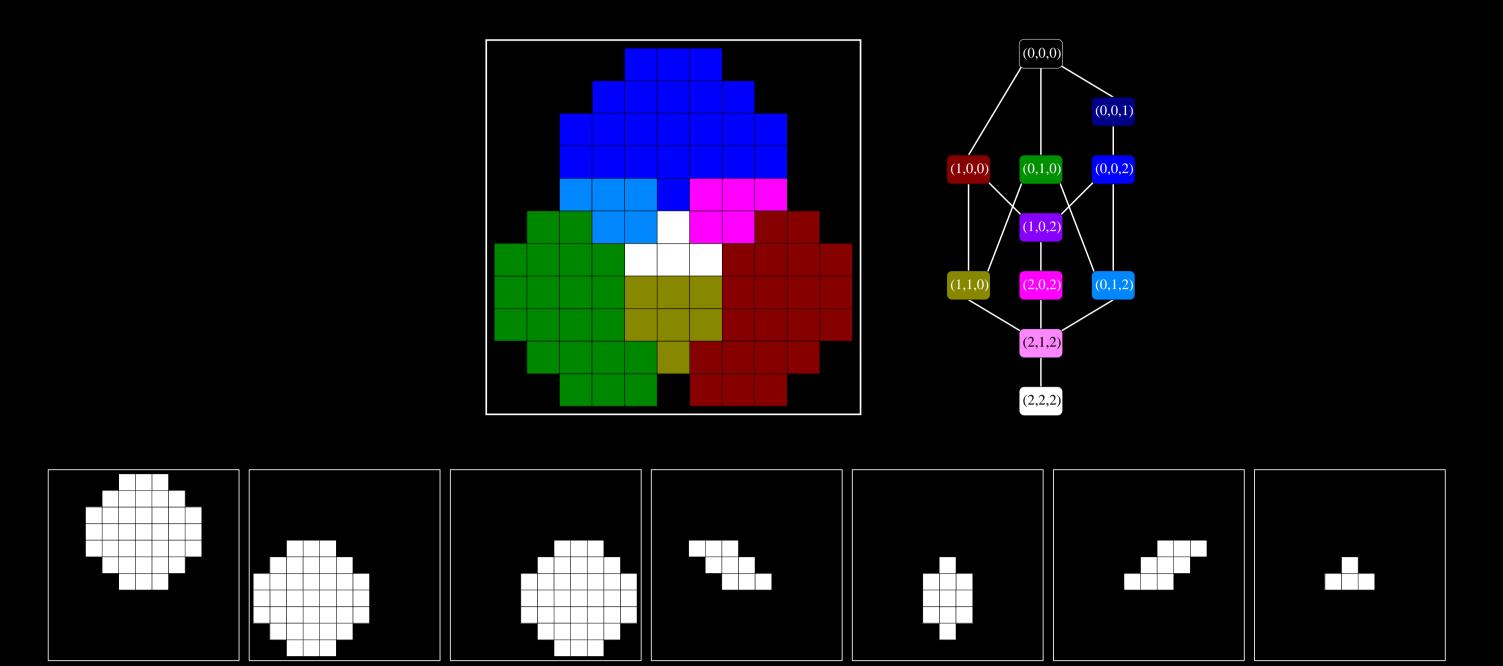
Let $\mathcal{K}' = \mathcal{K} \setminus \{R\}$. In case of *non-increasing* criteria, the following policies can be considered to select a subset $\mathcal{K}_{\rho} \subseteq \mathcal{K}$ of nodes to be preserved in the component-graph:

 $Min_{1}: \mathcal{K}_{\rho} = \{R\} \cup \{N \in \mathcal{K}' \mid \rho(N) \land \forall (P, N) \in L, P \in \mathcal{K}_{\rho}\}$ $Min_{2}: \mathcal{K}_{\rho} = \{R\} \cup \{N \in \mathcal{K}' \mid \rho(N) \land \exists (P, N) \in L, P \in \mathcal{K}_{\rho}\}$ $Max: \mathcal{K}_{\rho} = \{R\} \cup \{N \in \mathcal{K}' \mid \rho(N) \lor \exists (N, C) \in L, C \in \mathcal{K}_{\rho}\}$ $Direct: \mathcal{K}_{\rho} = \{N \in \mathcal{K} \mid \rho(N)\}$

