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Abstract. Component-trees associate to a discrete grey-level image a descriptive
data structure induced by the inclusion relation between the binary comigone
obtained at successive level-sets. This article presents a method ti exdubset

of the component-tree of an image enabling to fit at best a given binaygtta
selected beforehand in the image. A proof of the algorithnfliciency of this
method is proposed. Application examples related to the extraction of dpp ¢
from ancient documents emphasise the usefulness of this techniqueontiest

of assisted segmentation.
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1 Introduction

Thecomponent-treéalso known aslendrond1], confinement tref?] or max-tre€3])

is a graph-based structure which models some charaateristia grey-level image
by considering its binary level-sets obtained from sudeestiresholding operations.
Component-trees have been involved, in particular, in theldpment of morphologi-
cal operators [3,4].

By definition, they are particularly well-suited for the dgsof methods devoted to
process grey-level images based on hypotheses relateel topblogy (connectedness)
and the specific intensity (locallylobally minimal or maximal) of structures of inter-
est. Based on these properties, component-trees havertvedred in various kinds of
image processing methods [1,2,3,5,6,7,8].

Several works related to component-trees have been deo¢e@dble their ficient
computation [2,3,4,9]. In particular, the ability to cont@ihem in (quasi-)linear time
opens the way to the development of interactive dfidient segmentation methods.

The design of interactive segmentation methods is an aesearch field (see,g,
[10] for a recent survey). This dynamism is justified by the increasing necessity
to analyse images in a large spectrum of application fieidghg dificulty to develop
fully automatic segmentation methods, aiiid (he importance to develop segmentation
methods as tools for assisting the user by explicitly usisghpertise.

* The research leading to these results has received funding fromehehAgence Nationale
de la RecherchéGrant Agreement ANR-2010-BLAN-0205).



Some of interactive segmentation methods aim at correetirmygh segmentation
initially performed in a manual fashion. In this article, fozus on this kind of issue,
especially in the (frequent) case where the structuresefdst to be segmented are the
ones of extremal intensities. In this context, componezed can be of high usefulness.

Based on these considerations, this article is devotedswenthe following prob-
lem: Letl be a grey-level image, Ief be its component-tree, and I&tbe a binary
object defined on the same domain gassumed to be a rough segmentatioh)phow
can we determine a part df (and thus ofl) which enables to fit at be§& with the
lowest computational cost? This “best” approximation éamarticular, be considered
from a quantitative point of view,e., by finding a solution minimising the amount of
false positivegegatives.

The article is organised as follows. In Sec. 2, definitiorateel to the notion of
component-tree are recalled. In Sec. 3, definitions andinotarelated to the consid-
ered issue are proposed. In Sec. 4, some solutions to theggdproblem are described
and their linear algorithmic cost is established. Algaritb considerations are proposed
in Sec. 5. An application to the segmentation of drop caps fancient documents is
proposed in Sec. 6, in order to illustrate the relevance®htlethod and its actual use-
fulness in real image analysis applications. Conclusioii$e found in Sec. 7.

2 Component-tree

Letn e N*, Let us consider an adjacency relation on the discrete gfided byz", for
instance, the2 or the (3 — 1)-adjacency. LeX C Z" be a non-empty set &".

We say that two pointg,y € X are connected (iiX), and we notex ~x V, if there
exists a sequence!tk()}(:l (t = 1) of elements oK such that; = X, X = y and X, Xk+1
are adjacent for ak € [1,t — 1]. Note that~x is an equivalence relation oX. The
connected components ¥fare the elements of the quotient 3¢t~y (notedC[X] in
the sequel). We say thatis connected i€[X] = {X}.

Let E c Z" be a finite connected set. Let< T € Z andV = [ L, T]. A discrete
grey-level imagéd can be defined as a function E — V (we also notd € VE).

For anyv € V, we define the thresholding functiog : VE — P(E) (whereP(E) =
(YIYCEDbyX,(I) = {xe E|v<I(xX)}forall | € VE.

