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ABSTRACT

Component-trees provide efficient ways to define filtering-

based procedures on grey-level images. We propose an

extension of the notion of component-trees to the case of

“non grey-level” images (i.e. images taking their values in

partially-ordered sets) including in particular - but not ex-

clusively - colour images. Experiments performed on such

images emphasise the interest of the approach.

Index Terms— Mathematical morphology, component-

trees, filtering, partial orders, colour imaging

1. INTRODUCTION

The component-tree models some structural characteristics

of an image by considering its “binary slices” obtained by

threshold operations at successive levels. It has been defined

in the theoretical framework of mathematical morphology and

involved, in particular, in the development of morphological

operators [1, 2].

Thanks to efforts devoted to the efficient computation of

component-trees [2, 3], or their use in complex knowledge

handling procedures, they have been considered for the de-

sign of various kinds of grey-level image processing methods,

including image and video segmentation [2, 4], image regis-

tration [5] or image compression [2].

We propose to explore new ways for the use of component-

trees by not only considering images taking their values in

completely-ordered sets (i.e. “grey-level” images), but more

generally in partially-ordered ones, such as colour images,

for instance. A data structure and some strategies for filtering

such images are described. They are, in particular, compliant

with the classical approaches proposed in the grey-level case.

Experimental results enable to illustrate the soundness and

usefulness of the approach.

The article is organised as follows. In Sec. 2, theoretical

background notions are provided. In Sec. 3, the definition of

the component-tree, and classical ways for using it in filter-

ing procedures are recalled. In Sec. 4, the proposed extension

of component-trees to images taking their values in partially-

ordered sets is described. Experimental results and perspec-

tives will be found in Sec. 5.

2. THEORETICAL BACKGROUND

Let n ∈ N
∗. Let E ⊂ Z

n (generally, E =
∏n

i=1[0, di − 1]
with (di)

n
i=1 ∈ (N∗)n). Let V be a finite set. Let ≤ be an

order relation on V . We suppose that there exists an infimum,

noted ⊥, for (V,≤). Let I : E → V (we also note I ∈ V E),

I is a (discrete) image, taking its values in V . If (V,≤) is a

completely-ordered (resp. partially-ordered) set, then we say

that I is a grey-level image (resp. a label image).

Let x, y ∈ E. We say that x and y are adjacent if

d(x, y) ≤ ǫ for a well-chosen distance d(., .) on E and a

nonnegative value ǫ (with ǫ = 1 and d(., .) = ‖. − .‖1 (resp.

d(., .) = ‖. − .‖∞), we retrieve the classical (2n)-adjacency

(resp. (3n − 1)-adjacency) associated to Z
n).

Let X ⊆ E. Let x, y ∈ X . We say that x and y are con-

nected (in X), and we note x ∼ y, if there exists a sequence

(xk)
l
k=1 (l ≥ 1) of elements of X such that x1 = x, xl = y

and xk, xk+1 are adjacent for all k ∈ [1, l−1]. Note that ∼ is

an equivalence relation on X . The connected components of

X are the equivalence classes of X w.r.t. ∼, i.e. the elements

of the quotient set X/∼ (noted C[X] in the sequel).

Let v ∈ V . Let Xv : V E → P(E) be the threshold

operator defined by Xv(I) = {x ∈ E | v ≤ I(x)} for all

I ∈ V E .

Let v ∈ V and X ⊆ E. We define the cylinder func-

tion CX,v : E → V by CX,v(x) = v if x ∈ X and

⊥ otherwise. Based on this definition, a discrete image

I ∈ V E can be expressed as I =
∨

v∈V CXv(I),v =∨
v∈V

∨
X∈C[Xv(I)]

CX,v , where
∨

is the pointwise supre-

mum of a set of functions, i.e. I(x) = supv∈V {CXv(I),v(x)}
(= maxv∈V {CXv(I),v(x)} as V is finite).

Let K =
⋃

v∈V (C[Xv(I)]× {v}). Let ⊆K be the relation

defined by (X, vX) ⊆K (Y, vY ) if X ⊂ Y or (X = Y and

vY ≤ vX ). The inclusion relation ⊆K is a partial order on K.

By abuse of notation, in the sequel, we will sometimes note

X ∈ K for (X, vX) ∈ K, and ⊆ for ⊆K.

