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Abstract. In this paper, we propose a pipeline for building statistical cerebro-
vascular atlases from 3D angiographic datasets. This pipeline relies on recent
advances in vessel segmentation and filtering, image skeletonization, and image
registration. The generated atlases embed information on vesselness probabil-
ity, vein/artery discrimination, vessel size and relative orientation. It improves
on previously proposed approaches. Experiments performed on a dataset of 54
MRA/MRI images allowed us to propose an original vascular atlas of the whole
intracranial volume.
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1 Introduction

The availability of accurate knowledge related to anatomical structures is essential in
nearly all the fields of medical image analysis. In the case of vascular networks, such
knowledge can be classified into three categories: (i) morphological (e.g., shape, size,
orientation), (ii) structural (e.g., topology, position, spatial relations), and (iii) func-
tional. We focus here on the first two categories, which have not been the object of
much work since the end of the 80’s.

Recent studies, often devoted to the cerebrovasculature, were intended to model
information related to potentially complex vascular networks. This complexity arises
from the structure of these networks, the wide variety (size, veins/arteries) of the visu-
alized vessels, the image modalities (often non-injected, especially in magnetic reso-
nance angiography –MRA– data), and also from the anatomical variability of the ves-
sels. In this context, the design of no longer deterministic, but statistical atlases has
been considered. Among other possible applications, such atlases can be of use in the
initialization and guidance of automated vessel segmentation and labelling procedures,
often important steps in many medical image analysis applications.

This article is organized as follows. Section 2 proposes a state of the art on vascular
atlases. Section 3 describes the developed atlas generation pipeline. This pipeline is
applied to a 54 images dataset, allowing us to produce an atlas as described in Section 4.

? The research leading to these results has been partially funded by a PhD grant of the Région
Alsace (France) and the Centre National de la Recherche Scientifique (CNRS, France).



2 Previous works

In contrast to other anatomical structures, vascular networks have been infrequently
considered for atlas generation. This section proposes a short survey on this research
field, mostly focused on cerebrovascular and cardiovascular networks. The reader may
find a more complete and up-to-date, state of the art in [18].

Pioneering works and deterministic atlases. The first (hand-made) vascular at-
las generated from angiographic data [6], consisted of a (piecewise linear) skeleton
modelling the main coronary arteries, providing information on vessel position and tra-
jectory. Since then, other (deterministic) atlases have been proposed.

Early works, based on graphs, focused on symbolic descriptions of vessels (inde-
pendently from their 3D embedding). The extraction of such graphs has been a frequent
application to the first 3D segmentation methods [19]. To avoid segmentation errors,
another solution was to consider realistic and easy to process anatomical phantoms [3].

Later works aimed at defining anatomically realistic vascular models. In [13], a
geometric atlas of the cerebrovascular network was proposed. Its generation, based on
a time of flight –TOF– MRA of a healthy patient, leads to an accurate vascular atlas
providing information on the type of vessels (arteries or veins), their position, name,
size and topology. Such an atlas, while essentially designed manually, is yet strongly
linked to the involved patient image. In [10], a geometric atlas is proposed for coronary
arteries. It was created (at least partially) using the vascular information provided by
3D computed tomography angiography –CTA– data of several patients.

Statistical atlases. Non-deterministic, and especially statistical, atlases aim at mod-
elling both invariant information and inter-individual variability among a set of patients,
in a unified framework.

In simple cases, for instance when only one vessel has to be modelled, a straight-
forward strategy consists of creating a shape model. This can be done by computing the
mean (fuzzy) image of segmented data, as proposed in [11] for the portal vein entry.

In more complex cases, in particular for whole vascular networks, it becomes neces-
sary to develop strategies for fusing several vascular images. In [4], segmented networks
are registered onto a chosen set, considered as the anatomical reference. The computed
mean and variance images of distance maps provide a kind of probabilistic atlas. A
similar alternative technique is proposed in [5], where the registration process also in-
volves morphological (T2 MRI) data. In some cases, morphological information can be
directly obtained from angiographic data, as in [16], where CTA images are considered.