For anyv € V, and anyX ¢ E, we define the cylinder functioBx, : E — V by
Cxv(X) = vif x e X and L otherwise. A discrete imagec VE can then be expressed as

1=\ Cxaw=\ V Cx (1)
veV veV XeC[X(1)]

where\/ is the pointwise supremum for the sets of functions.

Let K = Uvev C[X(1)] be the set of all the connected components obtained from
the diferent thresholdings of at valuesv € V. The inclusion relatiorc is then a
partial order ornK. Letv; < v, € V. Let By, B, C E be the binary images defined by
By = Xy (1) for k € {1, 2}. LetC, € C[B;] be a connected component®f. Then, there
exists a (unigue) connected componénte C[B,] of B; such thaC, C C;.

Based on these properties, it can be easily deduced thatabseHliagram of the
partially ordered set, C) is a tree {.e., a connected acyclic graph), and more precisely
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Fig. 1. () A grey-level imagd : [0,9]> — [0,4] (from 0, in black, to 4, in white). (b—f)

Threshold image,(l) (white points) forv varying from 0 (b) to 4 (f). (g) The component-
tree ofl. Its levels correspond to increasing thresholding valud$he root {.e., the upper node

located at the level = 0) corresponds to the suppdt= [0, 9] of the image.

@) (b)

a rooted tree, the root of which is the supremdi(l) = E. This tree is called the
component-treef |.

Definition 1 Let | € VE be a grey-level image. Treomponent-treef | is the rooted
tree T = (K, L, R) such that:

() K = Uvev CIX(N]
(i) L={XY)eK?|YCXAVZeK,YCZcX=>Y=2)
(iii) R = max(k,c) = X.(1) = E

The elements &K (resp. of L) are thenodegresp. theedge3 of T. The element R is the
rootof T. For any Ne K, we set cfN) = {N” € K | (N, N’) € L}; ch(N) is the set of
thechildrenof the node N in T. An example of component-tree is illustratd-ig. 1.

Each node of< is a binary connected component distinct from all the otlvetes.
However, such a connected component can be an elemépkefi)] for several (suc-
cessive) values € V. For eachX € K, we setm(X) = maxv € V | X € C[X,(D]} =
mingex{l (X)}. We then consider thaX is “associated” to the valug(X), i.e,, to the
highest value o¥ which generates this connected component.

The following definition, establishing “correlation scefebetween a node and a
given binary object, will be useful in the sequel of the aetic

Definition 2 Let | € VE be a grey-level image. Let E (%, L, R) be the component-
tree of I. Let Ne K be a node of T. Let @ Z" be a binary object. We set'(N,G) =
[((N\ Unvechny N)NGI, and (N, G) = [N\ G|. The value (N, G) is the number of points
of N which do not belong to G. The valug(lN, G) is the number of points of N which
belong to G and which do not belong to any children of N.

Remark 3 When building the component-tree of |, it is possible toestat each node
N € K, the set of points & = N \ Unecryny N'- This leads, in particular, to an algo-
rithmically useful partition{En }nexc Of E. In such conditions, for a given binary object
G c Z", the computation of all the*pN, G) and (N, G) (N € K) can obviously be per-
formed in linear timeJ(|E|). In the sequel, we will assume that(N, G) and (N, G)
have been computed and are then available for every node



4
3 Purpose

Component-trees can be used to develop image procgasaigsis procedures based
on filtering or segmentation strategies. Such procedunesrgby consist of determin-
ing a subsek c K among the nodes of the component-ffee (K, L, R) of a consid-
eredimagd : E — V.
When performing segmentation, the (binary) resulting imgge E is defined as
the union of the nodes o, i.e., as
ls= [ JN (2)

NeX

In this context, the determination of the nodes to preseraecomplex issue, which
can be handled by considering attributése.( qualitative or quantitative information
related to each node) to characterise the nodes of intékesalternative solution is
to search the set of nodé§ C K which enables to generate a binary object being as
similar as possible to a given binary targefy, an approximate segmentation obtained
from a manual process). In the sequel of the article, we fatuthis specific issue,
which can be formalised as an optimisation problem.

