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In this paper, we propose a pipeline for building statistical cerebrovascular atlases from 3D angiographic datasets. This pipeline relies on recent advances in vessel segmentation and filtering, image skeletonization, and image registration. The generated atlases embed information on vesselness probability, vein/artery discrimination, vessel size and relative orientation. It improves on previously proposed approaches. Experiments performed on a dataset of 54 MRA/MRI images allowed us to propose an original vascular atlas of the whole intracranial volume.

Introduction

The availability of accurate knowledge related to anatomical structures is essential in nearly all the fields of medical image analysis. In the case of vascular networks, such knowledge can be classified into three categories: (i) morphological (e.g., shape, size, orientation), (ii) structural (e.g., topology, position, spatial relations), and (iii) functional. We focus here on the first two categories, which have not been the object of much work since the end of the 80's.

Recent studies, often devoted to the cerebrovasculature, were intended to model information related to potentially complex vascular networks. This complexity arises from the structure of these networks, the wide variety (size, veins/arteries) of the visualized vessels, the image modalities (often non-injected, especially in magnetic resonance angiography -MRA-data), and also from the anatomical variability of the vessels. In this context, the design of no longer deterministic, but statistical atlases has been considered. Among other possible applications, such atlases can be of use in the initialization and guidance of automated vessel segmentation and labelling procedures, often important steps in many medical image analysis applications.

This article is organized as follows. Section 2 proposes a state of the art on vascular atlases. Section 3 describes the developed atlas generation pipeline. This pipeline is applied to a 54 images dataset, allowing us to produce an atlas as described in Section 4.

The research leading to these results has been partially funded by a PhD grant of the Région Alsace (France) and the Centre National de la Recherche Scientifique (CNRS, France).

In contrast to other anatomical structures, vascular networks have been infrequently considered for atlas generation. This section proposes a short survey on this research field, mostly focused on cerebrovascular and cardiovascular networks. The reader may find a more complete and up-to-date, state of the art in [START_REF] Tankyevych | Angiographic image analysis[END_REF].

Pioneering works and deterministic atlases. The first (hand-made) vascular atlas generated from angiographic data [START_REF] Dodge | Intrathoracic spatial location of specified coronary segments on the normal human heart[END_REF], consisted of a (piecewise linear) skeleton modelling the main coronary arteries, providing information on vessel position and trajectory. Since then, other (deterministic) atlases have been proposed.

Early works, based on graphs, focused on symbolic descriptions of vessels (independently from their 3D embedding). The extraction of such graphs has been a frequent application to the first 3D segmentation methods [START_REF] Zahlten | Portal vein reconstruction based on topology[END_REF]. To avoid segmentation errors, another solution was to consider realistic and easy to process anatomical phantoms [START_REF] Chalopin | Modeling the 3D coronary tree for labeling purposes[END_REF].

Later works aimed at defining anatomically realistic vascular models. In [START_REF] Nowinski | A 3D model of human cerebrovasculature derived from 3T magnetic resonance angiography[END_REF], a geometric atlas of the cerebrovascular network was proposed. Its generation, based on a time of flight -TOF-MRA of a healthy patient, leads to an accurate vascular atlas providing information on the type of vessels (arteries or veins), their position, name, size and topology. Such an atlas, while essentially designed manually, is yet strongly linked to the involved patient image. In [START_REF] Lorenz | A comprehensive shape model of the heart[END_REF], a geometric atlas is proposed for coronary arteries. It was created (at least partially) using the vascular information provided by 3D computed tomography angiography -CTA-data of several patients.

Statistical atlases. Non-deterministic, and especially statistical, atlases aim at modelling both invariant information and inter-individual variability among a set of patients, in a unified framework.

In simple cases, for instance when only one vessel has to be modelled, a straightforward strategy consists of creating a shape model. This can be done by computing the mean (fuzzy) image of segmented data, as proposed in [START_REF] Naegel | Using grey-scale hit-or-miss transform for segmenting the portal network of the liver[END_REF] for the portal vein entry.

In more complex cases, in particular for whole vascular networks, it becomes necessary to develop strategies for fusing several vascular images. In [START_REF] Chillet | Vascular atlas formation using a vessel-toimage affine registration method[END_REF], segmented networks are registered onto a chosen set, considered as the anatomical reference. The computed mean and variance images of distance maps provide a kind of probabilistic atlas. A similar alternative technique is proposed in [START_REF] Cool | Tissue-based affine registration of brain images to form a vascular density atlas[END_REF], where the registration process also involves morphological (T2 MRI) data. In some cases, morphological information can be directly obtained from angiographic data, as in [START_REF] Shahzad | A patient-specific coronary density estimate[END_REF], where CTA images are considered.