These statistical atlases are essentially devoted to vascular density modelling. In
[14] a way to design richer (cerebro)vascular atlases is proposed. Such atlases have
the advantage to model not only vascular density, but also information on vessel size
and orientation. Despite these improvements, the generation pipeline proposed in [14]
presents some weaknesses: (i) no vein/artery discrimination, (ii) absolute orientations
instead of relative ones, (iii) use of one specific patient morphology as anatomical refer-
ence, and (iv) use of binary (segmented) images for size and orientation determination
(with possible segmentation errors).

Based on recent advances in (medical and non-medical) image processing, we pro-
pose a new pipeline, inspired from the one of [14], that provides solutions to all the
weaknesses listed above.
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Fig. 1. Atlas generation pipeline. The grey boxes correspond to the steps described in Sec. 3.
Seg.: segmentation (Sec. 3.3), Skel.: centerline computation (Sec. 3.4), Size: size computation
(Sec. 3.5), Orie.: orientation computation (Sec. 3.5), Registration (Sec. 3.6), Fusion (Sec. 3.7).

3 Atlas generation pipeline

3.1 Input/output

The pipeline takes as input a set {(Mi, Ai)}ki=1 of k ∈ N angiographic images of intracra-
nial volumes. These images need not be similar in terms of modalities and/or acquisition
devices, including MRA and/or CTA. It is however mandatory, for each angiographic
image Ai : E → V (E is the 3D brain volume, V is the grey-levels value space), to be
associated to a morphological one, Mi : E → V (e.g., a T1 MRI). This requirement (see
Section 3.6) is not actually a problem since such morphological images are generally
acquired in addition to both MRA and CTA.

The pipeline provides as output a vascular arteriovenous cerebral atlas modelling
statistical information. It fuses, in a unified anatomical reference, several pieces of
knowledge related to vascular probability density, vein/artery discrimination, vessels
size and relative orientation. This atlas is represented by a pair of images (M,A). The
image M : E → V is a (scalar) mean morphological image obtained from the mor-
phologies of the k patients (similar, e.g., to a mean T1 MRI). The vascular (vectorial)
part of the atlas is defined as∣∣∣∣∣∣A : E → [0, 1] × [0, 1] × T × (R+)2

x 7→ (δ(x), α(x), ω(x), σ(x)) (1)

To each point x ∈ E is associated the 4-uple (δ(x), α(x), ω(x), σ(x)) where: δ(x) is the
vessel presence probability at x; α(x) is the arterial probability (i.e., a vessel at x has
a probability α(x) (resp. 1 − α(x)) to be an artery (resp. a vein)); ω(x) is a 3D tensor
modelling the mean orientation of the vessels at x, and how these orientations are spread
around this mean orientation; finally σ(x) provides the mean vessel diameter and its
standard deviation at x. (Note that α(x), ω(x), σ(x) are relevant only for δ(x) � 0.)



3.2 Outline

The pipeline is organized as illustrated in Fig. 1. The k angiographic images are first
segmented, in order to extract both venous and arterial structures (Section 3.3). This
is done interactively to lessen segmentation errors. From these binary data, vessel cen-
terlines are extracted (Section 3.4). They provide the relevant loci where a multiscale
Hessian-based analysis is applied to determine the vessels orientation and size (Sec-
tion 3.5). Both are computed from the grey-level images (more informative and reliable
than the segmented ones). In parallel to these steps, registration is performed between
the k morphological images (Section 3.6). This providesM and the deformation fields
associated to the k images. These deformation fields and the knowledge elements are
finally combined to define the vascular atlasA (Section 3.7).

3.3 Vein/artery segmentation

The segmentation step is crucial since (i) the vascular density δ is computed as a mean
value of the segmented vascular volumes, and (ii) the vessel centerlines is computed as
their medial axes. It is then important to ensure that there are no false positives, and
a minimal amount of false negatives. To avoid post-processing result corrections, we
propose to rely on a new interactive segmentation technique [7] coupled with a filtering
strategy [17] featuring increased robustness to vessel disconnections. This technique al-
lows the user to choose, in real-time, the best segmentation among a set of preprocessed
ones. Moreover, this example-based methodology enables us to perform discriminant
segmentation of arteries and veins, thus providing, for each one of the k images, distinct
arterial and venous volumes ai, vi ⊆ E (i ∈ [1, k]).

