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ABSTRACT
Image classification methods based on histogram analysis generally
require to use relevant distances for histogram comparison. In this
article, we propose a new distance devoted to compare histograms
associated to semantic concepts linked by (dis)similarity correla-
tions. This distance, whose computation relies on a hierarchical
strategy, captures the multilevel semantic relations between these
concepts. It also inherits from the low complexity properties of
standard bin-to-bin distances, thus leading to fast and accurate
results in the context of multiresolution image classification. Ex-
periments performed on satellite images emphasize the relevance
and usefulness of the proposed distance.

Index Terms— Histogram distance, Classification, Background
knowledge, Multiresolution images, Remote sensing.

I. INTRODUCTION

THANKS to their ability to model image information in a
synthetic fashion and with a high robustness to transforma-

tions (translation, rotation, scaling), histograms have been early
and widely used in various image processing and analysis fields,
e.g., segmentation, retrieval or classification [1]–[3]. In this context,
histograms have been frequently used to model low-level informa-
tion/features intrinsically linked to the images, e.g., intensity (grey-
level or multispectral) distribution, texture parameters, etc.

However, when dealing with object-based approaches (e.g.,
segmentation or classification), and in particular in the case of
hierarchical strategies and/or the handling of multiresolution data
[4], [5], it may also be relevant to use histograms in order to model
information of higher level [6]–[8]. For instance, the segments
extracted from an image by a segmentation process at a given
scale/resolution may be classified by using their (semantic) compo-
sition in the image at another scale/resolution. Such compositions
can be naturally modelled by nominal histograms (i.e., non-ordered
ones) where each bin is then associated to a specific semantic class.

This article deals with the issue of comparing such nominal
histograms, and in particular those for which (dis)similiraty in-
formation is available between the semantic concepts associated to
each bin. This comparison is indeed mandatory to ease and improve
the classification of image segments whose semantic composition
is modelled by such histograms.

The comparison of nominal histograms is not a trivial task, and
several measures of similarity have been proposed to this end in the
last decades [9]. These histogram distances can be divided into two
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categories, namely bin-to-bin and cross-bin distances. The bin-to-
bin distances consider a histogram as a fixed-dimensional vector
and only compare the content of corresponding histogram bins
(by using, for instance, the Manhattan or the Euclidean distances),
while the cross-bin distances consider a histogram as an estimation
of a probability density function and compare corresponding bins
as well as non-corresponding ones.

On one hand, bin-to-bin distances are well fitted to process large
datasets, in particular thanks to their low computational cost [10].
However, by definition, such distances cannot consider the semantic
proximity between the bins (in particular, they suffer from both
problems of histogram translations and bin size changes). On the
other hand, cross-bin distances, which compare more exhaustively
both corresponding and non-corresponding bins, enable to consider
the semantic proximity between them [11], [12]. Practically, this
can be done by assigning, to each pair of instances, a numerical
weight modelling the degree of semantic proximity between the
compared instances. These weights are often stored by using a
(dis)similarity matrix. The counterpart of such strategies is the
polynomial cost induced by these multiple bin comparisons. It then
appears that, when comparing nominal histograms, the handling
of semantic proximity between their instances seems incompatible
with a low computational cost.

Following the idea that organizing the information carried out
by the data into hierarchies constitutes a successful strategy for
knowledge extraction tasks [13], we propose to use this approach
for the definition of a new distance on nominal histograms. (To
the best of our knowledge, such a hierarchical approach has been
considered only once [14], but for a distance devoted to ordinal
histogram comparison.) The purpose of the proposed distance,
called Hierarchical Semantic-Based Distance (HSBD, for brief) is
twofold. First, it aims to capture the multilevel semantic relations
intrinsically carried out by the (dis)similarity matrix associated
to the instances of the histograms. Second, by relying at each
stage of the hierarchy on a bin-to-bin distance, it leads to a lower
computational cost than cross-bin distances. It then provides a
relevant tool in the context of multiresolution image classification.