These statistical atlases are essentially devoted to vascular density modelling. In [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF] a way to design richer (cerebro)vascular atlases is proposed. Such atlases have the advantage to model not only vascular density, but also information on vessel size and orientation. Despite these improvements, the generation pipeline proposed in [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF] presents some weaknesses: (i) no vein/artery discrimination, (ii) absolute orientations instead of relative ones, (iii) use of one specific patient morphology as anatomical reference, and (iv) use of binary (segmented) images for size and orientation determination (with possible segmentation errors).

Based on recent advances in (medical and non-medical) image processing, we propose a new pipeline, inspired from the one of [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF], that provides solutions to all the weaknesses listed above. 3 Atlas generation pipeline

Input/output

The pipeline takes as input a set {(M i , A i )} k i=1 of k ∈ N angiographic images of intracranial volumes. These images need not be similar in terms of modalities and/or acquisition devices, including MRA and/or CTA. It is however mandatory, for each angiographic image A i : E → V (E is the 3D brain volume, V is the grey-levels value space), to be associated to a morphological one, M i : E → V (e.g., a T1 MRI). This requirement (see Section 3.6) is not actually a problem since such morphological images are generally acquired in addition to both MRA and CTA.

The pipeline provides as output a vascular arteriovenous cerebral atlas modelling statistical information. It fuses, in a unified anatomical reference, several pieces of knowledge related to vascular probability density, vein/artery discrimination, vessels size and relative orientation. This atlas is represented by a pair of images (M, A). The image M : E → V is a (scalar) mean morphological image obtained from the morphologies of the k patients (similar, e.g., to a mean T1 MRI). The vascular (vectorial) part of the atlas is defined as

A : E → [0, 1] × [0, 1] × T × (R + ) 2 x → (δ(x), α(x), ω(x), σ(x)) (1) 
To each point x ∈ E is associated the 4-uple (δ(x), α(x), ω(x), σ(x)) where: δ(x) is the vessel presence probability at x; α(x) is the arterial probability (i.e., a vessel at x has a probability α(x) (resp. 1 -α(x)) to be an artery (resp. a vein)); ω(x) is a 3D tensor modelling the mean orientation of the vessels at x, and how these orientations are spread around this mean orientation; finally σ(x) provides the mean vessel diameter and its standard deviation at x. (Note that α(x), ω(x), σ(x) are relevant only for δ(x) 0.)

The pipeline is organized as illustrated in Fig. 1. The k angiographic images are first segmented, in order to extract both venous and arterial structures (Section 3.3). This is done interactively to lessen segmentation errors. From these binary data, vessel centerlines are extracted (Section 3.4). They provide the relevant loci where a multiscale Hessian-based analysis is applied to determine the vessels orientation and size (Section 3.5). Both are computed from the grey-level images (more informative and reliable than the segmented ones). In parallel to these steps, registration is performed between the k morphological images (Section 3.6). This provides M and the deformation fields associated to the k images. These deformation fields and the knowledge elements are finally combined to define the vascular atlas A (Section 3.7).

Vein/artery segmentation

The segmentation step is crucial since (i) the vascular density δ is computed as a mean value of the segmented vascular volumes, and (ii) the vessel centerlines is computed as their medial axes. It is then important to ensure that there are no false positives, and a minimal amount of false negatives. To avoid post-processing result corrections, we propose to rely on a new interactive segmentation technique [START_REF] Dufour | Interactive 3D brain vessel segmentation from an example[END_REF] coupled with a filtering strategy [START_REF] Tankyevych | Direction-adaptive grey-level morphology. Application to 3D vascular brain imaging[END_REF] featuring increased robustness to vessel disconnections. This technique allows the user to choose, in real-time, the best segmentation among a set of preprocessed ones. Moreover, this example-based methodology enables us to perform discriminant segmentation of arteries and veins, thus providing, for each one of the k images, distinct arterial and venous volumes a i ,

v i ⊆ E (i ∈ [1, k]).

