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Abstract. Component-trees associate to a discrete grey-level image a descriptive
data structure induced by the inclusion relation between the binary components
obtained at successive level-sets. This article presents a method to extract a subset
of the component-tree of an image enabling to fit at best a given binary target
selected beforehand in the image. A proof of the algorithmic efficiency of this
method is proposed. Application examples related to the extraction of drop caps
from ancient documents emphasise the usefulness of this technique in thecontext
of assisted segmentation.
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1 Introduction

Thecomponent-tree(also known asdendrone[1], confinement tree[2] or max-tree[3])
is a graph-based structure which models some characteristics of a grey-level image
by considering its binary level-sets obtained from successive thresholding operations.
Component-trees have been involved, in particular, in the development of morphologi-
cal operators [3,4].

By definition, they are particularly well-suited for the design of methods devoted to
process grey-level images based on hypotheses related to the topology (connectedness)
and the specific intensity (locally/globally minimal or maximal) of structures of inter-
est. Based on these properties, component-trees have been involved in various kinds of
image processing methods [1,2,3,5,6,7,8].

Several works related to component-trees have been devotedto enable their efficient
computation [2,3,4,9]. In particular, the ability to compute them in (quasi-)linear time
opens the way to the development of interactive and efficient segmentation methods.

The design of interactive segmentation methods is an activeresearch field (see,e.g.,
[10] for a recent survey). This dynamism is justified by (i) the increasing necessity
to analyse images in a large spectrum of application fields, (ii ) the difficulty to develop
fully automatic segmentation methods, and (iii ) the importance to develop segmentation
methods as tools for assisting the user by explicitly using his expertise.

⋆ The research leading to these results has received funding from the FrenchAgence Nationale
de la Recherche(Grant Agreement ANR-2010-BLAN-0205).
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Some of interactive segmentation methods aim at correctinga rough segmentation
initially performed in a manual fashion. In this article, wefocus on this kind of issue,
especially in the (frequent) case where the structures of interest to be segmented are the
ones of extremal intensities. In this context, component-trees can be of high usefulness.

Based on these considerations, this article is devoted to answer the following prob-
lem: Let I be a grey-level image, letT be its component-tree, and letG be a binary
object defined on the same domain asI (assumed to be a rough segmentation ofI ); how
can we determine a part ofT (and thus ofI ) which enables to fit at bestG with the
lowest computational cost? This “best” approximation can,in particular, be considered
from a quantitative point of view,i.e., by finding a solution minimising the amount of
false positives/negatives.

The article is organised as follows. In Sec. 2, definitions related to the notion of
component-tree are recalled. In Sec. 3, definitions and notations related to the consid-
ered issue are proposed. In Sec. 4, some solutions to the proposed problem are described
and their linear algorithmic cost is established. Algorithmic considerations are proposed
in Sec. 5. An application to the segmentation of drop caps from ancient documents is
proposed in Sec. 6, in order to illustrate the relevance of the method and its actual use-
fulness in real image analysis applications. Conclusions will be found in Sec. 7.

2 Component-tree

Let n ∈ N∗. Let us consider an adjacency relation on the discrete grid defined byZn, for
instance, the 2n- or the (3n − 1)-adjacency. LetX ⊆ Zn be a non-empty set ofZn.

We say that two pointsx, y ∈ X are connected (inX), and we notex ∼X y, if there
exists a sequence (xk)t

k=1 (t ≥ 1) of elements ofX such thatx1 = x, xt = y andxk, xk+1

are adjacent for allk ∈ [[1, t − 1]]. Note that∼X is an equivalence relation onX. The
connected components ofX are the elements of the quotient setX/∼X (notedC[X] in
the sequel). We say thatX is connected ifC[X] = {X}.

Let E ⊂ Zn be a finite connected set. Let⊥ ≤ ⊤ ∈ Z andV = [[⊥,⊤]]. A discrete
grey-level imageI can be defined as a functionI : E→ V (we also noteI ∈ VE).

