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Abstract. Attribute-filtering, relying on the notion of component-tree, enables

to process grey-level images by taking into account high-level a priori knowl-

edge. Based on these notions, a method is proposed for automatic segmentation

of vascular structures from phase-contrast magnetic resonance angiography. Ex-

periments performed on 16 images and validations by comparison to results ob-

tained by two human experts emphasise the relevance of the method.

Key words: vessel segmentation, mathematical morphology, component-trees,

magnetic resonance angiography.

1 Introduction

For a long time, mathematical morphology has been involved in the design of vessel

segmentation methods1 by only considering low-level operators (see, e.g., [7, 5]). The

ability of high-level operators to be efficiently considered for medical image processing

has been pointed out in recent works [6], especially in the context of vessel segmenta-

tion [12, 16, 1]. The usefulness of such mathematical morphology operators –including

those based on component-trees– is justified by their intrinsic capacity to model mor-

phological information, and then to enable anatomical knowledge-guided approaches.

The notion of component-tree [15, 9, 4] associates to a grey-level image a descrip-

tive data structure induced by the inclusion relation between the binary components

obtained at the successive level sets of the image. In particular, it has led to the devel-

opment of morphological operators [2, 15].

Thanks to efforts devoted to its efficient computation [2, 15, 13], component-trees

have been considered for the design of various kinds of grey-level image processing

methods, including image filtering and segmentation [9, 19, 18], some of them being

devoted to the analysis of (bio)medical images: CT/MR angiography [21], confocal

microscopy [14], dermatological data [11]. Some of these methods are automatic, can

filter complex objects in 3-D images [21, 14], or take into account complex anatomi-

cal knowledge [11]. However none of them fuses all these virtues. The challenges to

be faced towards the development of efficient medical image segmentation methods

1 A whole state of the art on vessel segmentation is beyond the scope of this article. The reader

may refer to [10] for a recent survey.
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based on component-trees then consists in simultaneously dealing with automation and

complexity requirements.

Based on advances related to the use of component-trees in this difficult context

[17, 3], a method has been developed for the segmentation of phase-contrast magnetic

resonance angiography (PC-MRA). Indeed, such data –non invasive, non-irradiant, and

then harmless for the patients– are often considered in clinical routine, but generally

not in the literature devoted to vessel segmentation. The low SNR and resolution of

PC-MRAs however justify the use of segmentation methods in order to simplify their

analysis.

The remainder of this article is organised as follows. Section 2 provides back-

ground notions on component-trees. Section 3 describes the proposed vessel segmen-

tation method. Section 4 provides experimental results and validations. Section 5 sum-

marises the contributions, and describes further works.

2 Component-trees

Let I : E → V (we also note I ∈ VE) be a discrete grey-level image (with E ⊂ Zn and

V = [[a, b]] ⊂ Z), as illustrated in Fig. 1(a).

Let X ⊆ E be a binary image. The connected components of X are the equivalence

classes of X w.r.t. a chosen adjacency relation. The set of the connected components of

X is noted C[X].

Let v ∈ V . We set P(E) = {X ⊆ E}. Let Xv : VE → P(E) be the thresholding

function defined by Xv(I) = {x ∈ E | v ≤ I(x)} for all I : E → V (see Fig. 1(b–f)).

Let v ∈ V and X ⊆ E. We define the cylinder function CX,v : E → V by CX,v(x) = v

if x ∈ X and a otherwise. A discrete image I ∈ VE can then be expressed as I =∨
v∈V

∨
X∈C[Xv(I)] CX,v, where

∨
is the pointwise supremum for the sets of functions.

Let K =
⋃

v∈V C[Xv(I)]. The inclusion relation ⊆ is a partial order on K . Let v1 ≤

v2 ∈ V . Let B1, B2 ⊆ E be the binary images defined by Bk = Xvk
(I) for k ∈ {1, 2}. Let

C2 ∈ C[B2] be a connected component of B2. Then, there exists a (unique) connected

component C1 ∈ C[B1] of B1 such that C2 ⊆ C1 (see Fig. 1(b–f)). In particular, we

necessarily have B2 ⊆ B1.

