
HAL Id: hal-01695041
https://hal.univ-reims.fr/hal-01695041

Submitted on 28 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-hypertrees for image segmentation
Nicolas Passat, Benoît Naegel

To cite this version:
Nicolas Passat, Benoît Naegel. Component-hypertrees for image segmentation. International Sym-
posium on Mathematical Morphology (ISMM), 2011, Intra, Lake Maggiore, Italy. pp.284-295,
�10.1007/978-3-642-21569-8_25�. �hal-01695041�

https://hal.univ-reims.fr/hal-01695041
https://hal.archives-ouvertes.fr

Component-hypertrees for image segmentation

Nicolas Passat(1) and Benôıt Naegel(2)

(1) Université de Strasbourg, LSIIT, UMR CNRS 7005, France
(2) Université Nancy 1, LORIA, UMR CNRS 7503, France

passat@unistra.fr, benoit.naegel@loria.fr

Abstract. An interactive segmentation method, based on component-
trees, has been proposed recently. In this article, we describe an ex-
tension of this method relying on mask-based connectivity. This im-
proved version uses a component-hypertree, which models the component-
trees of an image at various connectivity levels, and the relations of the
nodes/connected components between these levels. The use of this data
structure is less costly than the use of several component-trees. In partic-
ular, its (partial) processing enables to compute segmentation results at
all the considered connectivity levels, and to choose the most satisfactory
one. Application examples illustrate the relevance of this approach.

Key words: Component-tree, segmentation, mask-based connectivity, hypertree.

1 Introduction

The component-tree [1] is a graph-based structure which models some charac-
teristics of a grey-level image by considering its binary level-sets obtained from
successive thresholdings. It is particularly well-suited for the design of fast seg-
mentation methods [2, 3], based on hypotheses related to the topology (connect-
edness) and the specific intensity (locally extremal) of structures of interest.

In this context, a new segmentation method has been proposed recently [4].
For a given (manual) presegmentation, it computes the best segmentation in-
duced by the nodes of the image component-tree. By opposition to the standard
component-tree approaches, based on attributes [5], this “best segmentation” is
here the one which minimises a cost function modelling false positives/negatives
between manual approximate segmentation and the proposed solution.

This method provides results for a given connectivity (in general, a con-
nectivity induced by the standard adjacencies on Z

n). In order to take into
account simultaneously several (richer) connectivities, and in particular mask-
based connectivities [6], an extension of this method is proposed. Based on a
component-hypertree, which models the component-trees of a same image at var-
ious connectivity levels (induced by increasing masks), and the decomposition
of each node/connected component in these successive component-trees, it com-
putes all the segmentation results induced by these connectivity levels.

The article is organised as follows. In Sec. 2, a (short) state of the art related
to component-tree segmentation is proposed. In Sec. 3, the segmentation method

2 N. Passat, B. Naegel

defined in [4] is recalled. Sec. 4 presents the component-hypertree, and how to
use it to segment an image at various connectivity levels, in the same way as in
Sec. 3. In Sec. 5, experiments illustrate the behaviour of this technique.

2 Previous works

Component-trees have been involved in the development of several applications
related to image filtering and/or segmentation [6–11]. All these proposed meth-
ods have been designed to detect the structures of interest by using information
related to the value of attributes stored at each node of the tree. In such strate-
gies, an attribute, or more generally a set of attributes [5], are chosen according
to the hypotheses related to the applicative context. These attributes are as-
sumed to model some characteristic properties of the structures of interest, and
can be used in different ways:
– the desired values of the attributes can be chosen by the user in order to

select the relevant nodes inducing the correct segmentation [6–8, 10];
– these values can be determined by analysing the signature of the attributes

(i.e., their evolution w.r.t. the grey-level of the nodes) [2];
– they can be learnt from examples, e.g., by providing a ground-truth charac-

terising the shape of the objects to detect [9], or by feeding a classification
process when the set of attributes becomes too large [11–13].

In such works, component-trees have been used for their ability to discriminate
nodes w.r.t. attributes, leading to automated/parametric methods.

It is however possible to directly use the component-tree structure by taking
advantage of the decomposition of the image into nodes/connected components
that it provides, in order to perform interactive segmentation. Methods based
on such an alternative strategy should compute a segmentation result, no longer
thanks to node attributes, but to a user-defined approximate result, which should
then be matched at best by a relevant set of nodes. To our knowledge, the
methodology proposed in the next sections is the first one based on this strategy.