For anyv ∈ V, we define the thresholding functionXv : VE → P(E) (whereP(E) =
{Y | Y ⊆ E}) by Xv(I ) = {x ∈ E | v ≤ I (x)} for all I ∈ VE.

For anyv ∈ V, and anyX ⊆ E, we define the cylinder functionCX,v : E → V by
CX,v(x) = v if x ∈ X and⊥ otherwise. A discrete imageI ∈ VE can then be expressed as

I =
∨

v∈V

CXv(I ),v =
∨

v∈V

∨

X∈C[Xv(I )]

CX,v (1)

where
∨

is the pointwise supremum for the sets of functions.
Let K =

⋃
v∈V C[Xv(I )] be the set of all the connected components obtained from

the different thresholdings ofI at valuesv ∈ V. The inclusion relation⊆ is then a
partial order onK . Let v1 ≤ v2 ∈ V. Let B1, B2 ⊆ E be the binary images defined by
Bk = Xvk(I ) for k ∈ {1,2}. LetC2 ∈ C[B2] be a connected component ofB2. Then, there
exists a (unique) connected componentC1 ∈ C[B1] of B1 such thatC2 ⊆ C1.

Based on these properties, it can be easily deduced that the Hasse diagram of the
partially ordered set (K ,⊆) is a tree (i.e., a connected acyclic graph), and more precisely
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Fig. 1. (a) A grey-level imageI : [[0,9]]2 → [[0,4]] (from 0, in black, to 4, in white). (b–f)
Threshold imagesXv(I ) (white points) forv varying from 0 (b) to 4 (f). (g) The component-
tree ofI . Its levels correspond to increasing thresholding valuesv. The root (i.e., the upper node
located at the levelv = 0) corresponds to the supportE = [[0,9]]2 of the image.

a rooted tree, the root of which is the supremumX⊥(I ) = E. This tree is called the
component-treeof I .

Definition 1 Let I ∈ VE be a grey-level image. Thecomponent-treeof I is the rooted
tree T= (K , L,R) such that:

(i) K =
⋃

v∈V C[Xv(I )]
(ii) L = {(X,Y) ∈ K2 | Y ⊂ X ∧ ∀Z ∈ K ,Y ⊆ Z ⊂ X⇒ Y = Z}
(iii) R = max(K ,⊆) = X⊥(I ) = E

The elements ofK (resp. of L) are thenodes(resp. theedges) of T . The element R is the
root of T. For any N∈ K , we set ch(N) = {N′ ∈ K | (N,N′) ∈ L}; ch(N) is the set of
thechildrenof the node N in T. An example of component-tree is illustrated in Fig. 1.

Each node ofK is a binary connected component distinct from all the other nodes.
However, such a connected component can be an element ofC[Xv(I )] for several (suc-
cessive) valuesv ∈ V. For eachX ∈ K , we setm(X) = max{v ∈ V | X ∈ C[Xv(I )]} =
minx∈X{I (x)}. We then consider thatX is “associated” to the valuem(X), i.e., to the
highest value ofV which generates this connected component.

The following definition, establishing “correlation scores” between a node and a
given binary object, will be useful in the sequel of the article.

Definition 2 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-
tree of I. Let N∈ K be a node of T. Let G⊆ Zn be a binary object. We set p∗(N,G) =
|(N\
⋃

N′∈ch(N) N′)∩G|, and n(N,G) = |N\G|. The value n(N,G) is the number of points
of N which do not belong to G. The value p∗(N,G) is the number of points of N which
belong to G and which do not belong to any children of N.

Remark 3 When building the component-tree of I, it is possible to store, at each node
N ∈ K , the set of points EN = N \

⋃
N′∈ch(N) N′. This leads, in particular, to an algo-

rithmically useful partition{EN}N∈K of E. In such conditions, for a given binary object
G ⊆ Zn, the computation of all the p∗(N,G) and n(N,G) (N ∈ K) can obviously be per-
formed in linear timeO(|E|). In the sequel, we will assume that p∗(N,G) and n(N,G)
have been computed and are then available for every node N∈ K .
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3 Purpose

Component-trees can be used to develop image processing/analysis procedures based
on filtering or segmentation strategies. Such procedures generally consist of determin-
ing a subset̂K ⊆ K among the nodes of the component-treeT = (K , L,R) of a consid-
ered imageI : E→ V.