3.4 Vessel centerlines computation

The binary volumes ai, vi are then skeletonized, to determine the positions of the vessel
axes. Contrary to [14], these axes are not directly used to compute the vessels orien-
tation (from the skeleton) and size (from both the skeleton and the binary volumes).
They only provide the loci where a Hessian-based analysis has to be performed from
the images Ai to determine these geometric information. It is then crucial for the com-
puted axes (i) to be (globally) centered, and (ii) to provide a topologically sound model
of the vessel branches. To satisfy these requirements, the algorithm proposed in [1] is
applied. It provides skeletonized images as

i , v
s
i ⊂ ai, vi, without irrelevant branches. The

skeleton regularity (not guaranteed here) is desirable but actually not essential, since a
confidence neighbourhood is obtained by binary dilation of the skeleton.

3.5 Orientation and size computation

The purpose of this step is twofold. It consists of determining (i) the size of the vessels
and (ii) their orientation. Hessian-based analysis constitutes a standard approach for
vessel filtering, as it provides a model of the second order differential properties of the
image, as well as size, orientation and characterization of several geometric structures.
Based on ad hoc “vesselness” functions [15, 8], it is in particular possible to determine



the orientation of vessels in Ai images. Note that the restriction of this study to the as
i , v

s
i

parts of Ai allows us to reduce the computational cost and to avoid possibly erroneous
results away from the vessel axes. The computation of a vesselness measure is done in
a multiscale fashion [9]. The scale for which the response is maximal in x ∈ E corre-
sponds to a convolution kernel directly correlated to the size of the vessel visualised in
x. The principal orientation (first eigenvector of the Hessian matrix) at x for this scale
is then the vessel orientation. This strategy provides orientation oi(x) ∈ R3 and size
si(x) ∈ R+ information for any point x ∈ as

i ∪ vs
i . It is however mandatory to extend

these information to the whole vascular volume Ai. For si(.), this can be done by per-
forming in each x ∈ as

i ∪ vs
i a variant flat dilation by a spherical structuring element

whose radius is determined by si(x) (the grey-level values correspond to si). For oi(.),
which is no longer a scalar function, but a vectorial one, this can be done by computing,
for each x ∈ Ai, a weighted average value of the orientations oi(y) of the points y lo-
cated in the intersection of as

i , v
s
i and a neighbourhood of x. For each image Ai, this step

outputs a size function si : ai ∪ vi → R+ and an orientation function oi : ai ∪ vi → R3.

3.6 Registration

Registration is necessary to estimate the deformation fieldsDi : E → E, enabling us to
map the information of any data (Mi, Ai) onto a common anatomical reference. These
fields are estimated from the (morphological) Mi data, using a groupwise nonrigid regis-
tration technique [12]. In comparison to [14], this eschews the possible anatomical bias
induced by the use of a specific image Mi as reference. Once the Di fields are known,
the anatomical referenceM can be computed as the mean value of the k registered Mi

images, i.e., as M = 1
k
∑k

i=1D−1
i ◦ Mi. Note that the Di fields provide translation in-

formation, making it possible to put in correspondence some scalar information (i.e.,
ai, vi, si) of Ai at x, and of A at Di(x). Note, moreover, that it also provides rotation
information between x and Di(x), enabling us in particular to conveniently register the
orientations oi(.), thus leading to relative orientations ω(.) in A, i.e., vessel orienta-
tions correlated to the neighbouring (registered) morphological structures (vs. absolute
orientations in [14]).

3.7 Knowledge fusion

For each data (Mi, Ai), we then have vascular volumes ai, vi, orientations oi, sizes si,
and a deformation fieldDi. We can now computeA. The field δ is defined as the mean
value of the vascular volumes ai ∪ vi, i.e., δ(x) = 1

k
∑k

i=1 |D−1
i (x) ∩ (ai ∪ vi)|, while

α is expressed as the arterial ratio in δ, i.e., α(x) = 1
δ(x)
∑k

i=1 |D−1
i (x) ∩ ai| whenever

δ(x) > 0. Similarly to δ, σ is defined by the mean value of the sizes si, i.e., σ(x) =
1
δ(x)
∑k

i=1 si ◦D−1
i (x), enriched by the associated standard deviation (not formalized here

due to lack of space). Finally, the orientation ω is computed as a tensor. Based on the
covariance matrix induced by the k registered (normalised) vectors oi(Di(x)), the vessel
orientation at x is computed as the first eigenvector of the matrix, while the second and
third eigenvectors and eigenvalues provide the geometric spread of this orientation in
the normal plane. Finally, the proposed pipeline then provides an atlas A compliant
with the one expressed in Formula (1).