Problem to solve Let | € VE be a grey-level image. LEf = (X,L,R) be the
component-tree of. Let G C E be a binary image. Led be a (pseudo-)distance on
P(E). How can we compute a set of nodksc K such thad(UJyz N, G) is minimal,
i.e., such that the best binary object which can be built frifhis as close as possi-
ble to G? More formally, the problem can be summarised as a minifoisgtroblem,
consisting of determining

K =arg, min d( Nu( N, G)} ®3)

An intuitive solution for determining a useful (pseudosidinced is to consider the
amount of false positivésegatives induced byJyex- N w.r.t. the considered binary
object of interesG.

Definition 4 Leta € [0, 1]. Letd* : P(E) x P(E) — R* be the function defined by
d*XY) = a. X\ Y]+ (1 -a)lY\X| 4)

The pseudo-distanéel® constitutes a good similarity criterion between binaryeats.
Note thatd®(X,Y) = Y \ X]| (resp.d*(X,Y) = [X\ Y]), i.e, d°(X,Y) (resp.d*(X,Y)) is
the amount of false negatives (resp. false positive¥)wmr.t. Y.

In the next sections, we will consider this (pseudo-)distarit will be established
that it leads to algorithmicallyf&cient processes, and satisfactory applicative results.

1 The functiond® is actually not a distance sine(X,Y) = d*(Y, X) if and only if o = 1/2,
d*(X,Y) =0 e X =Yifand only if@ €0, 1[, andd® does not satisfy, in general, the triangle
inequality.



4 Theoretical study

4.1 Preliminary properties

The following property directly derives from the definit®of Sec. 2.

Property 5 Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree
of I. Let Ne ch(E). LetKy = {N’ € K | N’ C N}. Let |y € VN be the grey-level image
corresponding to the restriction of | to the node N. The Haliagram(Ky, Ln) of the
partially ordered se{KXy, C) enables to define the component-trag F (K, Ln, N)
of Iy which is actually a subtree of T. Note in particular th@} U {Ki}nechE) is @
partition of K, while {(E, N)}nechE) U {LnInechE) iS @ partition of L.

Definition 6 Let | € VE be a grey-level image. Let ¥ (X, L, R) be the component-tree
of I. Let xe E. We sefKy = {N € K | x € N}, Kx € K is the subset of all the nodes of
% which contain x.

SinceE e K, the following property is obvious, while the next one desvrom the
structure of the component-tree.

Property 7 Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree
of I. Let xe E. ThenXy is non-empty.

Property 8 Let | € VE be a grey-level image. Let ¥ (%, L, R) be the component-tree
of I. Let xe E. Then(%x, €) is a completely ordered set.

Definition 9 Let | € VE be a grey-level image. Let E (%, L, R) be the component-
tree of I. Letg : P(K) — P(E) be the function defined §(K") = Unexe N for all
K < K. We seQ = G(P(K)) = {G(K")}xcx, Qs the set of all the binary objects
which can be generated from the subsets of nodé&6. of

Although there exist'?! distinct subset¥” of %, most of these subsets generate a same
binary object ofE, more formally, we haviQ| < |P(K)| (and generalyQ| < |P(K))).

Property 10 Let | € VE be a grey-level image. Let E (K, L, R) be the component-
tree of |. LetQ be the set of the objects which can be generated from the tsubke
nodes ofK. Let Qe Q. Then, we have

ClQl = minG™(Q) ©)

Less formally, the set of the connected componen( isfactually a subset of nodes of
% which is included in any other subset of nodi€sof K generatingQ. Such sets<”
are then redundant (they contain in particular some nodéshvee included in other
nodes, and then useless for the generatio@)of



4.2 Main properties

Smallest supersef largest subsetIn this subsection, we first focus on a specific case
of the considered issue, which consists of finding a subsebdés of the component-
tree of an image such that the object generated by these nodésiaded in(resp.
includeg the binary targeG and is thelargest (resp. thesmalles} one verifying this
property. This problem is equivalent to consider a psetdtadced which only takes
into account the amount of false negatives (resp. falsdipesj w.r.t.G.

The next property establishes that there exists a (uniaquiafien to this problem.

