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ABSTRACT

The study ofin utero fetal MR images is essential for the di-
agnosis of abnormal brain development and the study of the
maturation of the brain structures. However, few automated
segmentation methods have been developed so far, compare
to the numerous ones existing for the adult brain anatomy,
which is due to the particular properties of these images. In
this paper, we propose a two-step cortex segmentation tech-
nique including anatomical priors and a topological model.
Experiments performed onin utero MR data and validation
by comparison to experts segmentation emphasize the rele-
vance of the method.

Index Terms— Cortex, fetal brain, segmentation, cluster-
ing, topology

1. INTRODUCTION

The study ofin utero fetal brain is a key point for understand-
ing the early development of brain structures and to propose
new tools for diagnosis and follow the evolution of patholo-
gies. A prerequisite is the automated labeling of these struc-
tures, which has to be robust to noise, fetal motion artefacts,
partial volume effects (PVE), and magnetic resonance (MR)
intensity inhomogeneity.

A first attempt for fetal brain structures segmentation
was a semi-automated algorithm based on a region-growing
method [1]. Later on, fully automatic techniques were devel-
oped. Bach Cuedraet al. [2] introduced separated Bayesian
segmentation and Markov random field (MRF) regularization
steps, the latter including anatomical priors. Other methods
rely on motion-corrected 3D volumes, computed through re-
construction techniques ofin utero MR scans [3, 4]. Habas
et al. developed an automatic atlas-based segmentation [5],
and a method including anatomical constraints in form of a
laminar prior [6]. Finally, Gholipouret al. [7] performed a
volumetric study of the brain based on the segmentation of the
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pericerebral fluid spaces (PFS) (the part of the cerebrospinal
fluid (CSF) located around the cortical area) by using level-
sets, connected components, and mathematical morphology
filters.

Since the cortex segmentation is a prerequisite for corti-
cal thickness measures orsulci study, a method to retrieve
this structure based on intensity-based features and anatom-
ical knowledge is presented. The cortex being a thin dark
layer between the PFS and the white matter, the segmenta-
tion is achieved by considering the separation of the CSF into
PFS and intraventricular fluid (ICSF). Moreover, a topolog-
ical model [8] is introduced in order to deal with the partial
volume effect by introducing geometrical constraints between
the brain structures through the process.

2. METHOD

2.1. Overview

The fetal grey-level intracranial histogram presents two peaks
corresponding respectively to the CSF and the brain. The
analysis of a ground truth image histogram reveals an overlap
between these two peaks, due mostly to the partial volume
effect and the intensity inhomogeneity in the image (Fig. 1).
Moreover, the cortex and the white matter are blended into
the brain peak, meaning that these structures cannot be disso-
ciated by using only image intensity.

The proposed method proceeds as follows (Fig. 2). First,
a three class clustering of the intracranial volume, based on a
topological model, is carried out in order to obtain the brain,
the PSF and the ICSF. It allows us to estimate the border be-
tween the PFS and the brain. Since the cortex is located be-
tween the PFS and the white matter, this border is used to de-
fine a region of interest including the cortex. Finally, a three
class clustering is performed to retrieve CSF, cortex and white
matter.

2.2. Local topological K-Means

We define a topological model robust to intensity inhomo-
geneity, relying on three concentric spheres and introducing
geometrical constraints for the segmentation process.
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Fig. 1. Grey-level histogram from a fetal brain image. Black: intracranial
volume, green: cortex, red: white matter and deep greynuclei, blue: CSF.

Fig. 2. Overall diagram of the segmentation process.

Let us consider an image composed of a set of voxelsΩ,
each voxelj ∈ Ω having a given grey-levelyj . Let us sup-
pose that this image has to be segmented intoK (≥ 2) clus-
ters. For each clusterk, let Sk be the set of voxels included
into it andνk be the centroid of this cluster (which usually cor-
responds to the mean grey-level value of this class of voxels).
Based on these notations, in thek-means approach, the seg-
mentation process of a grey-level image consists of the mini-
mization of an energy function:

Jk-means =
∑

yj∈Sk

K
∑

k=0

‖yj − νk‖
2

2
.