When performing segmentation, the (binary) resulting imageIs ⊆ E is defined as
the union of the nodes of̂K , i.e., as

Is =
⋃

N∈K̂

N (2)

In this context, the determination of the nodes to preserve is a complex issue, which
can be handled by considering attributes (i.e., qualitative or quantitative information
related to each node) to characterise the nodes of interest.An alternative solution is
to search the set of nodeŝK ⊆ K which enables to generate a binary object being as
similar as possible to a given binary target (e.g., an approximate segmentation obtained
from a manual process). In the sequel of the article, we focuson this specific issue,
which can be formalised as an optimisation problem.

Problem to solve Let I ∈ VE be a grey-level image. LetT = (K , L,R) be the
component-tree ofI . Let G ⊆ E be a binary image. Letd be a (pseudo-)distance on
P(E). How can we compute a set of nodesK̂ ⊆ K such thatd(

⋃
N∈K̂ N,G) is minimal,

i.e., such that the best binary object which can be built fromK is as close as possi-
ble toG? More formally, the problem can be summarised as a minimisation problem,
consisting of determining

K̂ = arg min
K ′∈P(K)

{d
( ⋃

N∈K ′

N,G
)
} (3)

An intuitive solution for determining a useful (pseudo-)distanced is to consider the
amount of false positives/negatives induced by

⋃
N∈K ′ N w.r.t. the considered binary

object of interestG.

Definition 4 Letα ∈ [0,1]. Let dα : P(E) × P(E)→ R+ be the function defined by

dα(X,Y) = α.|X \ Y| + (1− α).|Y \ X| (4)

The pseudo-distance1 dα constitutes a good similarity criterion between binary objects.
Note thatd0(X,Y) = |Y \ X| (resp.d1(X,Y) = |X \ Y|), i.e., d0(X,Y) (resp.d1(X,Y)) is
the amount of false negatives (resp. false positives) inX w.r.t. Y.

In the next sections, we will consider this (pseudo-)distance. It will be established
that it leads to algorithmically efficient processes, and satisfactory applicative results.

1 The functiondα is actually not a distance sincedα(X,Y) = dα(Y,X) if and only if α = 1/2,
dα(X,Y) = 0⇔ X = Y if and only if α ∈ ]0,1[, anddα does not satisfy, in general, the triangle
inequality.
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4 Theoretical study

4.1 Preliminary properties

The following property directly derives from the definitions of Sec. 2.

Property 5 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-tree
of I. Let N∈ ch(E). LetKN = {N′ ∈ K | N′ ⊆ N}. Let I|N ∈ VN be the grey-level image
corresponding to the restriction of I to the node N. The Hassediagram(KN, LN) of the
partially ordered set(KN,⊆) enables to define the component-tree TN = (KN, LN,N)
of I|N which is actually a subtree of T . Note in particular that{E} ∪ {KN}N∈ch(E) is a
partition ofK , while {(E,N)}N∈ch(E) ∪ {LN}N∈ch(E) is a partition of L.

Definition 6 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-tree
of I. Let x∈ E. We setKx = {N ∈ K | x ∈ N},Kx ⊆ K is the subset of all the nodes of
K which contain x.

SinceE ∈ K , the following property is obvious, while the next one derives from the
structure of the component-tree.

Property 7 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-tree
of I. Let x∈ E. Then,Kx is non-empty.

Property 8 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-tree
of I. Let x∈ E. Then,(Kx,⊆) is a completely ordered set.

Definition 9 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-
tree of I. LetG : P(K) → P(E) be the function defined byG(K ′) =

⋃
N∈K ′ N for all

K ′ ⊆ K . We setQ = G(P(K)) = {G(K ′)}K ′⊆K , Q is the set of all the binary objects
which can be generated from the subsets of nodes ofK .