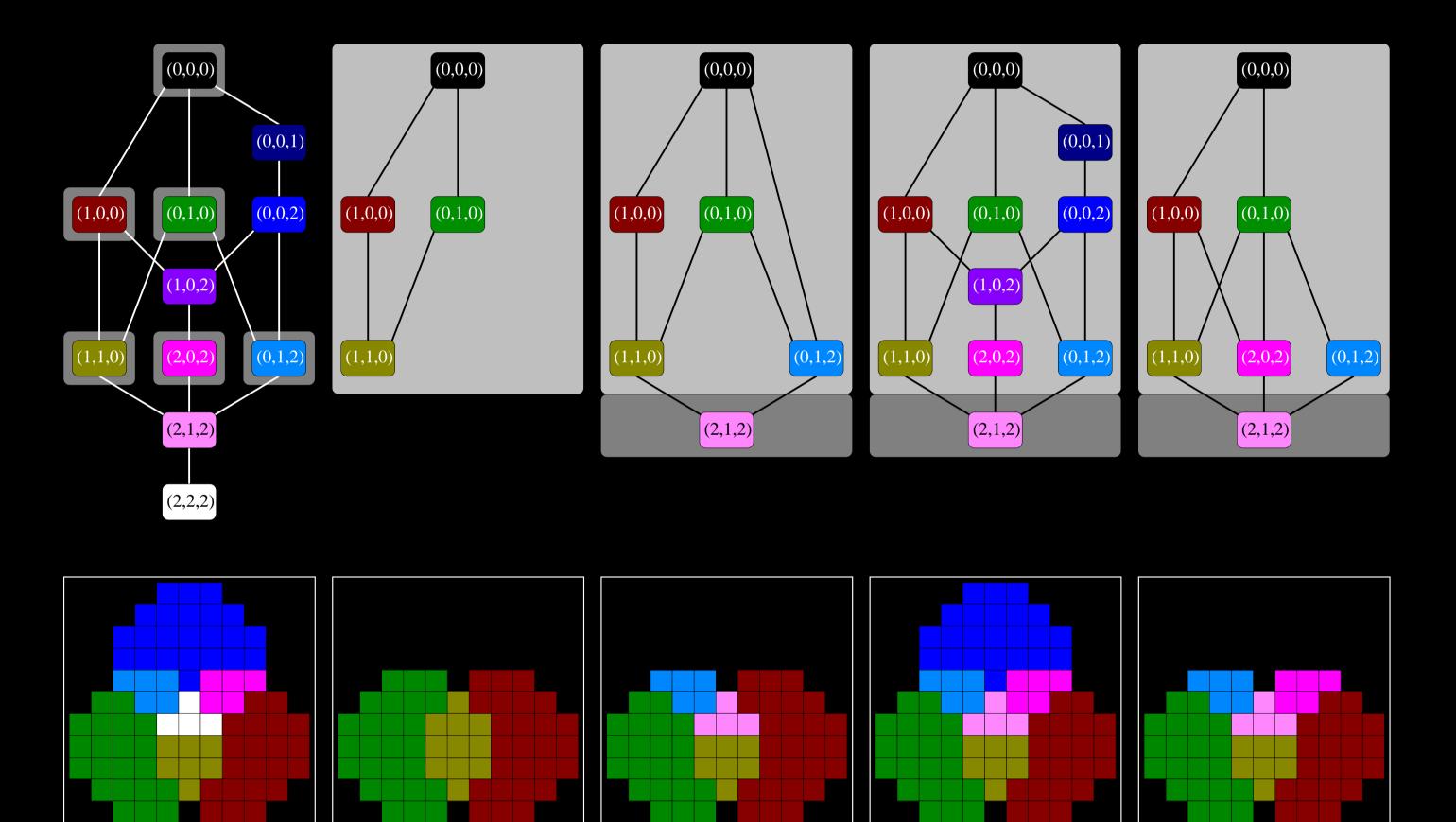
Once \mathcal{K}_{ρ} has been computed, a new set of edges L_{ρ} can straightforwardly be defined by building the Hasse diagram of $(\mathcal{K}_{\rho}, \subseteq)$.