3. COMPONENT-TREES

In this section, we assume that (V,≤) is a completely-ordered

set. In particular, we identify (V,≤) and ([0, |V | − 1],≤).
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Fig. 1. (a) A grey-level image I : [0, 9]2 → [0, 4]. (b-

f) Threshold sets Xv(I) for v from 0 (b) to 4 (f). (g) The

component-tree of I; its successive levels correspond to in-

creasing threshold values v. (h) The same tree, enriched by an

attribute (the size of the connected component of each node).

Let v1 ≤ v2 ∈ V . Let B1, B2 ⊆ E be the binary images

defined by Bk = Xvk
(I) for k ∈ {1, 2}. Let C2 ∈ C[B2] be

a connected component of B2. Then, there exists a (unique)

connected component C1 ∈ C[B1] of B1 such that C2 ⊆ C1

(see Fig. 1 (b-f) for an illustration of this assertion). Note that,

in particular, we necessarily have B2 ⊆ B1.

Based on these considerations, it easily derives that the

Hasse diagram of the partially-ordered set (K,⊆) is a tree

(i.e. a connected acyclic graph), the “root” of which is the

supremum sup(K,⊆) = X⊥(I) = E. This tree is called the

component-tree of I (see Fig. 1(g)).

Using the above definitions and notations, the component-

tree - as a data structure - can be described as follows.

Definition Let I ∈ V E be a grey-level image. The component-

tree of I is the rooted tree (K, L,R) defined by

R = E = sup(K,⊆), (1)

L = {(X,Y ) ∈ C[Xv(I)]× C[Xv+1(I)] | Y ⊆ X}. (2)

The elements K, R and L are the set of the nodes, the root

and the set of the edges of the tree, respectively (in the se-

quel, we will use the usual terminology associated to trees).

In Fig. 1(g), K is the set of all white rectangles (R is the one

located at the highest level) and L is visualised by the set of

all black edges (linking the elements of each pair).

Component-trees enable the storage - at each node - of

elements of information, also called attributes, related to the

binary connected component associated to the node. For in-

stance, in Fig. 1(h), the size (i.e. the cardinal) of the connected

components has been added at their corresponding nodes1.

Component-trees, equipped with attributes related to their

image, are generally considered for filtering operations con-

1Here, the attribute is a single numerical value. It is however possible to

consider any kind of (quantitative/qualitative and scalar/vectorial) attributes,

provided they can be conveniently formalised.
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Fig. 2. (a) A 1-D grey-level image I and (f) its component-

tree. (b) (Fictive) non-increasing attributes associated to the

nodes of I . (c-e) Filtering results Iρ obtained by processing

the component-tree w.r.t. a predicate ρ true if and only if the

attribute of the node is higher than 15: (c) Min, (d) Max and

(e) Direct policies.

sisting in “pruning” the branches of the tree, based on a cho-

sen predicate ρ on K, indicating if the attribute of a node sat-

isfies a given criterion. In case of non-increasing criteria, var-

ious pruning policies can be considered (see [6]):

(i) Min: A node N ∈ K is removed if ¬ρ(N) or the parent

node P ∈ K of N has been removed;

(ii) Max: A node N ∈ K is removed if ¬ρ(N) and all its

children C ∈ K have been removed;

(iii) Direct: A node N ∈ K is removed if ¬ρ(N).
Once the set K has been reduced to a set Kρ ⊆ K accord-

ing to one of these three policies, a reconstructed image Iρ of

I can be defined as Iρ =
∨

(X,vX)∈Kρ
CX,vX

. Filtering and

reconstruction results of these strategies are illustrated on a

1-D example in Fig. 2.

4. EXTENSION TO PARTIAL ORDERS

In this section, we now assume that (V,≤) is a partially-

ordered set and that (V,≤) has an infimum, noted ⊥ (oth-

erwise we enrich (V,≤) with such an infimum).

Let I ∈ V E be a label image. Let v ∈ V . Let B ⊆ E
be the binary image defined by B = Xv(I). Let C ∈ C[B]
be a connected component of B. By opposition to the case

of completely-ordered sets (Sec. 3), there may exist several

values vi ≤ v (i ∈ N), such that C ⊆ Ci ∈ C[Xvi
(I)], and vi

is maximal w.r.t. ≤ for these properties.