Although there exist 2|K| distinct subsetsK ′ ofK , most of these subsets generate a same
binary object ofE, more formally, we have|Q| ≤ |P(K)| (and generally|Q| ≪ |P(K)|).

Property 10 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-
tree of I. LetQ be the set of the objects which can be generated from the subsets of
nodes ofK . Let Q∈ Q. Then, we have

C[Q] = min
⊆
G−1(Q) (5)

Less formally, the set of the connected components ofQ is actually a subset of nodes of
K which is included in any other subset of nodesK ′ of K generatingQ. Such setsK ′

are then redundant (they contain in particular some nodes which are included in other
nodes, and then useless for the generation ofQ).
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4.2 Main properties

Smallest superset/ largest subset In this subsection, we first focus on a specific case
of the considered issue, which consists of finding a subset ofnodes of the component-
tree of an imageI such that the object generated by these nodes isincluded in(resp.
includes) the binary targetG and is thelargest (resp. thesmallest) one verifying this
property. This problem is equivalent to consider a pseudo-distanced which only takes
into account the amount of false negatives (resp. false positives) w.r.t.G.

The next property establishes that there exists a (unique) solution to this problem.

Property 11 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-
tree of I. LetQ be the set of the objects which can be generated from the subsets of
nodes ofK . Let G⊆ E. Then there exist G+,G− ∈ Q such that

G+ = min
⊆
{Q ∈ Q | G ⊆ Q} (6)

G− = max
⊆
{Q ∈ Q | Q ⊆ G} (7)

Proof If G = ∅, by settingG+ = ∅ ∈ Q, we are done. Let us now suppose thatG , ∅.
For anyx ∈ G, we setNx = min⊆Kx. Let G+ =

⋃
x∈G Nx. Then we haveG+ ∈ Q and

G ⊆ G+. Let Q′ ∈ Q such thatG ⊆ Q′. Let y ∈ G+. If y ∈ G, then we havey ∈ Q′.
Let us now suppose thaty ∈ G+ \G. Then, there existsx ∈ G such thaty ∈ Nx. Since
x ∈ G ⊆ Q′, there existsN ∈ Kx such thatN ⊆ Q′. But then, we havey ∈ Nx ⊆ N ⊆ Q′.
Consequently, we haveQ ⊆ Q′, and thusG+ = min⊆{Q ∈ Q | G ⊆ Q}.
Let G− =

⋃
N∈K∧N⊆G N. We haveG− ∈ Q andG− ⊆ G. Let Q′ ∈ {Q ∈ Q | Q ⊆ G}.

Let us suppose that there existsx ∈ Q′ \G−. In particular, we havex ∈ G. There exists
Nx ∈ Kx such thatNx ⊆ Q′. If Nx ⊆ G then we havex ∈ Nx ⊆ G−: contradiction. If
Nx * G then we haveQ′ * G: contradiction. Consequently, for allx ∈ Q′, we have
x ∈ G−, and thusG− = max⊆{Q ∈ Q | Q ⊆ G}. ¤

We define now two functions which enable to compute these solutionsG+ andG−

(Def. 12, Props. 13 and 14) and we show that they authorise a computation in linear
time w.r.t. the size (i.e., the number of nodes) of the component-tree of the considered
imageI or the size of the supportE of this image (Prop. 15).