Nevertheless, considering a global centroid (therefore
spatially invariant) makes thek-means algorithm sensitive to
intensity inhomogeneity occurring in MRI data. In order to
tackle this problem without relying onad hoc prior knowl-
edge related to the intensity inhomogeneity, we introduce lo-
cal intensity centroid valuesνjk. These local mean-values are
computed in the following way. Letνr

k be the mean value of
thekth cluster in an image regionr. This region mean value
is considered as being located in the center of this region. Let
pr be this position. Afterwards, for each considered voxel, a
local mean-valueνjk is computed by a distance-based inter-

polation of the nearest region mean-values:νjk =
P

r
ωjrνr

k
P

r ωjr
,

whereωjr = 1/d(j, pr) andd(j, pr) is the Euclidean spatial
distance between the voxelj andpr.

The minimization of thek-means objective function is
achieved by a border voxel exchange, with respect to the fol-
lowing topological model. LetNj be the neighborhood of
voxel j. Let CNj

be the corresponding set of clusters present
in Nj. A considered voxelj switches from clusterk to an-
other candidate clusterk′ if it meets the following require-
ments (Fig. 3):

1

2

3

Fig. 3. Topological model. From white to dark grey, labels are 0, 1,
2 and 3, 0 being the background. Voxel 1: not eligible for switching to
another label because there are three different labels in its neighborhood and
a switch would break the concentric circle model. Voxel 2: eligible to switch
to label 1. Voxel 3: not eligible to switch to label 2 because aneighbor is a
background label.







|CNj
| = 2,

∀ c ∈ CNj
, c 6= background,

‖yj − νjk′‖2 < ‖yj − νjk‖2.

In other words, a voxel is eligible for switching from one
cluster to another if there is exactly two different clusters in
its neighborhood, and if neither of these is the background.
This formulation guarantees the invariance of the topologi-
cal model by disallowing any circle break and preserving the
background border.

2.3. Tissue segmentation

2.3.1. CSF

The segmentation is initialized by first computing an intracra-
nial distance map (by using a chamfer distance) from the sur-
face of the intracranial volume, which is obtained by a manual
segmentation.

Then, we set the initial model by building three concentric
spheres. The first sphere corresponds to the PFS and is a one
voxel thin layer from the border of the intracranial volume.
The second sphere represents the brain and the deepest one is
set as ICSF.

Finally, we perform the segmentation in the way described
in section 2.2 with the grey-level image as an input.

2.3.2. Cortex

Thanks to the PFS segmentation, it is now possible to build a
region of interest where a 3-class clustering can retrieve the
cortex. Nevertheless, even in a reduced area, the cortex and
the white matter can still not be dissociated on intensity-based
features only.

The region of interest is built as stated next. From the
border, we build a band including CSF and brain. This band
is then divided in three sub-bands following the topological
model. The CSF voxels are not changed and the other voxels
are set as cortex and white matter.

Let I : Ω → V be a discrete grey-level image. LetϕB

be the morphological closing ofI by a structuring elementB.
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Fig. 4. Cortex extraction. (a, b, c): ground truth images, (d, e, f):region of interest with final segmentations. Red: CSF, green: cortex, blue: white matter and
deep greynuclei.

The Top Hat Dark FilterTd is defined as:Td(I) = ϕB(I)−I.
In other words, this filter reveals the small objects of the im-
age that are removed by the closing, depending on the choice
of the structural element [9]. Since the fetal cortex is a thin
layer between PFS and white matter, we can build a corre-
sponding structuring element in order to highlight the image
areas where it will most likely appear.

Finally, we perform the segmentation by using a vector
composed by the original image and the top-hat filtered im-
age, instead of the original grey-level values alone, as thein-
put of the topological segmentation presented in section 2.2.
Consequently, each cluster is characterized by a centroid vec-
tor composed of its grey-level mean-value and its top-hat-
filtered image mean value, allowing a better discrimination
of the cortex.

3. EXPERIMENTS AND RESULTS

3.1. Material and experimental settings

Experiments are performed on a set of six T2-weighted MR
images, acquired from a 1.5T scanner (Magnetom Avanto,
Siemens, Germany Erlangen) using single shot fast spin echo
sequences (TR3190 ms, TE139-147 ms). Gestational ages
(GA) range from27 to 34 weeks. These images have the fol-
lowing dimensions:512× 512× 20 voxels and the voxels di-
mensions are:0.7×0.7×3.45and0.7×0.7×4.6millimeters.
Since voxels are anisotropic, our topological model evolves
on a 2-dimension basis, by the use of a 4-neighborhoods.