The article is organized as follows. Section II provides informa-
tion on the proposed distance, including its computation scheme
(Section II-A) and a computational cost analysis (Section II-B).
Section III describes experimental validations of this distance in
the context of multiresolution satellite image classification. These
experiments aim at reclassifying urban images preprocessed by
a hybrid segmentation/classification method [8], recalled in Sec-
tion III-A. The considered datasets and their classification results
are detailed in Section III-B. Section III-C concludes the article by
providing perspective works.
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Fig. 1. Computation workflow of the HSBD distance.

II. THE HSBD DISTANCE

II-A. Distance computation

The computation of the HSBD distance between two histograms
Ha and Hb of v bins, requires two parameters:

(1) A dissimilarity matrixMdis modelling the semantic proximity
(from 0: equal, to 1: totally different) between the v instances
of the concept represented by these histograms (Table I
provides a matrix example for the concept URBAN OBJECT).

(2) A bin-to-bin histogram distance Dbin.

Before actually computing the distance between Ha and Hb, it
is necessary to define a way to hierarchically merge the different
instances of the histograms into clusters (i.e., instances of higher
semantic levels). To this end, it is possible to build a dendrogram
D (Fig. 2) induced by Mdis (modelling this merging hierarchy)
by using the Ascendant Hierarchical Clustering (AHC) algorithm
[15]. Each one of the s stages of D corresponds to a particular
semantic level.

Once the dendrogram D has been built, the HSBD distance can
be computed. This computation is organized in two main steps:

– Step 1. Hierarchical bin-to-bin sub-distances computation
During an iterative merging process (scanning each stage of the
dendrogram from the leaves to the root), the histograms Hk

a and
Hk

b associated to Ha and Hb, which are induced by the merging
of the instances composing each cluster of the stage Sk, are built
(Fig. 1-¬). After each iteration, the bin-to-bin sub-distance Dbin

is then computed between the couple of (coarser) histograms Hk
a

and Hk
b created previously. The resulting series of bin-to-bin sub-

distances d0, . . . ,ds−1 enables to assess the histogram similarities
at different semantic levels.

– Step 2. Bin-to-bin sub-distances fusion The bin-to-bin sub-
distances dk computed for all the stages of the dendrogram, and
the “energy of merging” required to go from one stage to the next,
are then fused into a function dinter which is finally integrated to
provide the HSBD distance (Fig. 1-­).

II-B. Properties and complexity analysis
Metric properties As HSBD can be defined as a sum of sub-

distances dk, it is equivalent to a sum of bin-to-bin distances Dbin.
Thus, it inherits from the metric properties of Dbin (non-negativity,
symmetry, identity, triangle inequality) and is then a distance.

Compliance with bin-to-bin distances It is possible to use
HSBD with a “partial” matrix Mdis. Indeed, in the case where
a proximity cannot be established between some of the instances,
the associated values of Mdis are set to 1. For such parts of the
matrix, HSBD will be equivalent to the bin-to-bin distance Dbin. A
fortiori, HSBD and Dbin will be fully equivalent if all the values of
Mdis are set to 1 (i.e., if no background knowledge is available).

Computational complexity To compute HSBD, it is first neces-
sary to build the dendrogram D. To this end, we use the AHC
algorithm which has a complexity of Θ(v2 log v) when using
a priority-queue algorithm (v is the number of basic instances).
Since this operation is only performed once, its complexity can be
considered as insignificant when comparing large datasets.

It is then necessary to compute the series of sub-distances
d0, . . . ,ds−1 where s is the number of stages in D. The complexity
of the computation of each dk is linked to the one of Dbin which is,
in general, Θ(v) where v is the number of bins in the histograms.
Thus, the complexity of HSBD depends on both the number of
bins v in the histograms and the number of stages s in D.

Depending on the value of s, two extremal cases can occur:
• if D is a fully balanced dendrogram, then s = log2(v). The

complexity of HSBD is Θ(v + v
2

+ v
4

+ . . . + 1) = Θ(v).
• if D is a unbalanced dendrogram, then s = v and the

complexity of HSBD is Θ(v + (v − 1) + . . . + 1) = Θ(v2).
The computational cost of HSBD is thus bounded by Θ(v) and
Θ(v2). Then, it requires more time/operations than the computation
of classical bin-to-bin distances, but much less than the cross-bin
distances that can require, in the worst cases, supercubic time.
HSBD can then be relevantly used to compare large histogram
datasets.