Definition 12 Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the component-
tree of I. Let G⊆ E. LetF +,F − ∈ P(K)K be the functions recursively defined, for all
N ∈ K , by

F +(N) =

{
{N} if p∗(N,G) , 0⋃

N′∈ch(N) F
+(N′) if p∗(N,G) = 0

(8)

F −(N) =

{
{N} if n(N,G) = 0⋃

N′∈ch(N) F
−(N′) if n(N,G) , 0

(9)

In particular, if ch(N) = ∅, we have
⋃

N′∈ch(N) F
−(N′) =

⋃
N′∈ch(N) F

+(N′) = ∅, which
guarantees the termination of these recursive definitions.The functionF + (resp.F −)
provides, for any node N∈ K , the subset of nodes of the subtree of T having N for root,
which enables to generate the set(G ∩ N)+ (see Eq. (6)) (resp.(G ∩ N)− (see Eq. (7)))
for the restriction of the image I to N.
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Property 13 Letσ ∈ {+,−}. Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the
component-tree of I. Let G⊆ E. Then we have

C[Gσ] = F σ(E) (10)

Proof Let X,Y ∈ F σ(E). By definition, we haveX,Y ∈ K . Moreover, ifX , Y, it
obviously comes thatX ∩ Y = ∅. Consequently, there existsQ ∈ Q such thatF σ(E) =
C[Q]. By induction from the definition ofF +(E) (resp.F −(E)), we easily deduce that⋃

N∈F +(E) N =
⋃

N∈K∧p∗(N,G),0 N (resp.
⋃

N∈F −(E) N =
⋃

N∈K∧n(N,G)=0 N). In particular, it
follows that

⋃
N∈F +(E) N ∈ {Q ∈ Q | G ⊆ Q} (resp.

⋃
N∈F −(E) N ∈ {Q ∈ Q | Q ⊆ G}).

Let N ∈ F +(E). Let y ∈ G such thaty ∈ N and y <
⋃

N′∈ch(N) N′ (such a point
y exists asp∗(N,G) , 0). Then,N = min⊆Ky, and sincey ∈ G+, we must have
N ⊆ G+. Consequently, we have

⋃
N∈F +(E) N ⊆ G+, and then

⋃
N∈F +(E) N = G+ and

F +(E) = C[G+]. Let x ∈ G− \
⋃

N∈F −(E) N. Then, there existsN ∈ Kx such thatN ⊆ G−.
As x <

⋃
N∈F −(E) N, we haveN < F −(E), and in particular,n(N,G) , 0. But then, there

existsy ∈ N such thaty < G, and thus,G− * G: contradiction. Consequently, we have
G− ⊆

⋃
N∈F −(E) N, and thenG− =

⋃
N∈F −(E) N andF −(E) = C[G−]. ¤

The following property immediately derives from Prop. 13.

Property 14 Letσ ∈ {+,−}. Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the
component-tree of I. Let G⊆ E. Then we have

Gσ =
⋃

N∈F σ(E)

N (11)

Property 15 Letσ ∈ {+,−}. Let I ∈ VE be a grey-level image. Let T= (K , L,R) be
the component-tree of I. Let G⊆ E. ThenC[Gσ] (and thus Gσ) can be computed with
a linear algorithmic complexityO(max{|K|, |E|}), w.r.t. the number of nodes of the tree
or the size of the image.

Proof From the definition ofF σ(E), it is easily proved that each node is processed
at most once. For each one of theseO(|K|) processed nodes, one equality (related to
p∗(N,G) or n(N,G), which are assumed to be precomputed, see Remark 3) is tested,
and the status of the node (“in” or “out of” the resultF σ(E)) is possibly modified.
These two operations have a constant algorithmic complexity O(1). The whole process
then presents a linear complexityO(|K|). The generation ofGσ from F σ(E) can be
performed by modifying, for each nodeN of K and for each pointx of N (these points
being stored inEN for each nodeN, see Remark 3) the status ofx to indicate that it
belongs toGσ. This process then presents an algorithmic complexityO(|E|). Hence the
result holds.¤

General caseWe now focus on the general case of the problem stated in Sec. 3, which
consists of finding a set of nodeŝK of the component-tree of an imageI verifying
Eq. (4), for the pseudo-distancedα proposed in Def. 4. The purpose is then to find the
best compromise (according to a chosen weightα ∈ [0,1]) between the amount of false
positives and false negatives w.r.t. a binary targetG.
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Since the setQ of the objects which can be generated from the subsets of nodes of
a component-tree is finite, there necessarily exists a solution to this problem. Hereafter,
we show that such a solution (Def. 16) can be computed in linear time w.r.t. the size
(i.e., the number of nodes) of the component-tree of the considered imageI or the size
of the supportE of this image (Props. 19 and 20).

