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Abstract. In utero fetal MR images are essential for the diagnosis of ab-
normal brain development and understanding brain structures matura-
tion. Because of particular properties of these images, such as important
partial volume effect and tissue intensity overlaps, few automated seg-
mentation methods have been developed so far compared to the numer-
ous ones existing for the adult brain anatomy. In order to address these
issues, we propose a two-step atlas-free cortex segmentation technique
including anatomical priors and structural constraints. Experiments per-
formed on a set of 6 in utero cases (gestational age from 25 to 32 weeks)
and validations by comparison to manual segmentations illustrate the
necessity of such constraints for fetal brain image segmentation.
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1 Introduction

The study of in utero developing brain by magnetic resonance imaging (MRI) is
motivated by the need of understanding the early brain structure maturation [15,
11]. A prerequisite is the automated labeling of these structures, which has to be
robust to noise, fetal motion artifacts, partial volume effects (PVE), and MRI
intensity inhomogeneity.

Other studies focused mainly on premature, noenates and young children.
Prastawa et al. [13] developed an automated segmentation process of the new-
born brain, including estimation of the initial parameters through a graph clus-
tering strategy, intensity inhomogeneity correction and a final refinement focus-
ing on the separation of myelinated and non-myelinated white matter regions.
White matter delineation from deep grey matter was also a challenge addressed
by Murgasova et al. [9] for young children with an atlas-based approach. Another
method by Xue et al. [16], focusing on cortex segmentation and reconstruction
through a mislabeled partial volume voxel removal strategy was applied to term
and preterm neonates.

⋆ The research leading to these results has received funding from the European Re-
search Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement no. 207667).
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A first attempt for fetal brain structures segmentation was a semi-automated
algorithm based on a region-growing method by Claude et al. [4]. Later on,
fully automatic techniques were developed. Bach Cuedra et al. [1] introduced
separated Bayesian segmentation and Markov random field regularization steps,
the latter including anatomical priors. Other methods took advantage of motion-
corrected and high resolution 3D volumes, computed through reconstruction
techniques from in utero MR scans [8, 14]. Habas et al. developed an automatic
atlas-based segmentation [7], and a method including anatomical constraints in
form of a laminar prior [6]. Gholipour et al. [5] performed a volumetric study of
the brain based on the segmentation of the pericerebral fluid spaces (PFS) (the
part of the cerebrospinal fluid (CSF) located around the cortical area) by using
level-sets, connected components, and mathematical morphology filters.

Most of these methods follow an atlas-based approach or specific regulariza-
tion strategies, including anatomical priors. This illustrates the difficulty to de-
fine a data-driven segmentation, because of PVE and important tissue intensity
overlaps. Nevertheless, building and using an atlas presents several difficulties
such as its registration over the different cases in order to have an accurate seg-
mentation. Moreover, using a specific regularization strategy disconnected from
the data illustrates the need of strong structural constraints which can be also
used in a data-driven approach.

An atlas-free two-step segmentation is defined. It includes structural con-
straints based on a topological model [12] in order to deal with PVE, and a
morphological filter [10] in order to highlight areas where the cortex will the
most likely appear. The first step aims at defining a region of interest including
the cortex and the second one aims at segmenting the cortex itself. Experiments
are carried out on reconstructed 3D volumes and the probability maps issued
from of a non-local fuzzy c-means (NL-FCM) clustering algorithm [3] are used
in order to benefit from its robustness to noise.

2 Method

The grey level histogram from fetal MRI (Fig. 1(a)) reveals two peaks corre-
sponding respectively to the brain, including white matter and cortex, and to
the CSF. Moreover, an important overlap due to intensity inhomogeneity and
partial volume effect is observed. Furthermore, an analysis from a ground truth
segmentation reveals that the cortex and white matter peaks are blended into
the brain one, meaning that these structures can not be dissociated by classic
clustering algorithms based on intensity features. This leads to hazardous clas-
sifications such as white matter between CSF and cortex, which is anatomically
wrong.

To cope with the previous problems, a two steps segmentation is defined in
order to consider these facts (Fig. 1(b)). Both steps rely on a topological k-
means described in Section 2.1. Section 2.2 describes the complete segmentation
pipeline. The first step aims at separating the intracranial volume into PFS,
ventricles and brain. This first segmentation provides a good estimation of the
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Fig. 1. (a) Grey-level histogram from a fetal brain MRI. Black: intracranial volume,
green: cortex, red: white matter and deep grey nuclei, blue: CSF. (b) Overall diagram
of the segmentation process.

border between the PFS and the brain, which is used to define a region of interest
including the cortex. Afterward, the second step is performed in order to retrieve
the CSF, the white matter and the cortex.

2.1 Topological K-Means

A topological model robust to intensity inhomogeneity, relying on three concen-
tric spheres and introducing geometrical constraints for the segmentation process
is defined.