Property 11 Let | € VE be a grey-level image. Let E (%, L, R) be the component-
tree of I. LetQ be the set of the objects which can be generated from the tsubse
nodes ofK. Let GC E. Then there exist GG~ € Q such that

G"=minQeQIGCc Q) (6)
G‘=mcax{QeQ|QgG} (7)

Proof If G = 0, by settingG* = 0 € Q, we are done. Let us now suppose tGat 0.

For anyx € G, we setNy = minc Kx. LetG" = [J,g Nx.- Then we hav&* € Q and
G cG". LetQ € QsuchthalG c Q. Lety € G*. If y € G, then we havey € Q.

Let us now suppose thgte G* \ G. Then, there exists € G such thaty € Ny. Since
x € G C Q, there existiN € K such thalN ¢ Q. Butthen, we havg e Ny C N C Q.

Consequently, we hav@ C @', and thusG* = minc{Q e Q| G € Q}.

LetG™ = Unexancg N. We haveG™ e QandG™ € G. LetQ e {Qe Q| Q € G}

Let us suppose that there exigts Q' \ G™. In particular, we have € G. There exists
Ny € Ky such thatN, C Q. If Ny € G then we havex € Ny, € G™: contradiction. If
Nx ¢ G then we have)' ¢ G: contradiction. Consequently, for alle @, we have
xe G ,and thusG- = max{Qe Q| QcG}.o

We define now two functions which enable to compute thesdisobiG™ andG~
(Def. 12, Props. 13 and 14) and we show that they authorisemuaiation in linear
time w.r.t. the sizei(e., the number of nodes) of the component-tree of the considere
imagel or the size of the suppoE of this image (Prop. 15).

Definition 12 Let | € VE be a grey-level image. Let ¥ (X, L, R) be the component-
tree of I. Let GC E. Let7+, ¥~ € P(K)* be the functions recursively defined, for all
N € K, by

sy = { N if p*(N,G) # 0
d (N) - {UN’ech(N) 7:+(NI) if p*(N, G) =0 (8)

Ny = LNV if n(N,G) = 0
d (N) - {UN’ech(N) T_(N’) if ﬂ(N, G) +0 (9)

In particular, if ch(N) = 0, we havel yrecyny - (N') = Unveervy 7 F(N) = 0, which
guarantees the termination of these recursive definitidhe. functionF* (resp.¥ ~)
provides, for any node M K, the subset of nodes of the subtree of T having N for root,
which enables to generate the $6tn N)* (see Eqg. (6)) (resgG N N)~ (see Eq. (7)))

for the restriction of the image | to N.
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Property 13 Leto € {+,-}. Let | € VE be a grey-level image. Let ¥ (K, L, R) be the
component-tree of I. Let @ E. Then we have

C[G?] = F(E) (10)

Proof Let X,Y € F7(E). By definition, we haveX,Y € K. Moreover, ifX # Y, it
obviously comes thaX N Y = (0. Consequently, there exis e Q such thatF“(E) =
C[Q]. By induction from the definition of *(E) (resp.¥ ~(E)), we easily deduce that
Uner+@ N = Unexcrp (ne)zo N (r€SP.Uner-E) N = Unexanng)=o N)- In particular, it
follows thatUner+gyN € {Q € Q | G € Q} (resp.Uner- N € {Qe Q| Q € G)).
Let N € ¥7(E). Lety € G such thaty € N andy ¢ Unecnny N’ (SUCh a point
y exists asp’(N,G) # 0). Then,N = minc K;, and sincey € G*, we must have
N ¢ G*. Consequently, we hauglyer+gy N € G*, and thenyer+ gy N = G* and
F(E) = C[G']. Letx € G~ \Unes-(g) N. Then, there existlil € K such thalN € G™.
As x ¢ Uner(g) N, we haveN ¢ ¥ (E), and in particulam(N, G) # 0. But then, there
existsy € N such thaty ¢ G, and thusG~ ¢ G: contradiction. Consequently, we have
G C UNET’(E) N, and therG™ = UNET’(E) N and?j_(E) = C[G_] O

The following property immediately derives from Prop. 13.