3 Component-tree segmentation method

3.1 Component-trees

Let E ⊂ Z
n (n ≥ 1) be a finite connected set (for a given adjacency relation).

Let V = [[⊥,⊤]] ∪ {−∞} with [[⊥,⊤]] ⊂ Z. A grey-level image is a function
I : Z

n → V such that I−1({−∞}) = Z
n \ E. By abuse of notation, we will

implicitly restrict I to E, and note I : E → V , or I ∈ V E . We assume, without
loss of generality, that ⊤ = max{I(x) | x ∈ E}.

The thresholding function Xv : V E → 2E (v ∈ V) is defined by Xv(I) =
{x ∈ E | v ≤ I(x)}. The cylinder function CX,v : E → V (v ∈ V , X ⊆ E) is
defined by CX,v(x) = v if x ∈ X and −∞ otherwise. An image I ∈ V E can be
written as I =

∨
v∈V

∨
X∈C[Xv(I)] CX,v where

∨
is the pointwise supremum for

the sets of functions, and C[.] is the set of the connected components of a set.

Component-hypertrees for image segmentation 3

Let K =
⋃

v∈V C[Xv(I)] be the set of the connected components generated by
the thresholdings of I at all values v ∈ V . The component-tree of I is obtained
from the Hasse diagram of the partially ordered set (K,⊆).

Definition 1 (Component-tree) Let I ∈ V E be a grey-level image. The com-
ponent-tree of I is the rooted tree T = (K, L, R) such that:
(i) K =

⋃
v∈V C[Xv(I)] ;

(ii) L = {(X, Y) ∈ K2 | Y ⊂ X ∧ ∀Z ∈ K, Y ⊆ Z ⊂ X ⇒ Y = Z} ;
(iii) R = sup(K,⊆) = X⊥(I) = E .
The elements of K (resp. of L) are the nodes (resp. the edges) of T . The node
R is the root of T . For any N ∈ K, we set ch(N) = {N ′ ∈ K | (N, N ′) ∈ L};
ch(N) is the set of the children of N . If ch(N) = ∅, we say that N is a leaf.

3.2 Problem to solve

Component-trees can be used to develop segmentation procedures which consist
of determining a subset K̂ ⊆ K among the nodes of the component-tree T =
(K, L, R) of an image I : E → V . The binary result Is ⊆ E is then defined
as Is =

⋃
X∈bK

X . A way to consider this segmentation problem is to search

the set of nodes K̂ ⊆ K which enables to generate a binary object being as
similar as possible to a target (e.g., a manual presegmentation). This issue can
be formalised as the resolution of the following optimisation problem

K̂ = arg min
K′⊆K

{
d
(⋃

N∈K′

N, M
)}

(1)

where M ⊆ E is the (binary) target, and d is a (pseudo-)distance on 2E. An
intuitive solution for determining such a useful pseudo-distance is to consider
the amount of false positives/negatives induced by X =

⋃
N∈K′ N w.r.t. M

dα(X, M) = α.|X \ M | + (1 − α).|M \ X | with α ∈ [0, 1].

3.3 Segmentation method

As the set K is finite, there exists a solution to Eq. (1). The function Fα proposed
in Def. 2 enables to build a binary image whose connected components form a
set K̂ which is a solution of Eq. (1) (see Prop. 3).

Definition 2 ([4]) Let α ∈ [0, 1]. Let I ∈ V E. Let T = (K, L, R) be the
component-tree of I. Let M ⊆ E. Let ≺ ∈ {<,≤}. Let Fα : K → 2K and
cα : K → R

+ be the functions recursively cross-defined, for all N ∈ K, by
{
Fα(N) = {N}
cα(N) = α.n(N, M)

if

α.n(N, M) ≺ (1 − α).p∗(N, M) +
∑

N ′∈ch(N)

cα(N ′) (2)

4 N. Passat, B. Naegel

and {
Fα(N) =

⋃
N ′∈ch(N) F

α(N ′)

cα(N) = (1 − α).p∗(N, M) +
∑

N ′∈ch(N) cα(N ′)

otherwise, where p∗(N, M) = |(N \
⋃

N ′∈ch(N) N ′)∩M |, and n(N, M) = |N \M |.

Proposition 3 ([4]) We set Mα =
⋃

N∈Fα(E) N . Then, we have

dα(Mα, M) = cα(E) = min
K′⊆K

{
dα

(⋃

N∈K′

N, M
)}

.