Based on these properties, is can be easily deduced that the Hasse diagram of the

partially ordered set (K ,⊆) is a tree (i.e., a connected acyclic graph), the root of which

is its supremum Xa(I) = E. This tree is called the component-tree of I (see Fig. 1(g)).

Definition 1 (Component-tree). Let I ∈ VE be a grey-level image. The component-

tree of I is the rooted tree (K , L,R) such that: K =
⋃

v∈V C[Xv(I)] (namely the nodes);

R = sup(K ,⊆) = Xa(I) (namely the root); L (namely the set of edges) is composed of

all pairs (X,Y) ∈ K × K verifying (i) Y ⊂ X and (ii) ∀Z ∈ K ,Y ⊆ Z ⊂ X ⇒ Y = Z.

In Fig. 1(g),K is the set of white rectangles, R is the one located at the highest level,

and L is visualised by the set of black lines (linking the elements of each pair).

Component-trees enable the storage, at each node, of attributes, i.e., elements of

information related to the binary connected components associated to the nodes. For

instance, in Fig. 1(g), the size of the connected component has been added at each cor-

responding node. In this (simple) example, the considered attribute is a single numerical
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Fig. 1. (a) A grey-level image I : [[0, 9]]2 → [[0, 4]]. (b–f) Threshold images Xv(I) (white points)

for v varying from 0 (b) to 4 (f). (g) The component-tree of I. Its levels correspond to increasing

thresholding values v. The root (v = 0) corresponds to the support (E = [[0, 9]]2) of the image.

value. It is however possible to consider any kinds of –quantitative or qualitative– at-

tributes, provided they can be conveniently modelled. It is also possible to store several

elements of information, no longer leading to scalar attributes but to vectorial ones [17].

3 Segmentation method

The proposed method (summarised in the flowchart of Fig. 2) consists in (i) determining

the characteristic properties of the structures of interest (vessels) thanks to a supervised

learning process (Subsection 3.1), and (ii) using this knowledge to automatically pro-

cess images via their component-tree (Subsection 3.2).

3.1 Learning process

This first step (see Fig. 2(a)) enables to extract from one (or possibly several) ground-

truth data (i.e., correctly segmented images) a set of characteristic parameters chosen

from a given set of criteria.

The learning step takes as input (i) a ground-truth image Ig ∈ VE , (ii) its segmenta-

tion Bg ⊂ E, and (iii) a function A : P(E)→ Ω, associating to each possible node of the

component-tree of Ig, a feature vector in the parameter space Ω induced by a chosen set

of criteria. It provides as output a subset ω ⊂ Ω of the parameter space, characterising

the nodes of the component-tree of Ig which enable to fit at best the segmentation Bg.

Let (K , L,R) be the component-tree of Ig. Let S = {
⋃

X∈C X}C⊆K be the set of all the

binary images which can be generated from the set of nodes K . We need to determine

the “best” binary image which may be computed from K w.r.t. Bg. This requires to

define a distance d on P(E) enabling to compare Bg and the binary images of S. The

best binary image B̂ can be set as B̂ = arg minB∈S{d(B, Bg)}. We define such a distance

d by d(B, Bg) = α.|B \ Bg| + (1 − α).|Bg \ B|, with α ∈ [0, 1]. It aims at finding a best

compromise (parametrised by α) between the amount of false positives/negatives of B

w.r.t. Bg.
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Fig. 2. Summary of the method (dark grey: processes; light grey: data). (a) Learning process. (b)

Segmentation process.

Based on these definitions, a minimal set B̂ can be extracted from S (in linear time

O(|K|)). Then, an adequate set of nodes K̂ ⊆ K associated to B̂ (i.e., such that
⋃

X∈K̂
X =

B̂) has to be determined. Let Ĉ = {X ∈ K | X ⊆ B̂} ⊆ K (note that the nodes of Ĉ gener-

ate a set of subtrees of the component-tree (K , L,R) of Ig). The set B̂ can be generated

by any set of nodes K̂ ⊆ Ĉ verifying
⋃

X∈K̂
X =
⋃

X∈Ĉ
X = B̂. Two main strategies can be

considered: by setting K̂+ = Ĉ, any node included in B̂ is considered as a useful binary

connected component, while by setting K̂− = {X ∈ Ĉ | ∀Y ∈ Ĉ, X 1 Y}, only the roots

of the subtrees induced by Ĉ are considered as useful. The first (resp. second) strat-

egy is the one considering the largest (resp. smallest) possible set of nodes/connected

components among Ĉ.