Property 14 Leto € {+,-}. Let | € VE be a grey-level image. Let ¥ (X, L, R) be the
component-tree of I. Let G E. Then we have

G’ = U N (11)
NeF7 (E)

Property 15 Leto € {+,-}. Let | € VE be a grey-level image. Let E (X, L,R) be
the component-tree of I. Let G E. ThenC[G“] (and thus G) can be computed with
a linear algorithmic complexit@(max|K], |E|}), w.r.t. the number of nodes of the tree
or the size of the image.

Proof From the definition ofF “(E), it is easily proved that each node is processed
at most once. For each one of the3@XK]|) processed nodes, one equality (related to
p*(N,G) or n(N, G), which are assumed to be precomputed, see Remark 3) id,teste
and the status of the node (“in” or “out of” the resdit’(E)) is possibly modified.
These two operations have a constant algorithmic compléxit). The whole process
then presents a linear complexi®(|K|). The generation o&6” from ¥“(E) can be
performed by modifying, for each nodéof K and for each poink of N (these points
being stored irEy for each nodeN, see Remark 3) the status »to indicate that it
belongs taG”. This process then presents an algorithmic comple{ii|). Hence the
result holdso

General caseWe now focus on the general case of the problem stated in Seti¢h
consists of finding a set of nodés of the component-tree of an imagdeverifying
Eq. (4), for the pseudo-distandé proposed in Def. 4. The purpose is then to find the
best compromise (according to a chosen weight[0, 1]) between the amount of false
positives and false negatives w.r.t. a binary tafget



Since the se of the objects which can be generated from the subsets ofrufde
a component-tree is finite, there necessarily exists aisaltd this problem. Hereafter,
we show that such a solution (Def. 16) can be computed infitiege w.r.t. the size
(i.e., the number of nodes) of the component-tree of the consideragel or the size
of the suppor€ of this image (Props. 19 and 20).

Definition 16 Leta € [0, 1]. Let | € VE be a grey-level image. Let ¥ (X, L, R) be the
component-tree of |. Let G E. Let< € {<,<}. LetF? : K - P(K)and ¢ : K —» R*
be the functions recursively cross-defined, for ak K, by

(j(’_'d(N)’ Ca/(N)) — {({N}’ a"n(N’ S‘)) /If a"n(N’ G)* < (1 - (Y)p*(N, G) + ZIN’ECh(N) C(Y(N/)
Uy 7). (= .9 (N.C) + Enveoy (V) othersise

In particular, if ch(N) = 0, we havel nrecyny F*(N’) = 0 (which guarantees the ter-

mination of these recursive definitions), apgccnny €*(N) = 0. The functionF

provides, for any node M K, the subset of nodes of the subtree of T having N for root,

which enables to generate the $&tn N)* (see Eq. (13), below) for the restriction of

the image | to N. The functiort rovides the cost (w.r.t.°d of this best solution.

Definition 17 Leta € [0,1]. Let | € VE be a grey-level image. Let E (%, L,R) be
the component-tree of |. L& be the set of the objects which can be generated from the
subsets of nodes &. Let GC E. We define Ge Q as

G* = U N (13)
NeFe(E)

From a reasoning similar to (and actually simpler than) theaf Prop. 13, we have
the following result.

Property 18 Leta € [0, 1]. Let | € VE be a grey-level image. Let G E. Then we have
F(E) = C[G"] (14)

Property 19 Leta € [0, 1]. Let | € VE be a grey-level image. Let ¥ (%, L, R) be the
component-tree of |. Le® be the set of the objects which can be generated from the
subsets of nodes &. Let GC E. Then, we have

d*(G", G) = ¢’(E) = min{d"(Q, G)} (15)