A non-local means denoising filtering [10] is performed
as a preprocess in order to have a better reliability. This filter
takes advantage of the redundancy present in images; broadly
speaking, a small neighborhood around a voxel, called a

patch, may match patches around other voxels within the
same scene, defined by a research area around the current
voxel, selecting the most accurate voxels to replace the cur-
rent voxels value. The size of the research area is:11×11×3
and the size of the patches is:3 × 3 × 1.

The regions considered to compute the local mean values
have the following dimensions:32× 32× 1. Empirically, we
chose a5 × 5 × 1 structuring element to perform the top hat
filter.

For the PFS segmentation, the model was initialized as
follows. On the border with the background, a 1 voxel thin
layer is set as PFS. Then, the voxels being less than 25 mil-
limeters away from this border are set as brain and the re-
maining ones are set as ICSF. This guarantees that the ICSF
initial cluster will not include any PFS voxels.

Regarding the cortex segmentation, the model was initial-
ized as follows. The first two-millimeters layer is set as CSF,
the next 5 as cortex and the last 2 as white matter. These
values were chosen according to tissues anatomical charac-
teristics.

The computation times are: about 5 seconds for the non-
local mean filter, 5 minutes for the extraction of the CSF and
finally, 2 minutes for the cortex segmentation.

3.2. Validation

Each image has one manual segmentation done by medical
experts, and three of them were segmented twice. The val-
idation consists of the computation of the sensitivity (Sen)
and the dice similarity coefficient (DSC) between the man-
ual and the automated segmentation of the cortex. LetTP
be the amount of true positives (number of detected cortex
voxels),FP the amount of false positives (number of voxels



Case (GA) Sen 3D DSC 2D MaxDSC 2D DSC

1 (30) 0.571 0.629 0.746 0,689
2 (34) 0.501 0.546 0.615 0,548
3 (32) 0.738 0.664 0.738 0,711
4 (-) 0.577 0.582 0.641 0,587

5 (28) 0.697 0.652 0.778 0,685
6 (27) 0.767 0.718 0.808 0,753

Table 1. Sensitivity, globalDSC, maximum 2DDSC, meanDSC on a
selection of adjacent slices for the segmented cortex.

Case (GA) Exp1 vs Exp2 Seg vs Exp1 Seg vs Exp2
1 (30) 0.611 0.629 0.570
2 (34) 0.610 0.496 0.546
3 (32) 0.610 0.664 0.593

Table 2. DSC for the segmented cortex. Comparison between expert 1
and expert 2, between automated segmentation and expert 1, between auto-
mated segmentation and expert 2.

incorrectly classified as cortex) andFN the amount of false
negatives (number of undetected cortex voxels). The sensi-
tivity is given by: Sen = TP/(TP + FN) and the dice
coefficient by:DSC = 2 × TP/(2 × TP + FN + FP ).

Table 1 presents the 3DSen and DSC for each case.
Moreover, because of the voxels anisotropy, a maximum 2D
DSC and a mean 2DDSC from a selection of six to eight
adjacent slides located between the brainstem and the top of
the head are also computed. The results illustrate a promis-
ing estimation of the cortex, which is emphasized by the bet-
ter scores of the 2D meansDSC compare to the 3D one.
Qualitatively, a visual insight of the segmentation (Fig. 4)
underlines the accuracy of the method, even though a slight
under-segmentation can be observed in some areas (Fig. 4(e)
and 4(f)).

In order to have a complementary evaluation of the
method, a comparison between several experts has been
driven, on the three cases where two manual segmentations
are available. For each case, the 3DDSC between two
experts and between each experts and the automated segmen-
tation is presented (Table 2). TheDSC values similarity
illustrates that if segmentation errors can partially explain
the results, it may also come from the ground-truth quality.
It also underlines the ability of the segmentation process to
produce an evaluation of the cortex comparable to an expert’s
one.

4. CONCLUSION

A topological based clustering method has been proposed
for the segmentation of the cortex in fetal brain MR images,
which takes advantages of anatomical knowledges.

The validation performed on T2-weighted images tends
to emphasize the relevance of the proposed methodology, in
particular by quantitative and qualitative comparison to man-
ual segmentations. It has been shown that the combination of
anatomical knowledge, intensity-based features and a topo-

logical model is able to retrieve the cortex.
Further work will focus on the improvement of the seg-

mentation method and its validation on additional cases and
on 3D reconstructed volumes.
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