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Attribute-filtering, relying on the notion of component-tree, enables to process grey-level images by taking into account high-level a priori knowledge. Based on these notions, a method is proposed for automatic segmentation of vascular structures from phase-contrast magnetic resonance angiography. Experiments performed on 16 images and validations by comparison to results obtained by two human experts emphasise the relevance of the method.

Introduction

For a long time, mathematical morphology has been involved in the design of vessel segmentation methods 1 by only considering low-level operators (see, e.g., [START_REF] Gerig | Symbolic description of 3-D applied to cerebral vessel tree obtained from MR angiography volume data[END_REF][START_REF] Cline | Combined connectivity and a gray-level morphological filter in magnetic resonance coronary angiography[END_REF]). The ability of high-level operators to be efficiently considered for medical image processing has been pointed out in recent works [START_REF] Cousty | Segmentation of 4D cardiac MRI: Automated method based on spatio-temporal watershed cuts[END_REF], especially in the context of vessel segmentation [START_REF] Naegel | Grey-level hit-or-miss transforms -Part II: Application to angiographic image processing[END_REF][START_REF] Tankyevych | Direction-adaptive grey-level morphology. Application to 3D vascular brain imaging[END_REF][START_REF] Bouraoui | 3D segmentation of coronary arteries based on advanced Mathematical Morphology techniques[END_REF]. The usefulness of such mathematical morphology operators -including those based on component-trees-is justified by their intrinsic capacity to model morphological information, and then to enable anatomical knowledge-guided approaches.

The notion of component-tree [START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF][START_REF] Jones | Connected filtering and segmentation using component trees[END_REF][START_REF] Chen | Using dendronal signatures for feature extraction and retrieval[END_REF] associates to a grey-level image a descriptive data structure induced by the inclusion relation between the binary components obtained at the successive level sets of the image. In particular, it has led to the development of morphological operators [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF].

Thanks to efforts devoted to its efficient computation [START_REF] Breen | Attribute openings, thinnings, and granulometries[END_REF][START_REF] Salembier | Anti-extensive connected operators for image and sequence processing[END_REF][START_REF] Najman | Building the component tree in quasi-linear time[END_REF], component-trees have been considered for the design of various kinds of grey-level image processing methods, including image filtering and segmentation [START_REF] Jones | Connected filtering and segmentation using component trees[END_REF][START_REF] Urbach | Shape-only granulometries and gray-scale shape filters[END_REF][START_REF] Urbach | Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images[END_REF], some of them being devoted to the analysis of (bio)medical images: CT/MR angiography [START_REF] Wilkinson | Shape preserving filament enhancement filtering[END_REF], confocal microscopy [START_REF] Ouzounis | Mask-based second-generation connectivity and attribute filters[END_REF], dermatological data [START_REF] Naegel | Segmentation using vector-attribute filters: methodology and application to dermatological imaging[END_REF]. Some of these methods are automatic, can filter complex objects in 3-D images [START_REF] Wilkinson | Shape preserving filament enhancement filtering[END_REF][START_REF] Ouzounis | Mask-based second-generation connectivity and attribute filters[END_REF], or take into account complex anatomical knowledge [START_REF] Naegel | Segmentation using vector-attribute filters: methodology and application to dermatological imaging[END_REF]. However none of them fuses all these virtues. The challenges to be faced towards the development of efficient medical image segmentation methods based on component-trees then consists in simultaneously dealing with automation and complexity requirements.

Based on advances related to the use of component-trees in this difficult context [START_REF] Urbach | Vector attribute filters[END_REF][START_REF] Caldairou | Segmentation of complex images based on component-trees: Methodological tools[END_REF], a method has been developed for the segmentation of phase-contrast magnetic resonance angiography (PC-MRA). Indeed, such data -non invasive, non-irradiant, and then harmless for the patients-are often considered in clinical routine, but generally not in the literature devoted to vessel segmentation. The low SNR and resolution of PC-MRAs however justify the use of segmentation methods in order to simplify their analysis.

The remainder of this article is organised as follows. Section 2 provides background notions on component-trees. Section 3 describes the proposed vessel segmentation method. Section 4 provides experimental results and validations. Section 5 summarises the contributions, and describes further works.