As in Sec. 3, the relation ⊆ is still a partial order on K,

but the Hasse diagram of the partially-ordered set (K,⊆) is

not necessarily a tree. This derives from the fact that - us-

ing tree terminology - a node of the diagram can be the child

of several parent nodes (and not only one). Note that such a

diagram (called component-graph in the sequel) has however

a supremal element (which can be assimilated to its “root”),

namely X⊥(I) = E, while it can possibly have several mini-

mal elements.
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Fig. 3. (a) A label image I : [0, 10]2 → V (where V ⊂ [0, 2]3

is composed of 11 distinct values depicted in (i)) visualised

as an RGB image. (b-h) Some threshold images Xv(I) (from

(b) to (h), v = (0, 0, 2), (0, 1, 0), (1, 0, 0), (0, 1, 2), (1, 1, 0),
(2, 0, 2), (2, 2, 2). (i) The component graph of I .

4.1. Component-graphs

Let I ∈ V E be a label image. The component-graph of I
is the “rooted” oriented graph (K, L,R) defined such that

(K, L) is the Hasse diagram of the partially-ordered set (K,⊆
), and R = sup(K,⊆) = X⊥(I) = E. Keeping the same ter-

minology as previously, K, R and L are the set of the nodes,

the root and the set of the edges of the graph, respectively.

Fig. 3 illustrates a label image I (a), some of its threshold

images (b-h), and its component graph (i): K is the set of all

rectangles (R is the black one) and L is visualised by the set

of all black edges (linking the elements of each pair).

Similarly to component-trees, attributes can be stored at

each node of a component-graph. The preservation/removal

of nodes of the graph w.r.t. such attributes can then also lead

to filtering strategies. However, the less restrictive properties

of component-graphs (by opposition to those of component-

trees) do not enable to straightforwardly apply the filtering

strategies designed for component-trees, described in Sec. 3.

To tackle this problem, we propose hereafter a two step filter-

ing procedure.

4.2. Filtering strategy

Let I ∈ V E be a label image and (K, L,R) be its component-

graph (the image I of Fig. 3(a) will be considered for illustra-

tion). Let ρ be a predicate on K. The following strategy is de-

voted to the filtering of I by “pruning” its component-graph

w.r.t. ρ.

4.2.1. Step 1: Node selection

Let K′ = K \ {R}. In case of non-increasing criteria (notice

that with increasing ones, all policies are equivalent), the fol-

lowing policies can be considered to select a subset Kρ ⊆ K
of nodes to be preserved in the component-graph:

(i) Min1: A node N ∈ K′ is removed if ¬ρ(N) or at least one
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Fig. 4. (a) I and its component-graph, with nodes verifying a

given predicate ρ (grey-background). (b-e) Light-grey back-

ground: graph (Kρ, Lρ) obtained with the Min1 (b), Min2 (c),

Max (d), and Direct (e) policies; light/dark-grey background:

corrected graph (Kc
ρ, L

c
ρ).

of the parent node P ∈ K of N has been removed;

(ii) Min2: A node N ∈ K′ is removed if ¬ρ(N) or all the

parent nodes P ∈ K of N have been removed;

(iii) Max: A node N ∈ K is removed if ¬ρ(N) and all its

children C ∈ K′ have been removed;

(iv) Direct: A node N ∈ K is removed if ¬ρ(N).
Note that with the Min1 and Min2 (resp. Max) policy(ies), Kρ

has to be computed in a top-down (resp. bottom-up) fashion.

Moreover, with the first three policies, we should assume that

R ∈ Kρ (otherwise, we would obtain a - useless - trivial set

Kρ = ∅). More formally, with the Min1 (3), Min2 (4), Max

(5), and Direct (6) policies, we have (recursively)

Kρ = {R} ∪ {N ∈ K′ | ρ(N) ∧ ∀(P,N) ∈ L,P ∈ Kρ}, (3)

Kρ = {R} ∪ {N ∈ K′ | ρ(N) ∧ ∃(P,N) ∈ L,P ∈ Kρ}, (4)

Kρ = {R} ∪ {N ∈ K′ | ρ(N) ∨ ∃(N,C) ∈ L,C ∈ Kρ},(5)

Kρ = {N ∈ K | ρ(N)}. (6)

Once Kρ has been computed, a new set of edges Lρ can

straightforwardly be defined by building the Hasse diagram

of (Kρ,⊆). Examples of graphs (Kρ, Lρ) obtained with these

different policies are illustrated in Fig. 4.