4 Experiments and results

Material. The proposed pipeline was used to generate a cerebrovascular atlas from
a dataset of phase contrast (PC) MRA images. Each data is composed of a phase (angio-
graphic, Ai) and a magnitude (morphological, Mi) image. In these first experiments, we
chose to consider data having the same properties as to those of [14] (i.e. non injected,
millimetric resolution), in order to facilitate qualitative and quantitative comparisons
(which will be fully presented in an extended version of this work). Further experi-
ments will also involve heterogeneous (CTA, MRA), submillimetric, and injected data,
with the purpose of generating a more accurate atlas than this preliminary one.

Computational cost. The process is fully automatic, except the interactive part of
the segmentation method [7], which requires only a few seconds per image. The most
time-consuming step remains the (submillimetric resolution) groupwise nonrigid regis-
tration [12], which requires approximately 3 to 4 hours per image. This registration step,
which can be performed in parallel to all the other ones (except the –final– fusion step,
which requires a few minutes), defines a lower bound for the time cost of the pipeline.
Note that new images can be further added to an atlas already generated, progressively
enriching it without the necessity to recompute all the deformation fields.

Results. Due to the quasi-automation of the process, large datasets can be consid-
ered for atlas generation. In these experiments, 54 image couples (Mi, Ai) were pro-
cessed (vs. 18 in [14], due to manual validations and corrections of the segmented re-
sults). The obtained atlas is partially illustrated in Figs. 2 and 3.

Some (partial) quantitative information on this atlas are illustrated in Fig. 4. Fig. 4(a)
(resp. Fig. 4(b)) provides the histogram of δ (resp. of the mean part of σ), i.e., the vas-
cular probability distribution (resp. the mean size distribution) over the vascular volume
of E, i.e., δ−1(]0, 1]). Note that these two histograms are not directly comparable to [14]
(Tabs. 1 and 2), where the computation was made on the whole head, vs. the intracra-
nial volume, here. Also note that in [14] (Tab. 3), more that 70% of the vascular volume
did not present a significative orientation (due to standard deviations higher than π/4 in
spherical coordinates. The use of relative instead of absolute orientations should make
it possible to improve this score.

5 Conclusion

A cerebrovascular atlas generation pipeline was proposed. This is a challenging prob-
lem, and our solution provides improved results in comparison to previous approaches.

Further works will include more extensive and quantitative analysis of these im-
provements, in particular in comparison to [14]. We also plan to introduce some in-
formation on anatomical relations in the proposed cerebrovascular atlases, in particu-
lar between vessels and the main neighbouring morphological structures (skull, brain
structures, etc.) [2]. This approach, that presents similarities with the one proposed in
[10]) in the context of cardiac vessels, will require processing both angiographic and
morphological (i.e., both CT/MRI and CTA/MRA) data in a unified way.

The issue of registration will also be considered, in order to take into account as
much as possible vascular information, in particular at the positions where morpholog-
ical information is insufficient (i.e., too homogeneous) to guarantee satisfactory results.



(a) (b) (c) (d)

Fig. 2. Atlas generated from 54 images (2D views). (a) Anatomical referenceM (sagittal medial
plane). (b–d) Vascular imageA. (b) Vascular density δ, from black (0) to white (1). (c) Vein/artery
density α, from blue (0, veins only) to red (1, arteries only). (d) Vessel diameters σ (mean value
only), from blue (≤ 0.5mm) to red (≥ 5mm). (b–d) are viewed as maximal intensity projections
(sagittal plane).

(a) (b)

Fig. 3. Arteriovenous atlas generated from 54 images (3D views). Vessel orientations ω (inclina-
tion component θ ∈ [0, π/2] of the mean orientation, in a spherical coordinate system), from blue
(vertical, θ = 0) to red (horizontal, θ = π/2). (a,b) two views restricted to arteries.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Vessel presence probability

(a)

1.5 2 2.5 3 3.5 4 4.5
Vessel mean size (diameter) in mm

(b)

Fig. 4. Vessel probability and size distribution over the vascular volume δ−1(]0, 1]) of A (see
Fig. 2). (a) Probability (δ) histogram. (b) Mean size (part of σ) histogram.
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