Component-trees

Let I : E → V (we also note I ∈ V E ) be a discrete grey-level image (with E ⊂ Z n and V = [[a, b]] ⊂ Z), as illustrated in Fig. 1(a).
Let X ⊆ E be a binary image. The connected components of X are the equivalence classes of X w.r.t. a chosen adjacency relation. The set of the connected components of

X is noted C[X]. Let v ∈ V. We set P(E) = {X ⊆ E}. Let X v : V E → P(E) be the thresholding function defined by X v (I) = {x ∈ E | v ≤ I(x)} for all I : E → V (see Fig. 1(b-f)). Let v ∈ V and X ⊆ E. We define the cylinder function C X,v : E → V by C X,v (x) = v if x ∈ X and a otherwise. A discrete image I ∈ V E can then be expressed as I = v∈V X∈C[X v (I)] C X,v
, where is the pointwise supremum for the sets of functions. 1(b-f)). In particular, we necessarily have

Let K = v∈V C[X v (I)]. The inclusion relation ⊆ is a partial order on K. Let v 1 ≤ v 2 ∈ V. Let B 1 , B 2 ⊆ E be the binary images defined by B k = X v k (I) for k ∈ {1, 2}. Let C 2 ∈ C[B 2 ] be a connected component of B 2 . Then, there exists a (unique) connected component C 1 ∈ C[B 1 ] of B 1 such that C 2 ⊆ C 1 (see Fig.
B 2 ⊆ B 1 .
Based on these properties, is can be easily deduced that the Hasse diagram of the partially ordered set (K, ⊆) is a tree (i.e., a connected acyclic graph), the root of which is its supremum X a (I) = E. This tree is called the component-tree of I (see Fig. 1(g)).

Definition 1 (Component-tree). Let I ∈ V E be a grey-level image. The componenttree of I is the rooted tree (K, L, R) such that:

K = v∈V C[X v (I)] (namely the nodes); R = sup(K, ⊆) = X a (I) (namely the root); L (namely the set of edges) is composed of all pairs (X, Y) ∈ K × K verifying (i) Y ⊂ X and (ii) ∀Z ∈ K, Y ⊆ Z ⊂ X ⇒ Y = Z.
In Fig. 1(g),K is the set of white rectangles, R is the one located at the highest level, and L is visualised by the set of black lines (linking the elements of each pair).

Component-trees enable the storage, at each node, of attributes, i.e., elements of information related to the binary connected components associated to the nodes. For instance, in Fig. 1(g), the size of the connected component has been added at each corresponding node. In this (simple) example, the considered attribute is a single numerical value. It is however possible to consider any kinds of -quantitative or qualitative-attributes, provided they can be conveniently modelled. It is also possible to store several elements of information, no longer leading to scalar attributes but to vectorial ones [START_REF] Urbach | Vector attribute filters[END_REF].
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Segmentation method

The proposed method (summarised in the flowchart of Fig. 2) consists in (i) determining the characteristic properties of the structures of interest (vessels) thanks to a supervised learning process (Subsection 3.1), and (ii) using this knowledge to automatically process images via their component-tree (Subsection 3.2).

Learning process

This first step (see Fig. 2(a)) enables to extract from one (or possibly several) groundtruth data (i.e., correctly segmented images) a set of characteristic parameters chosen from a given set of criteria. The learning step takes as input (i) a ground-truth image I g ∈ V E , (ii) its segmentation B g ⊂ E, and (iii) a function A : P(E) → Ω, associating to each possible node of the component-tree of I g , a feature vector in the parameter space Ω induced by a chosen set of criteria. It provides as output a subset ω ⊂ Ω of the parameter space, characterising the nodes of the component-tree of I g which enable to fit at best the segmentation B g .