Proposition 4 ([4]) Fα(E) = C[Mα] (and thus Mα) can be computed with the
linear algorithmic complexity O(max{|K|, |E|}).

4 Component-hypertree segmentation method

4.1 Mask-based connectivity

In Z
n, connectivity is generally handled thanks to standard notions such as 2n-

and (3n − 1)-adjacencies [14]. A (morphological) alternative definition has been
proposed with the notion of second-generation connectivity [15]. In this context,
mask-based connectivity [6] proposes to use some masks in order to characterise
connected sets. In the binary case, by only considering masks which are either
subsets or supersets of an image, we derive from [6] the following definition.

Definition 5 (Mask-based connectivity) Let X ⊆ E. Let ω(X) ⊆ X (or
⊇ X) be a mask of X. The ω-connected components of X, noted Cω[X], are
– the connected components of ω(X); and
– the singleton sets {x} for any x ∈ X \ ω(X).

if ω(X) ⊆ X and
– the sets X ∩ Y , for any connected component Y of ω(X);

if ω(X) ⊇ X.

In the sequel, for a given image I : E → V , we consider extensive (resp. antiex-
tensive) masks Ω⋆(I) : E → V . We call Ω⋆-connected components of I, and we
note K⋆ the set of all the ω⋆-connected components of Xv(I) induced by the
masks ω⋆(Xv(I)) = Xv(Ω⋆(I)), at all values v ∈ V .

We consider, in particular, the families of masks {Ωi(I)}u
i=t (t ≤ 0 ≤ u)

such that (i) Ωt(I) = CE,−∞, (iii) Ω0(I) = I, (ii) Ωu(I) = CE,⊤, and (iv)
Ωi(I) < Ωj(I) for any t ≤ i < j ≤ u. An example of such a family {Ωi(I)}2

i=−2

is depicted for a 1-D image, in Fig. 1.
Typical examples of families of masks verifying these properties are those

induced by erosions/dilations (resp. openings/closings) (with a structuring ele-
ment containing 0Zn), e.g.:

. . . < δk ◦ ǫk(I) < . . . < δ ◦ ǫ(I) < I < ǫ ◦ δ(I) < . . . < ǫk ◦ δk(I) < . . .

We can, of course, build the (Ω⋆-)component-tree of I induced by the Ω⋆-
connected components of the successive level-sets of I. In particular, it can be
observed that any node N ∈ Ki of the Ωi-component-tree of I is partitioned into
(one or several) node(s) of the Ωi−1-component-tree of I.

Component-hypertrees for image segmentation 5

1

2

3

0

(a) I and {Ωi(I)}2

i=−2

1

1

2

3

0

2
3
4

(b) K2

1

1

2

3

0

2
3

(c) K1

1

2

3

0

1 2
3

4 5
6

(d) K0 = K

1 2

1

2

3

0
3

(e) K−1

421 3

1

2

3

0

5 6
7 8

9

(f) K−2

Fig. 1. A 1-D image I : Z → [[0, 3]]∪{−∞}, and a family {Ωi}
2

i=−2 of mask images of I .
(a) I (in black); Ω2(I) = CE,2 (in blue); Ω1(I) (in green); Ω0(I) = I (in black); Ω−1(I)
(in magenta); Ω−2(I) = CE,−∞ (in red). (b–f) Black lines: connected components of
I ; black lines inside (filled and unfilled) colour boxes: Ω⋆-connected components of I

(from b to f: Ω2- to Ω−2-connected components).

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

Fig. 2. Component-hypertree related to Fig. 1. The set of nodes H is depicted by the
square boxes (their colour represent the threshold value at which they appear: from
black (0) to white (3), and dashed for −∞). The thick lines represent the edges of L↓,
while the thin lines represent the edges of L→. From left to right, we can observe the
five Ωi-component-trees for i from 2 to −2.

1 1

���
���
���
���
���
���

���
���
���
���
���
���

41 2 321

65232

7 84 523

94 3 6 3

1

Fig. 3. Simplified component-hypertree (obtained from Fig. 2) related to Fig. 1. The
numbers in nodes refer to the associated Ω⋆-connected components in Fig. 1.