Once a set of nodes K̂ has been defined, the determination of the subset of character-

ising knowledge ω ⊂ Ω has to be performed. The determination of ω can be expressed

as a clustering problem consisting in partitioning Ω into two classes thanks to the sam-

ples A(K̂) = {A(N)}
N∈K̂

(corresponding to the attributes of the structures of interest)

and A(K \ Ĉ) = {A(N)}
N∈K\Ĉ

. This process can, for instance, be carried out by usual

classification tools, such as the Support Vector Machine (SVM) [20].

3.2 Segmentation process

This second step (see Fig. 2(b)) enables to segment the structures of interest from an

image, based on the characterising properties modelled by the set of knowledge ω ⊂ Ω.
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Fig. 3. (a,b) Cerebral PC-MRA (this image has been used as ground-truth): (a) sagittal slice,

(b) maximum intensity projection. (c–e) Ground-truth segmentation of (a): vessels and artifacts

(Bv ∪ Ba) (c); vessels only (Bv) (d), 3-D visualisation of vessels (Bv) (e).

The segmentation step takes as input an image I ∈ VE and a subset ω ⊂ Ω charac-

terising the structures to be segmented in I. It provides as output a segmentation B ⊆ E

of these structures of interest.

Let (K , L,R) be the component-tree of I. We define K f = {N ∈ K | A(N) ∈ ω}. The

setK f is composed of the nodes which satisfy the characterising properties modelled by

ω, and are then considered as the parts of the image to be preserved by the segmentation

process. We can finally reconstruct the segmentation result as B =
⋃

N∈K f
N.

4 Experiments and results

4.1 PC-MRA segmentation

The proposed methodology has been considered for the segmentation of cerebral PC-

MRAs. Such images (see Fig. 3(a,b)) are composed of three kinds of semantic elements:

low-intensity background, high-intensity artifacts and high-intensity vascular signal.

Input/output The method processes PC-MRA images I ∈ VE (with E = [[0, 255]]3 and

V ⊂ N). The learning step requires a ground-truth image Ig ∈ VE (Fig. 3(a,b)), and its

segmentation Bv ⊂ E (vessels) and Ba ⊂ E (artifacts) (Fig. 3(c–e)). The segmentation

step provides as output a fuzzy segmentation S ∈ [0, 1]E of the vessels visualised in I.
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Multiscale approach In order to deal with the complexity of the structures of interest,

the segmentation method can be applied in a multiscale fashion. The image is then

processed as a collection of subimages obtained from an octree decomposition, thus

enabling to “break” complex structures into smaller –and easier to characterise– ones.

In order to improve the behaviour of the method at the border of these subimages, it

can be convenient to consider two shifted octree decompositions of the image. In such

a context, if the octrees have d levels, any point x ∈ E of the image belongs to 2d

subimages, the sizes of which vary from 2563 to (256/2d−1)3. (Note that this octree

decomposition also has to be considered in the learning step, resulting in a distinct set

ω for each one of the d subimage sizes.) This value 2d can be seen as a redundancy

factor of the multiscale segmentation method. In our case, the value d has been set to 4.

By opposition to the initially proposed strategy, the variant proposed here does not

provide a binary result B ⊆ E. Indeed, overlaps induced by multiscale and redundancy

may lead to ambiguous results for any point x ∈ E. A grey-scale segmentation S ∈ RE

can however be obtained by setting S (x) = s(x)/2d, where s(x) ∈ N is the number

of nodes which contain x (among the component-trees induced by the 2d subimages

where x appears) and which have been classified as being vascular. This segmentation S

(which can be assimilated to a fuzzy segmentation, although not normalised) provides,

for each point x ∈ E, a value which can be seen as a “vesselness” score.