Definition 16 Letα ∈ [0,1]. Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the
component-tree of I. Let G⊆ E. Let≺ ∈ {<,≤}. LetF α : K → P(K) and cα : K → R+

be the functions recursively cross-defined, for all N∈ K , by

(F α(N), cα(N)) =

{
({N}, α.n(N,G)) if α.n(N,G) ≺ (1− α).p∗(N,G) +

∑
N′∈ch(N) cα(N′)

(
⋃

N′∈ch(N) F
α(N′), (1− α).p∗(N,G) +

∑
N′∈ch(N) cα(N′)) otherwise

(12)
In particular, if ch(N) = ∅, we have

⋃
N′∈ch(N) F

α(N′) = ∅ (which guarantees the ter-
mination of these recursive definitions), and

∑
N′∈ch(N) cα(N′) = 0. The functionF α

provides, for any node N∈ K , the subset of nodes of the subtree of T having N for root,
which enables to generate the set(G ∩ N)α (see Eq. (13), below) for the restriction of
the image I to N. The function cα provides the cost (w.r.t. dα) of this best solution.

Definition 17 Let α ∈ [0,1]. Let I ∈ VE be a grey-level image. Let T= (K , L,R) be
the component-tree of I. LetQ be the set of the objects which can be generated from the
subsets of nodes ofK . Let G⊆ E. We define Gα ∈ Q as

Gα =
⋃

N∈F α(E)

N (13)

From a reasoning similar to (and actually simpler than) the one of Prop. 13, we have
the following result.

Property 18 Letα ∈ [0,1]. Let I ∈ VE be a grey-level image. Let G⊆ E. Then we have

F α(E) = C[Gα] (14)

Property 19 Letα ∈ [0,1]. Let I ∈ VE be a grey-level image. Let T= (K , L,R) be the
component-tree of I. LetQ be the set of the objects which can be generated from the
subsets of nodes ofK . Let G⊆ E. Then, we have

dα(Gα,G) = cα(E) = min
Q∈Q
{dα(Q,G)} (15)

Proof Let us suppose thatch(E) = ∅. Then we haveQ = {∅,E}, dα(∅,G) = (1 −
α).p(E,G) anddα(E,G) = α.n(E,G). If α.n(E,G) ≺ (1− α).p∗(E,G) +

∑
N∈ch(E) cα(N),

i.e., if α.n(E,G) ≺ (1−α).p(E,G), thenF α(E) = {E}, cα(E) = α.n(E) and thus we have
dα(Gα,G) = dα(E,G) = cα(E) = minQ∈Q{dα(Q,G)}. If α.n(E,G) ⊀ (1 − α).p(E,G),
then we haveF α(E) = ∅, cα(E) = (1 − α).p(E,G) = (1 − α).p∗(E,G) and thus,
dα(Gα,G) = dα(∅,G) = cα(E) = minQ∈Q{dα(Q,G)}. Consequently, the property is true
wheneverch(E) = ∅. Let us now suppose thatch(E) , ∅ and that the property holds for
anyN ∈ ch(E) (w.r.t. I |N, TN andG ∩ N, instead ofI , T andG, see Prop. 5). Note that
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minQ∈Q{dα(Q,G)} = min{dα(E,G),minQ∈Q\{E}{dα(Q,G)}}, whiledα(E,G) = α.|E\G| =
α.n(E), and minQ∈Q\{E}{dα(Q,G)} = minQ∈Q\{E} α.|Q\G|+ (1−α).|G\Q|. Note also that
{Q∩N}N∈ch(E) is a partition ofQ wheneverQ , E while {G\

⋃
N∈ch(E) N}∪{G∩N}N∈ch(E)

is a partition ofG (by omitting the possibly empty subsets). IfQ , E, we have
dα(Q,G) = α.|Q\G|+(1−α).|G\Q| = α.|