6 N. Passat, B. Naegel

4.2 Component-hypertrees

We consider the definitions of Sec. 3.1, with the following modifications. An
image I is now considered as defined from Z

n to V (but still with E = I−1(V \
{−∞}) connected and finite). We also associate to I a mask image Ω⋆(I) :
Z

n → V satisfying the hypotheses of Sec. 4.1, i.e., verifying either Ω⋆(I) 6 I or
Ω⋆(I) > I. Under such conditions, the Ω⋆-connected components of I enable to
generate an Ω⋆-component-tree of I similar to the one described in Def. 1, with
the following differences: (i) Z

n ∈ K⋆, (ii) R = sup(K⋆,⊆) = X−∞(I) = Z
n. All

the properties previously stated for component-trees remain, however, valid.

Definition 6 (Component-hypertree) Let I ∈ Z
nV . Let {Ωi(I)}u

i=t (t ≤
0 ≤ u) be a set of mask images of I. The component-hypertree of I is the triplet
H = (H, L↓, L→) such that:
(i) H is the multiset1 defined by: H =

⋃u

i=t Ki

(ii) ∀i ∈ [[t, u]], the subgraph of (H, L↓) induced by the subset of nodes Ki ⊆ H is
the Ωi-component-tree of I;

(iii) ∀v ∈ V , the subgraph of (H, L→) induced by the subset of nodes Sv =⋃
i∈[[t,u]] Cωi

[Xv(I)] ⊆ H is the Hasse diagram of the partially ordered (mul-

ti)set2 (Sv,⊆).

The component-hypertree related to Fig. 1 is illustrated in Fig. 2.

Remark 7 Since Ωt(I) = CE,−∞, we have Kt = {Z
n}∪{{x} | x ∈ E}, i.e., the

Ωt-component-tree is composed of a root Z
n and |E| leaves corresponding each

one to a point in E (see right part of Fig. 2). Since Ωu(I) = CE,⊤, we have
Ku = {Xv(I)}v∈V , i.e., the Ωu-component-tree is composed of the |V | binary
images corresponding to the successive thresholdings of I (see left part of Fig. 2).

Remark 8 A node N ∈ Ki can have several (distinct) decompositions in Ki−1

(this may happen since Ki, is not a multiset). In particular, a node N which
is a Ωi-connected component of Xv(I) for all v ∈ [[v−, v+]] ⊆ V can have up
to v+ − v− + 1 decompositions in Ki−1, at the same grey-levels. The nodes of
these decompositions form a set of (sub)trees of the Ωi−1-component-tree of I
(see Fig. 2 for a node with two decompositions (red and green edges), and a node
with the same decomposition at values 2 and 3 (magenta edge)).

4.3 Simplification

Performing segmentation in the way of Sec. 3 consists of solving Eq. (1), i.e.,
of computing Fα(Zn), for all the Ω⋆-component-trees (in order to allow the
user to define, by “connectivity tuning”, the most satisfactory result). Instead of
processing these component-trees independently, we can compute Fα in a global
fashion in the component-hypertree (in particular, to avoid redundant work).

1 Several nodes of H which are the same subset of Z
n can possibly refer to Ω⋆-

connected components of distinct Ω⋆-component-trees.
2 We set X ⊂ Y whenever X ∈ Ki, Y ∈ Kj are the same subset of Z

n, with i < j.

Component-hypertrees for image segmentation 7

Based on this purpose, let us first state some remarks enabling to simplify
(i.e., factorise) a part of the component-hypertree data structure.

Remark 9 The root Z
n (which role is mainly to guarantee that each Ω⋆-compo-

nent-tree is actually a tree) only needs to be represented once3.

Remark 10 Let Ni ∈ Ki, Ni−1 ∈ Ki−1 be the same subset of Z
n, and the sub-

trees of the Ωi- and Ωi−1-component-trees of root Ni and Ni−1, be identical. From
Def. 2, we have Fα(Ni) = Fα(Ni−1). Then, several successive Ω⋆-component-
trees can share there similar “bottom” parts, thus reducing both space and time
complexity. In particular, this is true for the |E| singleton sets {x} (x ∈ E)
which need only to be represented once (for instance in the Ωt-component-tree).

By opposition, a node which appears in two successive Ω⋆-component-trees must
be represented twice if its subtrees differ (which may modify their value of cα,
and thus Fα, see yellow parts of Fig. 3 for examples of such nodes).

Remark 11 As stated in Rem. 8, a node may have several decompositions. How-
ever, from an algorithmic point of view, only one decomposition is necessary. We
should, in particular, preserve the decomposition which corresponds to the finer
subdivision of the node, i.e., the one composed by the nodes at the threshold value
v+ defined in Rem. 8 (see the green edge in Fig. 3, for an example).