Vessel centerlines computation

The binary volumes a i , v i are then skeletonized, to determine the positions of the vessel axes. Contrary to [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF], these axes are not directly used to compute the vessels orientation (from the skeleton) and size (from both the skeleton and the binary volumes). They only provide the loci where a Hessian-based analysis has to be performed from the images A i to determine these geometric information. It is then crucial for the computed axes (i) to be (globally) centered, and (ii) to provide a topologically sound model of the vessel branches. To satisfy these requirements, the algorithm proposed in [START_REF] Bertrand | A new 3D parallel thinning scheme based on critical kernels[END_REF] is applied. It provides skeletonized images a s i , v s i ⊂ a i , v i , without irrelevant branches. The skeleton regularity (not guaranteed here) is desirable but actually not essential, since a confidence neighbourhood is obtained by binary dilation of the skeleton.

Orientation and size computation

The purpose of this step is twofold. It consists of determining (i) the size of the vessels and (ii) their orientation. Hessian-based analysis constitutes a standard approach for vessel filtering, as it provides a model of the second order differential properties of the image, as well as size, orientation and characterization of several geometric structures. Based on ad hoc "vesselness" functions [START_REF] Sato | Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images[END_REF][START_REF] Frangi | Modelbased quantitation of 3-D magnetic resonance angiographic images[END_REF], it is in particular possible to determine the orientation of vessels in A i images. Note that the restriction of this study to the a s i , v s i parts of A i allows us to reduce the computational cost and to avoid possibly erroneous results away from the vessel axes. The computation of a vesselness measure is done in a multiscale fashion [START_REF] Lindeberg | Edge detection and ridge detection with automatic scale selection[END_REF]. The scale for which the response is maximal in x ∈ E corresponds to a convolution kernel directly correlated to the size of the vessel visualised in x. The principal orientation (first eigenvector of the Hessian matrix) at x for this scale is then the vessel orientation. This strategy provides orientation o i (x) ∈ R 3 and size s i (x) ∈ R + information for any point x ∈ a s i ∪ v s i . It is however mandatory to extend these information to the whole vascular volume A i . For s i (.), this can be done by performing in each x ∈ a s i ∪ v s i a variant flat dilation by a spherical structuring element whose radius is determined by s i (x) (the grey-level values correspond to s i ). For o i (.), which is no longer a scalar function, but a vectorial one, this can be done by computing, for each x ∈ A i , a weighted average value of the orientations o i (y) of the points y located in the intersection of a s i , v s i and a neighbourhood of x. For each image A i , this step outputs a size function s i : a i ∪ v i → R + and an orientation function o i :

a i ∪ v i → R 3 .

Registration

Registration is necessary to estimate the deformation fields D i : E → E, enabling us to map the information of any data (M i , A i ) onto a common anatomical reference. These fields are estimated from the (morphological) M i data, using a groupwise nonrigid registration technique [START_REF] Noblet | Symmetric nonrigid image registration. application to average brain templates construction[END_REF]. In comparison to [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF], this eschews the possible anatomical bias induced by the use of a specific image M i as reference. Once the D i fields are known, the anatomical reference M can be computed as the mean value of the k registered M i images, i.e., as

M = 1 k k i=1 D -1 i • M i .
Note that the D i fields provide translation information, making it possible to put in correspondence some scalar information (i.e., a i , v i , s i ) of A i at x, and of A at D i (x). Note, moreover, that it also provides rotation information between x and D i (x), enabling us in particular to conveniently register the orientations o i (.), thus leading to relative orientations ω(.) in A, i.e., vessel orientations correlated to the neighbouring (registered) morphological structures (vs. absolute orientations in [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF]).

Knowledge fusion

For each data (M i , A i ), we then have vascular volumes a i , v i , orientations o i , sizes s i , and a deformation field D i . We can now compute A. The field δ is defined as the mean value of the vascular volumes

a i ∪ v i , i.e., δ(x) = 1 k k i=1 |D -1 i (x) ∩ (a i ∪ v i )|, while α is expressed as the arterial ratio in δ, i.e., α(x) = 1 δ(x) k i=1 |D -1 i (x) ∩ a i | whenever δ(x) > 0.
Similarly to δ, σ is defined by the mean value of the sizes s i , i.e., σ(x) =

1 δ(x) k i=1 s i • D -1 i (x)
, enriched by the associated standard deviation (not formalized here due to lack of space). Finally, the orientation ω is computed as a tensor. Based on the covariance matrix induced by the k registered (normalised) vectors o i (D i (x)), the vessel orientation at x is computed as the first eigenvector of the matrix, while the second and third eigenvectors and eigenvalues provide the geometric spread of this orientation in the normal plane. Finally, the proposed pipeline then provides an atlas A compliant with the one expressed in Formula (1).