Let us consider an image composed of a set of voxels Ω, each voxel j ∈ Ω
having a given grey-level yj . Let us suppose that this image has to be segmented
into K (≥ 2) clusters. For each cluster k, let Sk be the set of voxels included
into it and νk be the centroid of this cluster (which usually corresponds to the
mean grey-level value of this class of voxels). Based on these notations, in the
k-means approach, the segmentation process of a grey-level image consists of the
minimization of an objective function:

Jk-means =

K
∑

k=0

∑

yj∈Sk

‖yj − νk‖
2

2
.

Nevertheless, considering a global centroid (therefore spatially invariant)
makes the k-means algorithm sensitive to intensity inhomogeneity occurring
in MRI data. In order to tackle this problem without relying on ad hoc prior
knowledge related to the intensity inhomogeneity, we introduce local intensity
centroid values νjk. These local mean-values are computed in the following way
(Fig. 2(a)). An image is divided into several cubical non-overlapping sub-images
or regions. Let νrk be the mean value of the kth cluster in an image region r.
This region mean value is considered as being located in the center of this region.
Let pr be this position. Afterward, for each considered voxel, a local mean value
νjk is computed by a distance-based interpolation of the nearest region mean-

values: νjk =
∑

r ωjrν
r
k∑

r ωjr
, where ωjr = 1/d(j, pr) and d(j, pr) is the Euclidean

spatial distance between the voxel j and pr.
The minimization of the k-means objective function is achieved by a border

voxel exchange, with respect to the following topological model. Let Nj be the
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Fig. 2. (a) Intensity inhomogeneity correction. Voxel j mean values depend on mean
values from regions 1, 2, 4 and 5 and voxel j′ mean values depend on mean values from
regions 5, 6, 8 and 9. (b) Topological model. From white to dark grey, labels are 0, 1,
2 and 3, 0 being the background. Voxel 1: not eligible for switching to another label
because there are three different labels in its neighborhood and a switch would break
the concentric circle model. Voxel 2: eligible to switch to label 1. Voxel 3: not eligible
to switch to label 2 because a neighbor is a background label.

neighborhood of voxel j. Let CNj
be the corresponding set of clusters present in

Nj . A considered voxel j switches from cluster k to another candidate cluster k′

if it meets the following requirements (Fig. 2(b)):







|CNj
| = 2,

∀ c ∈ CNj
, c 6= background,

‖yj − νjk′‖2 < ‖yj − νjk‖2.

The first two requirements guarantee the preservation of the structural con-
straints. They state that a voxel is eligible for switching from one cluster to
another if there are exactly two different clusters in its neighborhood, and if
neither of these is the background. The third requirement guarantees that a
voxel switch decreases the objective function. Our model is different from the
notion of simple points used in topology [12], which implies in particular that
labels connected components are preserved. Broadly speaking, labels connected
components can be broken into several ones or fused as long as the concentric
sphere model is respected, which brings a better flexibility to the segmentation
process.

In practice, the segmentation is achieved by considering a list of border vox-
els obtained by a dilation of the current label. Each voxel meeting the third
requirement is switched to the considered label. When no switch through the
different labels is observed, the centroids are updated and the k-means objective
function computed. This process iterates until a local minimum of the objective
function is reached.

2.2 Proposed segmentation algorithm

Step 1 - CSF This step is initialized as follows. The intracranial volume,
is divided into three concentric spheres representing the PFS, the brain and
the ventricles, thanks to an intracranial distance map. Moreover, a two class
FCM clustering is performed in order to obtain an accurate initialization of the
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centroids. The segmentation is then performed by the topological k-means with
the grey-level image as input.

Step 2 - Cortex Due to intensity overlaps between cortex and white matter,
additional information is needed in order to achieve the segmentation. Since the
fetal cortex is a thin layer between PFS and white matter, a morphological filter
is defined in order to highlight image areas where it will most likely appear.
Let I : Ω → V be a discrete grey-level image. Let ϕB be the morphological
closing of I by a structuring element B. The Top Hat Dark Filter Td is defined
as: Td(I) = ϕB(I)− I. In other words, this filter highlights small objects of the
image that are removed by the closing, depending on the choice of the structuring
element [10].

A region of interest is defined from the border between the PFS and the
brain. A band around this border, including CSF and brain is defined thanks
to a distance map computed from the PFS segmentation. This band is divided
into three sub-bands being the initialization for CSF, cortex and white matter.
Moreover, this initialization is corrected by removing any voxel belonging to the
ventricles.

The segmentation is performed by using a vector composed by the original
image and the top-hat filtered image, instead of the original grey-level values
alone, as the input of the topological segmentation presented in Section 2.1.
Consequently, each cluster is characterized by a centroid vector composed of its
grey-level mean-value and its top-hat-filtered image mean value, allowing a better
discrimination of the cortex. During this process, a maximum cortical thickness
of 4 millimeters is imposed in order to cope with improbable extensions.