⋃
N∈ch(E)(Q∩N)\G|+(1−α).|((G\

⋃
N∈ch(E) N)∪⋃

N∈ch(E)(G∩N))\Q| =
∑

N∈ch(E) α.|(Q∩N)\G|+(1−α).|(G\
⋃

N∈ch(E) N)\Q|+
∑

N∈ch(E)(1−
α).|(G∩ N) \Q| =

∑
N∈ch(E)(α.|(Q∩ N) \ (G∩ N)| + (1− α).|(G∩ N) \ (Q∩ N)|) + (1−

α).|G\
⋃

N∈ch(E) N| =
∑

N∈ch(E)(α.|(Q∩N) \ (G∩N)|+ (1−α).|(G∩N) \ (Q∩N)|)+ (1−
α).p∗(E). From the above partition properties, it then comes that minQ∈Q\{E}{dα(Q,G)} =
minQ∈Q\{E}{

∑
N∈ch(E)(α.|(Q∩N)\(G∩N)|+(1−α).|(G∩N)\(Q∩N)|)+(1−α).p∗(E)} = (1−

α).p∗(E)+
∑

N∈ch(E) min{α.|(Q∩N)\(G∩N)|+(1−α).|(G∩N)\(Q∩N)|} = (1−α).p∗(E)+∑
N∈ch(E) dα(Q∩ N,G ∩ N) = (1− α).p∗(E) +

∑
N∈ch(E) cα(N), by induction hypothesis.

Consequently, minQ∈Q{dα(Q,G)} = min{α.n(E), (1 − α).p∗(E) +
∑

N∈ch(E) cα(N)}, and
the result follows by induction from Def. 16.¤

Property 20 Letα ∈ [0,1]. Let I ∈ VE be a grey-level image. Let G⊆ E. ThenF α(E) =
C[Gα] (and thus Gα) can be computed with an algorithmic complexityO(max{|K|, |E|}),
linear w.r.t. the number of nodes of the tree or the size of theimage.

Proof The proof is similar to the proof of Prop. 15. The only difference lies in the fact
that the set of conditions to be tested (α.n(N) ≺ (1 − α).p∗(N) +

∑
N′∈ch(N) cα(N′)) re-

quires at most|K| comparison operations (≺) and 4.|K| arithmetic operations (.,+,−),
while the computation of all the termscα(.) involves (at most) the valuecα(N′) only
once for anyN′ ∈ K , leading to less than|K| additions in the set of all the

∑
terms.

Such supplementary operations then do not increase the algorithmic complexityO(|K|)
of the computation ofF α(E) by comparison toF σ(E). Hence the result holds.¤

Remark 21 The set of nodesF α(E) and its associated binary object Gα enable to
minimise dα(.,G), and thus to obtain an optimal solution to the issue considered in this
work. However,F α(E) and Gα are generally not unique. To illustrate this assertion,
let us consider the trivial case where G= ∅ (resp. G= E) andα = 0 (resp.α = 1).
Obviously, in such a case, any set of nodes and any associatedbinary object minimise
d0(.,G) (resp. d1(.,G)), which is always equal to0. However, the way to define≺ in
Eq. (12) enables to break this non-determinism by choosing to favour the smallest (<)
or the largest (≤) solution (w.r.t. the inclusion relation⊆) among all the possible ones.
In particular, if ≺ is set to< (resp. to≤) we haveF + = F 0 (resp.F − = F 1) (the easy
proof of this assertion is left to the reader).