Learning step: Presegmentation In order to perform the learning step, it is first re-

quired to choose the best segmentation results w.r.t. the ground-truth segmentations Bv

and Ba and the distance d. Several results have then been computed, for various values

of α (which determines the authorised ratio between false positives/negatives) sampled

in [0, 1]. The most satisfying sets B̂v and B̂a have then been chosen by a human expert,

based on a visual analysis. (Note that in the current experiments, the corresponding

value of α was 0.9 for Bv and 0.4 for Ba.) The associated sets of nodes K̂v and K̂a have

been defined as K̂−v and K̂−a , respectively. Indeed, it has been chosen to give a higher

importance to the shape of the structures than to their grey-level profile (since only the

roots of the component-trees induced by the best segmentation results are then consid-

ered, see Subsection 3.1).

Learning step: Parameter estimation In order to determine a set ω characterising

the high-intensity vascular signal from the background noise and the high-intensity ar-

tifacts, a three class SVM classification has been applied on the component-trees of

Ig, using the parameter space Ω induced by the following attributes: moment of iner-

tia, flatness (computed from the eigenvalues of the inertia matrix of I), intensity, size,

volume (related to the grey-level profile of the image at the node), contrast (distance

between the node and the closest leaf in the component-tree), distance to the head (com-

puted thanks to the morphological image associated to I). Among these attributes, some

“simple” ones (e.g. intensity, size) are considered in order to enable the classification

between the background noise and the high intensity structures (vessels and artifacts),

while some more sophisticated ones (e.g. moment of inertia, flatness) are assumed to en-

able the discrimination between vessels and artifacts, since they are dedicated to shape

characterisation [8].
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Segmentation step The obtained set ω ⊂ Ω has then been used to determine the

desired set of nodesKs(k, l) ⊆ K from each set of component-trees of I, for each octree

decomposition k = 1, 2, and at each level l = 1 to d. From these sets of nodes, it has

been possible to build a segmented grey-level image Is : E → R defined by

Is(x) =
1

2d

2∑

k=1

d∑

l=1

|Ks(k, l) ∩ {X | x ∈ X}| (1)

In particular, Is(x) = 0 (resp. , 0, resp.≫ 1) means that x never matches a vessel (resp.

matches at least once a vessel, resp. often matches a vessel) in the segmentation result.

4.2 Results

Technical details The method has been applied on a database composed of 17 PC-

MRAs (Philips Gyroscan NT/INTERA 1.0 T, TR = 10 ms, TE = 6.4 ms), of millimetric

resolution (see Fig. 3(a,b)). One image has been considered for the learning step (Ig)

while the other 16 ones have been considered for quantitative validations.

With a standard PC (Intel Quad Core i7 860, 4GB RAM), the average computation

time for the method is 3 min/image for the learning step (which only requires to be

carried out once), and 4 min/image for the segmentation step.

Validations The 16 MRAs have also been interactively segmented by two human ex-

perts. These results S 1
e , S

2
e ⊂ E are generally slightly different. Indeed, the mean of

the maximal sensitivity (resp. minimal sensitivity) between S 1
e and S 2

e is 87.2% (resp.

68.3%). This tends to mean that the accurate segmentation of such images (presenting a

very low SNR) is a complex and error-prone task, even for experts. Based on this uncer-

tainty, we set V = S 1
e ∩S 2

e , V = E \ (S 1
e ∪S 2

e), and V? = (S 1
e \S

2
e)∪ (S 2

e \S
1
e), assumed to

be the vascular, non-vascular, and ambiguous areas, according to these ground-truths.

For each MRA, let S ⊂ E be a visually satisfactory segmentation obtained from

Is (by interactive thresholding of Is, which requires only a few seconds; we provide in

Tab. 1 the threshold value λ such that S = Is(λ)). Let TP = |V ∩ S |, AP = |V? ∩ S |,

FP = |V ∩ S |, the true, ambiguous and false positives of S w.r.t. the ground-truth,

respectively. Let TN = |V \ S |, AN = |V? \ S |, FN = |V \ S |, the true, ambiguous

and false negatives of S w.r.t. the ground-truth, respectively. In the standard case (i.e.,

when V? = ∅), the formulae for sensitivity (Sen) and specificity (Spe) are given by

Sen = TP/(TP + FP) and Spe = TP/(TP + FN). Here, since V? , ∅, we can only

compute intervals [Sen−,Sen+], [Spe−,Spe+] ⊆ [0, 1] providing the potential sensitivity

and specificity values induced by the uncertainty on the ground-truth. The bounds of

these intervals are straightforwardly given by

Spe+ = (TP + AP)/(TP + FN + AP) (2)

Spe− = TP/(TP + FN + AN) (3)

Sen+ = (TP + AP)/(TP + FP + AP) (4)

Sen− = TP/(TP + FP + AP) (5)
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(a)

(b)

(c)

Fig. 4. (a) MRA (I) and (b) its grey-level segmentation (IS ) viewed as a MIP (line 15 in Table 1).