Let (K, L, R) be the component-tree of I g . Let S = { X∈C X} C⊆K be the set of all the binary images which can be generated from the set of nodes K. We need to determine the "best" binary image which may be computed from K w.r.t. B g . This requires to define a distance d on P(E) enabling to compare B g and the binary images of S. The best binary image B can be set as B = arg min B∈S {d(B, B g )}. We define such a distance Based on these definitions, a minimal set B can be extracted from S (in linear time O(|K|)). Then, an adequate set of nodes K ⊆ K associated to B (i.e., such that X∈ K X = B) has to be determined. Let C = {X ∈ K | X ⊆ B} ⊆ K (note that the nodes of C generate a set of subtrees of the component-tree (K, L, R) of I g ). The set B can be generated by any set of nodes K ⊆ C verifying X∈ K X = X∈ C X = B. Two main strategies can be considered: by setting K + = C, any node included in B is considered as a useful binary connected component, while by setting K -= {X ∈ C | ∀Y ∈ C, X Y}, only the roots of the subtrees induced by C are considered as useful. The first (resp. second) strategy is the one considering the largest (resp. smallest) possible set of nodes/connected components among C.

d by d(B, B g ) = α.|B \ B g | + (1 -α).|B g \ B|, with α ∈ [0, 1]. It
Once a set of nodes K has been defined, the determination of the subset of characterising knowledge ω ⊂ Ω has to be performed. The determination of ω can be expressed as a clustering problem consisting in partitioning Ω into two classes thanks to the samples A( K) = {A(N)} N∈ K (corresponding to the attributes of the structures of interest) and A(K \ C) = {A(N)} N∈K\ C . This process can, for instance, be carried out by usual classification tools, such as the Support Vector Machine (SVM) [START_REF] Vapnik | Statistical Learning Theory[END_REF].

Segmentation process

This second step (see Fig. The segmentation step takes as input an image I ∈ V E and a subset ω ⊂ Ω characterising the structures to be segmented in I. It provides as output a segmentation B ⊆ E of these structures of interest.

Let (K, L, R) be the component-tree of I. We define

K f = {N ∈ K | A(N) ∈ ω}.
The set K f is composed of the nodes which satisfy the characterising properties modelled by ω, and are then considered as the parts of the image to be preserved by the segmentation process. We can finally reconstruct the segmentation result as B = N∈K f N.

Experiments and results

PC-MRA segmentation

The proposed methodology has been considered for the segmentation of cerebral PC-MRAs. Such images (see Fig. 3(a,b)) are composed of three kinds of semantic elements: low-intensity background, high-intensity artifacts and high-intensity vascular signal.

Input/output The method processes PC-MRA images I ∈ V E (with E = [[0, 255]] 3 and V ⊂ N). The learning step requires a ground-truth image I g ∈ V E (Fig. 3(a,b)), and its segmentation B v ⊂ E (vessels) and B a ⊂ E (artifacts) (Fig. 3(c-e)). The segmentation step provides as output a fuzzy segmentation S ∈ [0, 1] E of the vessels visualised in I.

Multiscale approach

In order to deal with the complexity of the structures of interest, the segmentation method can be applied in a multiscale fashion. The image is then processed as a collection of subimages obtained from an octree decomposition, thus enabling to "break" complex structures into smaller -and easier to characterise-ones. In order to improve the behaviour of the method at the border of these subimages, it can be convenient to consider two shifted octree decompositions of the image. In such a context, if the octrees have d levels, any point x ∈ E of the image belongs to 2d subimages, the sizes of which vary from 256 3 to (256/2 d-1 ) 3 . (Note that this octree decomposition also has to be considered in the learning step, resulting in a distinct set ω for each one of the d subimage sizes.) This value 2d can be seen as a redundancy factor of the multiscale segmentation method. In our case, the value d has been set to [START_REF] Chen | Using dendronal signatures for feature extraction and retrieval[END_REF].

By opposition to the initially proposed strategy, the variant proposed here does not provide a binary result B ⊆ E. Indeed, overlaps induced by multiscale and redundancy may lead to ambiguous results for any point x ∈ E. A grey-scale segmentation S ∈ R E can however be obtained by setting S (x) = s(x)/2d, where s(x) ∈ N is the number of nodes which contain x (among the component-trees induced by the 2d subimages where x appears) and which have been classified as being vascular. This segmentation S (which can be assimilated to a fuzzy segmentation, although not normalised) provides, for each point x ∈ E, a value which can be seen as a "vesselness" score.