5 Algorithmics

From the above study, which provides an answer to the question stated in Sec. 1, we
can derive the method described in Alg. 1. (For the sake of readability, this algorithm,
which is intrinsically recursive, is described in an iterative fashion.)
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Algorithm 1 - Segmentation method

Input
I : E→ V (image to be segmented);
G ⊆ E (rough segmentation ofI )
α ∈ [0,1] (weight parameter for false positives/negatives)
≺ ∈ {<,≤} (order involved in the cost minimisation formula)
Output
Gα ⊆ E (final segmentation ofI )

Algorithm
1 - Component-tree computation
T = (K , L,R) (component-tree ofI )
for all N ∈ K do

EN = N \
⋃

N′∈ch(N) N′

p∗(N,G) = |EN ∩G|
n(N,G) = |N \G|

end for
2 - Cost minimisation
for v = ⊤ to⊥ do

for all N ∈ K such thatm(N) = v do
if α.n(N,G) ≺ (1− α).p∗(N,G) +

∑
N′∈ch(N) cα(N′) then

cα(N) = α.n(N,G)
F α(N) = {N}

else
cα(N) = (1− α).p∗(N,G) +

∑
N′∈ch(N) cα(N′)

F α(N) =
⋃

N′∈ch(N) F
α(N′)

end if
end for

end for
3 - Result computation
Gα =

⋃
N∈F α(E) N

In its general form, the method corresponds to Def. 16, whichsolves the general
case considered in Sec. 4.2. In the specific case whereα = 0 and≺ = < (resp.α = 1
and≺ = ≤), the method corresponds to Eq. (8) (resp. Eq. (9)) in Def. 12, which solves
the specific case of the smallest result including (resp. thelargest result included in) the
rough segmentation, considered in Sec. 4.2.

6 Application example: Assisted segmentation of drop caps

As established in the previous sections, given an image, a rough segmentation, and
a parameter controlling the trade-off between false positives and false negatives, it is
possible to compute, in linear time, the best segmentation composed by the connected
components stored in the component-tree of the image. Basedon Alg. 1, an interactive
segmentation software tool has been developed, and appliedto the extraction of drop
caps textural parts from ancient documents [11]. These dropcaps are issued from the
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(a) (b) (c) α = 0.02 (d) α = 0.37 (e) α = 0.31

(f) (g) (h) α = 0.06 (i) α = 0.72 (j) α = 0.19

(k) (l) (m) α = 0.02 (n) α = 0.64 (o) α = 0.16

(p) (q) (r) α = 0.06 (s) α = 0.73 (t) α = 0.41

Fig. 2. Segmentation process. First column: initial images. Second column: user-defined rough
segmentations (in red). Third to fifth columns: examples of proposed segmentation results for
different values ofα (fifth column: best obtained segmentation).

Madonne database OLDB (Ornamentals Letters DataBase), which consists of more than
6000 grey-scale graphical decorative initials extracted from archival documents2. Drop
caps images are composed of a letter (uppercase) part and textural parts. They are noisy
and contain artifacts such as superimposed text, coming from neighbouring book pages.
The size of these images varies from 150× 150 to 750× 750 pixels. In this study, we
are interested in the fast extraction of objects belonging to the textural (background)

2 We would like to thank theCentre d’Études Supérieures de la Renaissancefor the permission
to use their archival documents.
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part of the drop cap (these objects are of extremal intensity, which is compliant with the
requirements of the method). The components are then used afterwards as query objects
in a system for drop caps retrieval and indexation.

The segmentation protocol, exemplified in Fig. 2 is the following one. Given a drop
cap image, (first column), the user proposes a manually-defined rough segmentation
(second column). He can then choose the most satisfactory segmentation by simply
interactively tuning theα value (third to fifth column) between 0 and 1 in a threshold-
like fashion. For each chosenα, the segmentation is computed on the fly, in real time.

7 Conclusion

In this article, it has been established that the component-tree structure can be used to
compute, in linear time, a binary object which fits at best (w.r.t. false positives/negatives
criteria) a given binary target which can be assumed to identify structures of interest in
a digital grey-level image.

Based on this result a segmentation method has been proposedand successfully
applied to the case of document analysis, emphasising the relevance of the approach.

In a further extended version of this work, it will be shown that this interactive
segmentation method can be optimised from both time and space point of views, by
establishing in particular the increasing property of the results w.r.t. theα values. Addi-
tional applications to medical images will also be proposed.
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