From these remarks, a component-hypertree can be simplified to contain only
nodes which are computationally useful (see Figs. 2 and 3).

Note that a simplified component-hypertree preserves its principal two speci-
ficities: (i) the subgraph of (H,L↓) induced by the subset of nodes K⋆ is the
Ω⋆-component-tree, and (ii) the subgraph of (H,L→) induced by the subset
of nodes Sv corresponding to the Ω⋆-connected components obtained at the
threshold value v provides a (deterministic) hierarchic decomposition of Xv(I)
into Ωi-connected components (for decreasing values of i).

4.4 Segmentation

The main purpose is now to compute Fα(Zn) for all the Ω⋆-component-trees
of the component-hypertree. (Note that we restrict, in the sequel, our study to
α ∈]0, 1[, since the cases α = 0 or 1 can be treated in a more simple way.)

For any N ∈ H, we define the following notions. If Fα(N) = {N} (resp.
Fα(N) 6= {N}), we say that N is on (resp. off). Let d(N) be the set of nodes
D such that (N, D) ∈ L→, i.e., the nodes forming the coarsest partition of N in
H . Let d•(N) = {D ∈ d(N) | Fα(D) = {D}} and d◦(N) = d(N) \ d•(N) be the
subsets of d(N) composed of the nodes which are on and off, respectively. We
set {

δ+(N) = α.n(N, M) − (1 − α).p∗(N, M) −
∑

N ′∈ch(N) cα(N ′)

δ−(N) = cα(N) −
∑

D∈d(N) cα(D)

3 From an algorithmic point of view, it needs not to be represented since we never
have Fα(Zn) = {Z

n}, except in the useless case α = 0 and ≺ is ≤ (when α = 0, the
case ≺ is < should be considered, to get access to the smallest subset including M).

8 N. Passat, B. Naegel

Property 12 If d(N) = ∅ (i.e., N = {x} (x ∈ E) is a singleton node), then
we have Fα(N) = {N} if x ∈ M and ∅ if x /∈ M (see Def. 2). Moreover, we
straightforwardly have δ−(N) = 0 while δ+(N) = α if x /∈ M and α−1 if x ∈ M .

Property 13 In the case where d(N) 6= ∅, it derives from the above definitions
that Eq. (2) is equivalent to the following inequality

∑

D∈d(N)

δ+(D) ≺
∑

N ′∈ch(N)

δ−(N ′) (3)

Property 14 Based on this property, in the case where d(N) 6= ∅, we have
Fα(N) = {N} (i.e., N is on) if Eq. (3) is true and Fα(N) =

⋃
N ′∈ch(N) F

α(N ′)

(i.e., N is off) if it is false. It can also be proved that we have δ−(N) =∑
D∈d◦(N) δ+(N) if N is on, and

∑
N ′∈ch(N) δ−(N) −

∑
D∈d•(N) δ+(N) if N

is off. Finally, we also have δ+(N) =
∑

D∈d(N) δ+(D) −
∑

N ′∈ch(N) δ−(N ′).

From Props. 12–14, we obtain an algorithmic process to recursively com-
pute (in a “bottom-up/right-to-left” fashion) the sets Fα(Zn) in the component-
hypertree, by storing the values δ−, δ+ and performing (at most) one comparison
and a few additions at each node.

4.5 Optimisation

As stated in Sec. 4.3, the simplification of the component-hypertree data struc-
ture provides a first way to decrease the cost of the computation of Fα. Some
supplementary optimisations derive from the following properties. (These opti-
misations require a longer discussion which will be proposed in a further issue.)

Property 15 When
∑

D∈d(N) δ+(D) ≺ 0 (which happens a fortiori, but not

necessarily, when all the nodes of d(N) are on), we have Fα(N) = {N}. Then,
we can avoid to compute Fα, δ− and δ+ for the nodes N ′ ∈ ch(N) and their re-
spective subtrees. However it may (sometimes) be necessary to compute latter δ−

and δ+ for some of these (temporarily) unprocessed nodes, due to the (possible)
non-increasingness of Mα w.r.t. the increasingness of the mask images.

When the segmentations have been computed for a given α, the computation
of new segmentations, for another α, may require to process, once again (poten-
tially) all the nodes of the component-hypertree. However, we have the following
property (the proof of which will be displayed in a next issue).

Property 16 Let 0 ≤ α1 < α2 ≤ 1. Then we have Mα2 ⊆ Mα1 .