In order to improve the segmentation, one can use probability maps com-
puted from a non local FCM algorithm [3] as a post-processing. This method
introduces a regularization based on the non-local framework [2], aiming at cor-
recting artifacts due to noise, by taking advantage of the redundancy present in
images. Broadly speaking, a small neighborhood around a voxel, called a patch,
may match patches around other voxels within the same scene, selecting the
most accurate voxels to perform the regularization. This post-processing step is
run on the same border voxel exchange basis than the topological k-means algo-
rithm, unless a voxel may switch if the probability it belongs to the destination
label is higher than the current one.

3 Experiments and Results

3.1 Material and experimental settings

Experiments are performed on a set of six patients. Gestational ages (GA) range
from 27 to 32 weeks. For each of them, a set of three T2-weighted MR im-
ages (axial, coronal and sagittal) are acquired from a 1.5T scanner (Magnetom
Avanto, Siemens, Germany Erlangen) using single shot fast spin echo sequences
(TR 3190 ms, TE 139-147 ms). Since these images have anisotropic voxel sizes
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Fig. 3. Average DSC comparison between cortex thickness initialization (red) and
final segmentation (blue).

Case (GA) 1 (28) 2 (30) 3 (-) 4 (32) 5 (27) 6 (30)

DSC 72.42 73.03 77.57 74.51 76.60 76.61

DSC with regularization 71.02 71.37 77.76 71.86 75.78 75.23

Table 1. Sensitivity (Sen) and Dice similarity coefficient (DSC) between manual and
automated segmentations with and without non-local FCM post-processing.

and may present motion artifacts, a reconstruction process [14] is applied in
order to obtain high resolution images.

Reconstructed images have the following dimensions: 256×256×88 to 256×
256×117 and voxel dimensions are: 0.742×0.742×0.742 mm. A 3D 6-neighbor-
hood is used to run the topological model. Empirically, a 5 × 5 × 5 structuring
element is chosen to perform the Top Hat filter.

For the PFS segmentation, the model is initialized as follows. On the border
with the background, a 1 voxel thin layer is set as PFS. Then, the voxels being
less than 80% of the maximum intracranial distance are set as brain and the
remaining ones are set as ICSF. This guarantees that the ICSF initial cluster
will not include any PFS voxels.

Regarding the cortex segmentation, the model was initialized as follows. The
first two-millimeters layer is set as CSF, the next 5 as cortex and the last 2 as
white matter. These values were chosen according to tissues anatomical charac-
teristics.

Concerning the parameters of the non-local FCM algorithm, the size of the
research area is 11 × 11 × 11 and the size of the patches is 3 × 3 × 3. The
computation times are about 20 minutes for the extraction of the CSF and 15
minutes for the cortex segmentation.

3.2 Validation

Each reconstructed image has been manually segmented. The validation consists
of the computation of the dice similarity coefficient (DSC) between the manual
and the automated segmentation of the cortex. Let TP be the amount of true
positives (number of detected cortex voxels), FP the amount of false positives
(number of voxels incorrectly classified as cortex) and FN the amount of false
negatives (number of undetected cortex voxels). The dice coefficient is given by:
DSC = 2× TP/(2× TP + FN + FP ).

Table 1 presents Sen and DSC for each case. Both regularized and non-
regularized results are presented. Fig. 3 illustrates the algorithm robustness to
initialization by setting a 2 to 5 millimeters initial thickness to the cortex.
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Fig. 4. Cortex extraction. (a,d): ground truth, (b,e): segmentation without non-local
FCM regularization, (c,f): segmentation with non-local FCM regularization. Red: CSF,
green: cortex, blue: white matter and deep grey nuclei.

A visual insight of the segmentation (Fig. 4) underlines the accuracy of the
method, even though a slight under-segmentation can be observed in some areas.
Moreover, even though regularization accentuates the under-segmentation, it can
be observed that it brings a noise correction and smoother borders between the
different tissues.

Other studies about fetal brain segmentations highlighted results about the
cortex segmentation. Bach Cuedra et al. [1] showed DSC values around 65 %
with a two steps segmentation separating LCR into PFS and ICSF and applying
a specific regularization step. Habas et al. [7] achieved performance around 82
% with an atlas based approach. Results presented here underline the usefulness
of structural constraints for fetal tissue segmentation, if no atlas is available.

4 Conclusion

A topological based clustering method has been proposed for the segmentation
of the cortex in fetal brain MR images, which takes advantages of anatomical
knowledge. The validation performed on T2-weighted images illustrates the use-
fulness of such structural constraints in an atlas-free approach of fetal brain
segmentation.

Further work will focus on the improvement of the segmentation method, such
as a better integration of the regularization step into the process, its validation
on additional cases and the segmentation of other tissues and structures of the
fetal brain.
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