Learning step: Presegmentation In order to perform the learning step, it is first required to choose the best segmentation results w.r.t. the ground-truth segmentations B v and B a and the distance d. Several results have then been computed, for various values of α (which determines the authorised ratio between false positives/negatives) sampled in [0, 1]. The most satisfying sets B v and B a have then been chosen by a human expert, based on a visual analysis. (Note that in the current experiments, the corresponding value of α was 0.9 for B v and 0.4 for B a .) The associated sets of nodes K v and K a have been defined as K - v and K - a , respectively. Indeed, it has been chosen to give a higher importance to the shape of the structures than to their grey-level profile (since only the roots of the component-trees induced by the best segmentation results are then considered, see Subsection 3.1).

Learning step: Parameter estimation In order to determine a set ω characterising the high-intensity vascular signal from the background noise and the high-intensity artifacts, a three class SVM classification has been applied on the component-trees of I g , using the parameter space Ω induced by the following attributes: moment of inertia, flatness (computed from the eigenvalues of the inertia matrix of I), intensity, size, volume (related to the grey-level profile of the image at the node), contrast (distance between the node and the closest leaf in the component-tree), distance to the head (computed thanks to the morphological image associated to I). Among these attributes, some "simple" ones (e.g. intensity, size) are considered in order to enable the classification between the background noise and the high intensity structures (vessels and artifacts), while some more sophisticated ones (e.g. moment of inertia, flatness) are assumed to enable the discrimination between vessels and artifacts, since they are dedicated to shape characterisation [START_REF] Hu | Visual pattern recognition by moment invariants[END_REF].

Segmentation step

The obtained set ω ⊂ Ω has then been used to determine the desired set of nodes K s (k, l) ⊆ K from each set of component-trees of I, for each octree decomposition k = 1, 2, and at each level l = 1 to d. From these sets of nodes, it has been possible to build a segmented grey-level image I s : E → R defined by

I s (x) = 1 2d 2 k=1 d l=1 |K s (k, l) ∩ {X | x ∈ X}| (1) 
In particular, I s (x) = 0 (resp. 0, resp. ≫ 1) means that x never matches a vessel (resp. matches at least once a vessel, resp. often matches a vessel) in the segmentation result.

Results

Technical details The method has been applied on a database composed of 17 PC-MRAs (Philips Gyroscan NT/INTERA 1.0 T, TR = 10 ms, TE = 6.4 ms), of millimetric resolution (see Fig. 3(a,b)). One image has been considered for the learning step (I g ) while the other 16 ones have been considered for quantitative validations. With a standard PC (Intel Quad Core i7 860, 4GB RAM), the average computation time for the method is 3 min/image for the learning step (which only requires to be carried out once), and 4 min/image for the segmentation step.

Validations The 16 MRAs have also been interactively segmented by two human experts. These results S 1 e , S 2 e ⊂ E are generally slightly different. Indeed, the mean of the maximal sensitivity (resp. minimal sensitivity) between S 1 e and S 2 e is 87.2% (resp. 68.3%). This tends to mean that the accurate segmentation of such images (presenting a very low SNR) is a complex and error-prone task, even for experts. Based on this uncertainty, we set V = S 1 e ∩ S 2 e , V = E \ (S 1 e ∪ S 2 e ), and V ? = (S 1 e \ S 2 e ) ∪ (S 2 e \ S 1 e ), assumed to be the vascular, non-vascular, and ambiguous areas, according to these ground-truths.

For each MRA, let S ⊂ E be a visually satisfactory segmentation obtained from I s (by interactive thresholding of I s , which requires only a few seconds; we provide in Tab. From a quantitative point of view (see Tab. 1 for intervals [Sen -, Sen + ], [Spe -, Spe + ] and mean point-to-set distance between S and V, in mm), the measures can appear as low. If this can be partially explained by possible segmentation errors (the main errors generally result from the loss of the smallest vessels, composed of small connected components less accurately modelled by the considered attributes), it also results from the quality of the ground-truths (which contain several errors, as aforementioned). Moreover, the proposed segmentations are grey-level ones (see Fig. 4(a,b)), which can be thresholded to favour either sensitivity or specificity. The binary segmentation obtained by such a thresholding (see Fig. 4(c)) also emphasises the ability of the method to provide qualitatively satisfactory results. Finally, one has to note that the experts provided results in approximately one hour by using interactive tools, vs. a few minutes for the method.