Proof Let us suppose thath(E) = 0. Then we haveQ = {0, E}, d*(0,G) = (1 -
@).p(E,G) andd*(E, G) = a.n(E, G). If @.n(E,G) < (1 - a).p*(E,G) + Xnecne) C'(N),
i.e, if a.n(E,G) < (1-a).p(E, G), thenF<(E) = {E}, c*(E) = a.n(E) and thus we have
d*(G%,G) = d*(E,G) = c*(E) = minge{d*(Q,G)}. If @.n(E,G) « (1 - @).p(E.G),
then we haveF*(E) = 0, c*(E) = (1 - a).p(E,G) = (1 - a).p*(E,G) and thus,
d*(G%, G) = d*(0,G) = c*(E) = minge{d*(Q, G)}. Consequently, the property is true
wheneverch(E) = 0. Let us now suppose theh(E) # 0 and that the property holds for
anyN e ch(E) (w.r.t. Iy, Ty andG N N, instead ofl, T andG, see Prop. 5). Note that



Minge{d®(Q, G)} = min{d*(E, G), mingeq\g{d*(Q, G)}}, whiled*(E, G) = a.|E\G| =
@.n(E), and mirpeq\e{d*(Q, G)} = Mingeq\(g; @.|Q\ G| + (1 - «).|G\ Q|. Note also that
{QNN}necn) is a partition ofQ wheneveQ # E while {G\ Unecne) N}U{GN NinecnE)
is a partition ofG (by omitting the possibly empty subsets).f # E, we have
d(Q.G) = Q\GI+(1-0).IG\Ql = .| Uneere)(QN)\GI+(1-2)((G\Unecrey N)U
Unieen®) (GNNN\QI = Znecne) @-(QANN\GI+(1-@).[(G\Unecne) N\ QI+ X necne) (1-
@).l(GNN)\ QI = Zneeh) (@ (QNN) VN (GNN) + (1= a) (GNAN)\ (QNN)]) + (1 -
@)1G\ Uneerey NI = Zneere) (@ (QNN)\ (GNN)I + (1= a).(GNN)\ (QNN)) + (1~
@).p*(E). From the above partition properties, it then comes thapmi g, {d*(Q, G)} =
Mingea\(g){ Znech() (@-[(QNN)\(GNN)I+(1-a).[(GNN)\(RNN))+(1-a).p* (E)} = (1-
@).P"(E)+ Zneche) MiN{e.(QNN)\(GNN)I+(1-a).(GNN)\(QNN)I} = (1-a).p"(E) +
2Neche) A (QNN,G N N) = (1 - @).p*(E) + Zneche) C(N), by induction hypothesis.
Consequently, migo{d*(Q,G)} = min{a.n(E), (1 - @).p*(E) + Xnecne) C(N)}, and
the result follows by induction from Def. 16

Property 20 Leta € [0, 1]. Let | € VE be a grey-level image. Let G E. ThenF*(E) =
C[G*] (and thus @) can be computed with an algorithmic complex®max{|K], |El}),
linear w.r.t. the number of nodes of the tree or the size ofrttage.

Proof The proof is similar to the proof of Prop. 15. The onlyfdrence lies in the fact
that the set of conditions to be testedn(N) < (1 - @).p"(N) + Xnecnn) €*(N')) re-
quires at moslK| comparison operation) and 4|K| arithmetic operations,(+, -),
while the computation of all the ternes(.) involves (at most) the value*(N’) only
once for anyN’ € %K, leading to less thapK| additions in the set of all thg terms.
Such supplementary operations then do not increase thetalga@ complexityO(|K)
of the computation of*(E) by comparison t&“(E). Hence the result holds.

Remark 21 The set of nodeg*(E) and its associated binary object®Genable to
minimise d(., G), and thus to obtain an optimal solution to the issue congidén this
work. HoweverF*(E) and G' are generally not unique. To illustrate this assertion,
let us consider the trivial case where &0 (resp. G= E) anda = O (resp.a = 1).
Obviously, in such a case, any set of nodes and any assotiated/ object minimise
d°(., G) (resp. d(.,G)), which is always equal t6. However, the way to define in
Eqg. (12) enables to break this non-determinism by choosirfigmMour the smallest)

or the largest ) solution (w.r.t. the inclusion relatiog) among all the possible ones.
In particular, if < is set to< (resp. to<) we haver* = 70 (resp.¥~ = 71) (the easy
proof of this assertion is left to the reader).