(c) Binary segmentation (S ) viewed as a 3-D object (line 11 in Table 1, λ = 40.3).

Table 1. Quantitative analysis of the segmentation results (see text).

λ Spe (%) Sen (%) d(S ,V) λ Spe (%) Sen (%) d(S ,V)

1 100 [49.3, 79.8] [77.6, 85.0] 2.8 ± 7.7 9 80 [39.9, 57.7] [75.8, 77.3] 2.0 ± 4.3

2 50 [51.7, 77.5] [80.4, 85.5] 1.5 ± 5.2 10 150 [38.8, 62.9] [63.7, 68.7] 3.8 ± 7.6

3 120 [47.7, 66.6] [79.3, 77.0] 4.0 ± 10.8 11 50 [48.7, 74.8] [80.6, 87.9] 1.7 ± 5.1

4 80 [46.8, 66.0] [88.5, 87.3] 1.8 ± 5.0 12 50 [43.2, 68.9] [83.1, 89.5] 1.6 ± 4.9

5 80 [33.3, 64.1] [83.3, 87.4] 2.3 ± 5.9 13 80 [33.9, 65.2] [62.9, 73.1] 4.8 ± 10.3

6 100 [34.6, 58.9] [86.4, 89.0] 3.6 ± 11.2 14 100 [35.7, 63.4] [71.2, 74.3] 2.5 ± 6.5

7 80 [28.5, 46.6] [71.2, 75.7] 2.1 ± 4.2 15 150 [36.6, 65.2] [67.1, 77.8] 2.7 ± 6.2

8 80 [43.3, 65.2] [68.4, 74.5] 3.5 ± 8.1 16 100 [36.0, 65.4] [62.1, 66.7] 5.5 ± 11.5
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From a quantitative point of view (see Tab. 1 for intervals [Sen−,Sen+], [Spe−, Spe+]

and mean point-to-set distance between S and V , in mm), the measures can appear as

low. If this can be partially explained by possible segmentation errors (the main errors

generally result from the loss of the smallest vessels, composed of small connected com-

ponents less accurately modelled by the considered attributes), it also results from the

quality of the ground-truths (which contain several errors, as aforementioned). More-

over, the proposed segmentations are grey-level ones (see Fig. 4(a,b)), which can be

thresholded to favour either sensitivity or specificity. The binary segmentation obtained

by such a thresholding (see Fig. 4(c)) also emphasises the ability of the method to pro-

vide qualitatively satisfactory results. Finally, one has to note that the experts provided

results in approximately one hour by using interactive tools, vs. a few minutes for the

method.

5 Conclusion

Based on the notion of component-tree, a method has been proposed for the segmenta-

tion of angiographic data. It takes advantage of a priori knowledge, thanks to a learning

process enabling to define characteristic properties of vessels. This knowledge is, in

particular, embeddable in the component-tree structure of the images to be processed.

The validations performed on phase-contrast images tend to emphasise the rele-

vance of the proposed methodology, in particular by comparison to segmentations per-

formed by human experts (from both qualitative and time-consumption points of view).

It has to be noticed that vessel segmentation method, although being fast and automated,

however still presents a few weaknesses, especially in the detection of small vessels.

In order to improve its robustness, further works will focus on the following points:

(i) automatic choice of the pertinent parameters enabling to determine the Ω space (en-

abling to initially consider a larger set of potential parameters), (ii) incremental im-

provement of the learning process (by taking into account the segmentations performed

by the method) and (iii) use of parameters of high level (for instance shape descrip-

tors). Points (i) and (ii) will require to develop solutions to reinject the evaluation of

the segmentations in the learning/segmentation process, while point (iii) will require

to develop solutions to compute (or at least approximate) complex attributes with a

satisfactory algorithmic cost.
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