Material. The proposed pipeline was used to generate a cerebrovascular atlas from a dataset of phase contrast (PC) MRA images. Each data is composed of a phase (angiographic, A i ) and a magnitude (morphological, M i ) image. In these first experiments, we chose to consider data having the same properties as to those of [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF] (i.e. non injected, millimetric resolution), in order to facilitate qualitative and quantitative comparisons (which will be fully presented in an extended version of this work). Further experiments will also involve heterogeneous (CTA, MRA), submillimetric, and injected data, with the purpose of generating a more accurate atlas than this preliminary one.

Computational cost. The process is fully automatic, except the interactive part of the segmentation method [START_REF] Dufour | Interactive 3D brain vessel segmentation from an example[END_REF], which requires only a few seconds per image. The most time-consuming step remains the (submillimetric resolution) groupwise nonrigid registration [START_REF] Noblet | Symmetric nonrigid image registration. application to average brain templates construction[END_REF], which requires approximately 3 to 4 hours per image. This registration step, which can be performed in parallel to all the other ones (except the -final-fusion step, which requires a few minutes), defines a lower bound for the time cost of the pipeline. Note that new images can be further added to an atlas already generated, progressively enriching it without the necessity to recompute all the deformation fields.

Results. Due to the quasi-automation of the process, large datasets can be considered for atlas generation. In these experiments, 54 image couples (M i , A i ) were processed (vs. 18 in [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF], due to manual validations and corrections of the segmented results). The obtained atlas is partially illustrated in Figs. 2 and3.

Some (partial) quantitative information on this atlas are illustrated in Fig. 4. Fig. 4(a) (resp. Fig. 4(b)) provides the histogram of δ (resp. of the mean part of σ), i.e., the vascular probability distribution (resp. the mean size distribution) over the vascular volume of E, i.e., δ -1 (]0, 1]). Note that these two histograms are not directly comparable to [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF] (Tabs. 1 and 2), where the computation was made on the whole head, vs. the intracranial volume, here. Also note that in [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF] (Tab. 3), more that 70% of the vascular volume did not present a significative orientation (due to standard deviations higher than π/4 in spherical coordinates. The use of relative instead of absolute orientations should make it possible to improve this score.

Conclusion

A cerebrovascular atlas generation pipeline was proposed. This is a challenging problem, and our solution provides improved results in comparison to previous approaches.

Further works will include more extensive and quantitative analysis of these improvements, in particular in comparison to [START_REF] Passat | Magnetic resonance angiography: From anatomical knowledge modeling to vessel segmentation[END_REF]. We also plan to introduce some information on anatomical relations in the proposed cerebrovascular atlases, in particular between vessels and the main neighbouring morphological structures (skull, brain structures, etc.) [START_REF] Bloch | Fuzzy spatial relationships for image processing and interpretation: a review[END_REF]. This approach, that presents similarities with the one proposed in [START_REF] Lorenz | A comprehensive shape model of the heart[END_REF]) in the context of cardiac vessels, will require processing both angiographic and morphological (i.e., both CT/MRI and CTA/MRA) data in a unified way.

The issue of registration will also be considered, in order to take into account as much as possible vascular information, in particular at the positions where morphological information is insufficient (i.e., too homogeneous) to guarantee satisfactory results. 
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 1 Fig. 1. Atlas generation pipeline. The grey boxes correspond to the steps described in Sec. 3. Seg.: segmentation (Sec. 3.3), Skel.: centerline computation (Sec. 3.4), Size: size computation (Sec. 3.5), Orie.: orientation computation (Sec. 3.5), Registration (Sec. 3.6), Fusion (Sec. 3.7).
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 234 Fig. 2. Atlas generated from 54 images (2D views). (a) Anatomical reference M (sagittal medial plane). (b-d) Vascular image A. (b) Vascular density δ, from black (0) to white (1). (c) Vein/artery density α, from blue (0, veins only) to red (1, arteries only). (d) Vessel diameters σ (mean value only), from blue (≤ 0.5mm) to red (≥ 5mm). (b-d) are viewed as maximal intensity projections (sagittal plane).