5 Algorithmics

From the above study, which provides an answer to the questaied in Sec. 1, we
can derive the method described in Alg. 1. (For the sake afafgitity, this algorithm,
which is intrinsically recursive, is described in an it@ératfashion.)
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Algorithm 1 - Segmentation method

Input

| : E — V (image to be segmented);

G ¢ E (rough segmentation @)

a € [0,1] (weight parameter for false positivaggatives)

< € {<, <} (order involved in the cost minimisation formula)
Output

G“ C E (final segmentation df)

Algorithm
1 - Component-tree computation
T = (X, L, R) (component-tree df)
forall N € K do
En =N\ UN’sch(N) N’
p"(N,G) = [EnN G
n(N,G) = IN\ G|
end for
2 - Cost minimisation
forv=TtoLdo
for all N € K such tham(N) = vdo
if @.n(N,G) < (1-a).p*(N.G) + ey ¢ (N’) then
c*(N) = a.n(N, G)
7o(N) = (N)
else
¢'(N) = (1-a).p"(N.G) + Zveory €"(N')
T(Y(N) = UN’ech(N) TH(N,)
end if
end for
end for
3 - Result computation

G" = UNe’f”(E) N

In its general form, the method corresponds to Def. 16, wkikies the general
case considered in Sec. 4.2. In the specific case wherd and< = < (resp.a = 1
and< = <), the method corresponds to Eq. (8) (resp. Eq. (9)) in Defwifich solves
the specific case of the smallest result including (resplattyest result included in) the
rough segmentation, considered in Sec. 4.2.

6 Application example: Assisted segmentation of drop caps

As established in the previous sections, given an imageughreegmentation, and
a parameter controlling the tradé-detween false positives and false negatives, it is
possible to compute, in linear time, the best segmentatiomposed by the connected
components stored in the component-tree of the image. Basadh. 1, an interactive
segmentation software tool has been developed, and applida@ extraction of drop
caps textural parts from ancient documents [11]. These dapg are issued from the
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(c) @ =0.02 (d) @ =0.37

(h) @ = 0.06 () @ =0.72

(m) @ = 0.02 (n) @ = 0.64

(r) @ = 0.06 (s)a =073 t) a =041

Fig. 2. Segmentation process. First column: initial images. Second columnrdegred rough
segmentations (in red). Third to fifth columns: examples of proposghaetation results for
different values of (fifth column: best obtained segmentation).

Madonne database OLDB (Ornamentals Letters DataBase)hwhnsists of more than
6000 grey-scale graphical decorative initials extractechfarchival documentsDrop

caps images are composed of a letter (uppercase) part dachtgoarts. They are noisy
and contain artifacts such as superimposed text, comingfigighbouring book pages.
The size of these images varies from 26050 to 750x 750 pixels. In this study, we
are interested in the fast extraction of objects belonginthé textural (background)

2 We would like to thank th€entre dEtudes Supérieures de la Renaissaftcghe permission
to use their archival documents.
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part of the drop cap (these objects are of extremal intengltich is compliant with the
requirements of the method). The components are then usediafds as query objects
in a system for drop caps retrieval and indexation.

The segmentation protocol, exemplified in Fig. 2 is the feitm one. Given a drop
cap image, (first column), the user proposes a manuallyetkfiough segmentation
(second column). He can then choose the most satisfactgryesgation by simply
interactively tuning ther value (third to fifth column) between 0 and 1 in a threshold-
like fashion. For each chosen the segmentation is computed on the fly, in real time.

7 Conclusion

In this article, it has been established that the compotreststructure can be used to
compute, in linear time, a binary object which fits at best.{walse positivefegatives
criteria) a given binary target which can be assumed to ifyestructures of interest in
a digital grey-level image.

Based on this result a segmentation method has been propagesuccessfully
applied to the case of document analysis, emphasising ldnearece of the approach.

In a further extended version of this work, it will be showrathhis interactive
segmentation method can be optimised from both time andegpaiat of views, by
establishing in particular the increasing property of #suits w.r.t. ther values. Addi-
tional applications to medical images will also be proposed
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