Conclusion

Based on the notion of component-tree, a method has been proposed for the segmentation of angiographic data. It takes advantage of a priori knowledge, thanks to a learning process enabling to define characteristic properties of vessels. This knowledge is, in particular, embeddable in the component-tree structure of the images to be processed.

The validations performed on phase-contrast images tend to emphasise the relevance of the proposed methodology, in particular by comparison to segmentations performed by human experts (from both qualitative and time-consumption points of view). It has to be noticed that vessel segmentation method, although being fast and automated, however still presents a few weaknesses, especially in the detection of small vessels.

In order to improve its robustness, further works will focus on the following points: (i) automatic choice of the pertinent parameters enabling to determine the Ω space (enabling to initially consider a larger set of potential parameters), (ii) incremental improvement of the learning process (by taking into account the segmentations performed by the method) and (iii) use of parameters of high level (for instance shape descriptors). Points (i) and (ii) will require to develop solutions to reinject the evaluation of the segmentations in the learning/segmentation process, while point (iii) will require to develop solutions to compute (or at least approximate) complex attributes with a satisfactory algorithmic cost.

Fig. 1 .

 1 Fig. 1. (a) A grey-level image I : [[0, 9]] 2 → [[0, 4]]. (b-f) Threshold images X v (I) (white points) for v varying from 0 (b) to 4 (f). (g) The component-tree of I. Its levels correspond to increasing thresholding values v. The root (v = 0) corresponds to the support (E = [[0, 9]] 2 ) of the image.

Fig. 2 .

 2 Fig. 2. Summary of the method (dark grey: processes; light grey: data). (a) Learning process. (b) Segmentation process.

  2(b)) enables to segment the structures of interest from an image, based on the characterising properties modelled by the set of knowledge ω ⊂ Ω.

Fig. 3 .

 3 Fig. 3. (a,b) Cerebral PC-MRA (this image has been used as ground-truth): (a) sagittal slice, (b) maximum intensity projection. (c-e) Ground-truth segmentation of (a): vessels and artifacts (B v ∪ B a ) (c); vessels only (B v ) (d), 3-D visualisation of vessels (B v ) (e).

Fig. 4 .

 4 Fig. 4. (a) MRA (I) and (b) its grey-level segmentation (I S ) viewed as a MIP (line 15 in Table1). (c) Binary segmentation (S ) viewed as a 3-D object (line 11 in Table1, λ = 40.3).

Table

  

Table 1 .

 1 Quantitative analysis of the segmentation results (see text).

	λ	Spe (%)	Sen (%)	d(S , V)	λ	Spe (%)	Sen (%)	d(S , V)
	1 100 [49.3, 79.8] [77.6, 85.0] 2.8 ± 7.7	9 80 [39.9, 57.7] [75.8, 77.3] 2.0 ± 4.3
	2 50 [51.7, 77.5] [80.4, 85.5] 1.5 ± 5.2 10 150 [38.8, 62.9] [63.7, 68.7] 3.8 ± 7.6
	3 120 [47.7, 66.6] [79.3, 77.0] 4.0 ± 10.8 11 50 [48.7, 74.8] [80.6, 87.9] 1.7 ± 5.1
	4 80 [46.8, 66.0] [88.5, 87.3] 1.8 ± 5.0 12 50 [43.2, 68.9] [83.1, 89.5] 1.6 ± 4.9
	5 80 [33.3, 64.1] [83.3, 87.4] 2.3 ± 5.9 13 80 [33.9, 65.2] [62.9, 73.1] 4.8 ± 10.3
	6 100 [34.6, 58.9] [86.4, 89.0] 3.6 ± 11.2 14 100 [35.7, 63.4] [71.2, 74.3] 2.5 ± 6.5
	7 80 [28.5, 46.6] [71.2, 75.7] 2.1 ± 4.2 15 150 [36.6, 65.2] [67.1, 77.8] 2.7 ± 6.2
	8 80 [43.3, 65.2] [68.4, 74.5] 3.5 ± 8.1 16 100 [36.0, 65.4] [62.1, 66.7] 5.5 ± 11.5

). (c) Binary segmentation (S ) viewed as a 3-D object (line 11 in Table

1

, λ = 40.3).

A whole state of the art on vessel segmentation is beyond the scope of this article. The reader may refer to[START_REF] Lesage | A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes[END_REF] for a recent survey.