4.2.2. Step 2: Coherence recovery

By considering the Min1 and Min2 (resp. Max, Direct) pol-

icy(ies) proposed above, in the case of a completely-ordered

set, we obviously retrieve the “classical” Min (resp. Max, Di-

rect) policy defined in Sec. 3. The proposed approach is then

compliant with the case of component-trees.

However, in the considered case of a partially-ordered

set (V,≤), it may sometimes be impossible to reconstruct

an image Iρ =
∨

(X,vX)∈Kρ
CX,vX

defined by Iρ(x) =



max(X,vX)∈Kρ
{CX,vX

(x)} for all x ∈ E, since such a max-

imum may be undefined, due to the partiality of (V,≤). As

an example, in Fig. 4, the graph of (b) directly leads to a

“correct” image Iρ, while it is not the case for those of (c-e)

since the lowest nodes of the graph correspond to intersecting

connected components associated to non-comparable values.

In order to deal with this issue, a coherence recov-

ery procedure has to be proposed to define unambiguously

max(X,vX)∈Kρ
{CX,vX

} for all x ∈ E. This procedure con-

sists in adding to the current graph (Kρ, Lρ) a set of nodes

(actually removed during the previous step) and their associ-

ated edges, such that the resulting corrected graph (Kc
ρ, L

c
ρ)

enables the generation of a well-defined image. Practically,

this can be done by computing iteratively - and until sta-

bility - Kc
ρ (initialised to Kρ) as follows. Choose a point

x ∈ E and two nodes Ni = (Xi, vXi
) ∈ Kc

ρ (i ∈ {1, 2})

(with N1 6⊆ N2, N2 6⊆ N1) such that x ∈ X1 ∩ X2 and

∀N = (X, vX) ∈ Kc
ρ \ {Ni}, x ∈ X ⇒ (N 6⊆ Ni).

Then, there exists N = (X, vX) ∈ K \ Kc
ρ such that

x ∈ X ⊆ X1 ∩ X2 and vX1
, vX2

≤ vX . Choose such a

node N and set Kc
ρ = Kc

ρ ∪ {N}. Once Kc
ρ has been com-

puted, Lc
ρ is obtained by computing the Hasse diagram of

(Kc
ρ,⊆).
Note that the element N may be non-unique at a given it-

eration, leading to a possibly non-deterministic process, and

thus various results (in the case where (V,≤) is a lattice,

some deterministic strategies can however be developed ; this

will be considered in further works). Examples of corrected

graphs and their associated image are available in Fig. 4(c-e).

5. EXPERIMENTAL RESULTS AND PERSPECTIVES

We have introduced an extension of the notion of component-

trees (namely the component-graphs) to the case of partially-

ordered sets, enabling in particular to deal with colour images.

To illustrate the soundness of this new concept, a denois-

ing example is proposed on a colour image (see Fig. 5). Con-

sidering a predicate ρ based on the size of the connected com-

ponents of the nodes, a two-step component-graph filtering

procedure (with the ≤ and ≥ partial orders on the RGB space,

successively) is applied with a Direct policy on an image (a)

corrupted with 10% (b) and 15% (c) random noise. It can be

observed that the result images (e,f) present visual qualities

quite similar to the original one (a,d).

This simple example (presented here due to space limita-

tions) is - of course - not the only nor the main application

field of component-graph approaches: more sophisticated

ones (applied on both real colour images and “synthetic”

ones [7] obtained from hierarchical classification processes,

for instance) will be presented in further works. From a

methodological point of view, we will also develop this

preliminary study by extending classical concepts of the

component-trees such that the Subtractive or Viterbi policies,

and by developing alternative coherence recovery strategies.

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a,d) Original image (Lenna, c©Playboy). (b,c) Noisy

image (10% and 15% random noise corruption, respectively).

(e-f) Filtered images obtained from (b,c) by removing the

connected component of size smaller than 10 pixels.
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