Its main consequence is the existence, for each node N , of a critical value αc

such that N is on iff α ≺ αc. Consequently, when a node N is switched on (resp.
off) during the processing of the component-hypertree, at a given value α, we
know that αc belongs to [α, 1] (resp. [0, α]). At each new process, the bounding
[α−

c , α+
c] ⊆ [0, 1] of αc at each node can then be refined. In particular, this may

enable to avoid computation at several nodes, by only checking (in the favourable
cases) whether α ≺ α−

c or α 6≺ α+
c .

Component-hypertrees for image segmentation 9

5 Experiments

LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COM-
PONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-
HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPER-
TREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES,
ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT
MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU
CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE -
LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COM-
PONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-
HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPER-
TREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES,
ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT
MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU
CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE
- LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES
COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPO-
NENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-
HYPERTREES, ÇA FAIT MAL AU CRANE LES COMPONENT-HYPER-
TREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES,
ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT
MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU
CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE -
LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE LES COM-
PONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-
HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPER-
TREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES,
ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT
MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU
CRANE LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE -
LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COM-
PONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-
HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPER-
TREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES,
ÇA FAIT MAL AU CRANE LES COMPONENT-HYPERTREES, ÇA FAIT
MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU
CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE -
LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COM-
PONENT-HYPERTREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-
HYPERTREES, ÇA FAIT MAL AU CRANE LES COMPONENT-HYPER-
TREES, ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES,
ÇA FAIT MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT
MAL AU CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU
CRANE - LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE -
LES COMPONENT-HYPERTREES, ÇA FAIT MAL AU CRANE

10 N. Passat, B. Naegel

6 Conclusion

A new data structure, the component-hypertree, has been presented. It mod-
els several component-trees of a same image, induced by second-order mask-
based connectivity. An improved version of a segmentation method relying on
component-trees has been proposed for this structure. It enables in particular
to efficiently compute, with a low computational cost, the segmentation of an
image for several connectivities. This approach, whose relevance has been exper-
imentally assessed, will be described in a more detailed fashion in further works.
Il encore reste de la place pour écrire des trucs formidables sur toute une ligne.

References

1. Salembier, P.: Connected operators based on tree pruning strategies. In Naj-
man, L., Talbot, H., eds.: Mathematical morphology: from theory to applications.
ISTE/J. Wiley & Sons (2010) 179–198

2. Jones, R.: Connected filtering and segmentation using component trees. Computer
Vision and Image Understanding 75(3) (1999) 215–228

3. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE
Transactions on Image Processing 15(11) (2006) 3531–3539

4. Passat, N., Naegel, B.: Selection of relevant nodes from component-trees in linear
time. In: DGCI. Volume xxxx of LNCS., Springer (2011) xxx–xxx

5. Urbach, E.R., Boersma, N.J., Wilkinson, M.H.F.: Vector attribute filters. In:
ISMM. Volume 30 of Computational Imaging and Vision., Springer (2005) 95–104

6. Ouzounis, G.K., Wilkinson, M.H.F.: Mask-based second-generation connectivity
and attribute filters. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(6) (2007) 990–1004

7. Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement
filtering. In: MICCAI. Volume 2208 of LNCS., Springer (2001) 770–777

8. Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and gray-scale shape
filters. In: ISMM, CSIRO Publishing (2002) 305–314

9. Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute
filters: methodology and application to dermatological imaging. In: ISMM. Vol-
ume 1., INPE (2007) 239–250

10. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Ef-
fective component tree computation with application to pattern recognition in
astronomical imaging. In: ICIP. (2007) 41–44

11. Naegel, B., Wendling, L.: Combining shape descriptors and component-tree for
recognition of ancient graphical drop caps. In: VISAPP. Volume 2. (2009) 297–302

12. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pat-
tern spectra for rotation and scale-invariant classification of gray-scale images.
IEEE Transactions on Pattern Analysis and Machine Intelligence 29(2) (2007)
272–285

13. Caldairou, B., Naegel, B., Passat, N.: Segmentation of complex images based
on component-trees: Methodological tools. In: ISMM. Volume 5720 of LNCS.,
Springer (2009) 171–180

14. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduction and survey. Computer
Vision, Graphics, and Image Processing 48(3) (1989) 357–393

15. Serra, J.: Connectivity on complete lattices. Journal of Mathematical Imaging and
Vision 9(3) (1998) 231–251