By considering the Min_1 and Min_2 (resp. Max, Direct) policy(ies) proposed above, in the case of a completely-ordered set, we obviously retrieve the "classical" Min (resp. Max, Direct) policy on component-trees.

However, in the considered case of a partially-ordered set (V, \leq) , it may be impossible to reconstruct an image $I_{\rho} = \bigvee_{(X,v_X) \in \mathcal{K}_{\rho}} C_{X,v_X}$ defined by $I_{\rho}(x) = \max_{(X,v_X) \in \mathcal{K}_{\rho}} \{C_{X,v_X}(x)\}$ for all $x \in E$, since such a maximum may be undefined, due to the partiality of (V, \leq) . In order to deal with this issue, a *coherence recovery* procedure has to be proposed to define unambiguously $\max_{(X,v_X) \in \mathcal{K}_{\rho}} \{C_{X,v_X}\}$ for all $x \in E$. This procedure consists in adding to the current graph $(\mathcal{K}_{\rho}, L_{\rho})$ a set of nodes and their associated edges, such that the resulting corrected graph $(\mathcal{K}_{\rho}^c, L_{\rho}^c)$ enables the generation of a *well-defined* image. Practically, this can be done by computing iteratively - and until stability - \mathcal{K}_{ρ}^c (initialised to \mathcal{K}_{ρ}) as follows. Choose a point $x \in E$ and two nodes $N_i = (X_i, v_X_i) \in \mathcal{K}_{\rho}^c$ ($i \in \{1, 2\}$) (with $N_1 \not\subseteq N_2$, $N_2 \not\subseteq N_1$) such that $x \in X_1 \cap X_2$ and $\forall N = (X, v_X) \in \mathcal{K}_{\rho}^c \setminus \{N_i\}, x \in X \Rightarrow (N \not\subseteq N_i)$. Then, there exists $N = (X, v_X) \in \mathcal{K} \setminus \mathcal{K}_{\rho}^c$ such that $x \in X \subseteq X_1 \cap X_2$ and $v_{X_1}, v_{X_2} \le v_X$. Choose such a node N and set $\mathcal{K}_{\rho}^c = \mathcal{K}_{\rho}^c \cup \{N\}$. Once \mathcal{K}_{ρ}^c has been computed, L_{ρ}^c is obtained by computing the Hasse diagram of $(\mathcal{K}_{\rho}^c, \subseteq)$.



Component-graph – First row: (left) a label image $I : [0, 10]^2 \rightarrow V$ (where $V \subset [0, 2]^3$ is composed of 11 distinct values) visualised as an RGB image; (right) the component-graph of I. Second row: some threshold images $X_v(I)$ (from left to right, v = (0, 0, 2), (0, 1, 0), (1, 0, 0), (0, 1, 2), (1, 1, 0), (2, 0, 2), (2, 2, 2).



Filtering strategies – First column: I and its component-graph, with nodes verifying a given predicate ρ (grey-background). From second to fifth column: light-grey background: graph $(\mathcal{K}_{\rho}, L_{\rho})$ obtained with the Min_1, Min_2, Max , and Direct policies; light/darkgrey background: corrected graph $(\mathcal{K}_{\rho}^c, L_{\rho}^c)$.

Experiments – Left column: original image (Lenna, ©Playboy). First row (centre and right): noisy images (10% and 15% random noise corruption, respectively). Second row (centre and right): filtered images obtained by removing the connected components of size smaller than 10 pixels.