A histogram semantic-based distance for multiresolution image classification
Abstract
Image classification methods based on histogram analysis generally require to use relevant distances for histogram comparison. In this article, we propose a new distance devoted to compare histograms associated to semantic concepts linked by (dis)similarity correlations. This distance, whose computation relies on a hierarchical strategy, captures the multilevel semantic relations between these concepts. It also inherits from the low complexity properties of standard bin-to-bin distances, thus leading to fast and accurate results in the context of multiresolution image classification. Experiments performed on satellite images emphasize the relevance and usefulness of the proposed distance.
Origin | Files produced by the author(s) |
---|
Loading...