III. EXPERIMENTS
III-A. Experimental context

Urban planning organizations need to follow the increase of
urban settlements. To this end, it is necessary to map urban areas
from satellite images at different scales/levels of analysis. Some
efforts have been conducted to extract features from such images,
in order to involve them into learning systems. The classical
methodology consists of classifying the data into land cover classes
by using supervised or unsupervised object-based approaches.

Recently, a hybrid segmentation/classification approach has been
proposed [8] enabling to map urban areas at different scales
(i.e., districts, urban blocks, simple objects). It takes as input a
multiresolution set of n satellite images and provides as output a
set of n classification maps computed in a top-down fashion.

This approach classifies the segments extracted from an image (at
a particular resolution) in terms of their semantic composition into
the next resolution image. For instance, if we focus on the scale of
the urban blocks, they can be characterized by their compositions
in terms of basic urban objects (e.g., individual houses, gardens,
roads, etc.). A block Ui can thus be characterized by a histogram
Hi where each bin is linked to an instance of URBAN OBJECT

(Table I).
The main issue is to succeed in classifying into a same cluster

similar objects that are not characterized by similar histograms. For
instance, let us consider a block Ui characterized by a histogram
Hi composed in particular of 21 red tile roofs and 4 slate roofs,
and a block Uj characterized by a histogram Hj composed of 3
red tile roofs and 22 slate roofs. These blocks have to be grouped
into a same class “Urban fabric with individual houses” since they
are both composed of houses (with red roofs or slate ones).

We propose to validate the usefulness of HSBD by using it to
improve the results provided by the approach described in [8]. In
order to do so, we integrate HSBD into a post-processing step to
re-classify these images in a bottom-up fashion.

III-B. Datasets and classification results
We consider three datasets (denoted DATASET-1, -2 and -3)

composed each of (1) a SPOT-5 MSR (9.6m) multispectral image
and (2) a couple of QUICKBIRD images composed by a HSR
(2.4m) multispectral image and a VHSR (60cm) pan-sharpened one.
The HSR image of the DATASET-1 is presented in Fig. 3(a).

Once the urban blocks have been extracted from the HSR image
by using the hierarchical top-down segmentation approach proposed
in [8], it becomes possible to characterize them by a “composition”
histogram Hi which models the composition of the urban block Ui

in terms of the distribution of the eleven instances of the semantic
concept URBAN OBJECT in the VHSR image. The eleven instances
considered in this experiment are listed in Table I.

To model the semantic relations between each bin of the his-
tograms, a 11 × 11 dissimilarity matrix Mdis has been provided
by the expert (Table I). From this matrix, a 7-stage dendrogram has
been built to model the merging order of the bins (Fig. 2).

We have applied the K-MEANS clustering algorithm, which does
not require a priori parameters, to re-classify the urban blocks
created previously. To process, the distance HSBD (associated to
the Manhattan bin-to-bin sub-distance) has been directly integrated
into the K-MEANS clustering algorithm to compare the classified
histograms. From these datasets, we have chosen, in agreement

Table I. Dissimilarity matrix Mdis associated to the instances of
the concept URBAN OBJECT.

xi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x1 - Shadow − 0.10 1.00 1.00 1.00 1.00 0.80 0.80 0.80 0.80 0.80

x2 - Water − − 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x3 - Road − − − 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x4 - Railway − − − − 1.00 1.00 1.00 1.00 1.00 1.00 1.00

x5 - Bare soil − − − − − 0.10 0.80 1.00 1.00 1.00 1.00

x6 - Herbac. veget. − − − − − − 0.80 1.00 1.00 1.00 1.00

x7 - Forest − − − − − − − 1.00 1.00 1.00 1.00

x8 - Slate roof − − − − − − − − 0.10 0.40 0.90

x9 - Red tile roof − − − − − − − − − 0.40 0.90

x10 - Gray tile roof − − − − − − − − − − 0.10

x11 - Metallic roof − − − − − − − − − − −
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Fig. 2. Dendrogram associated to the dissimilarity matrix (Table I).

with the expert, to extract ten classes of urban blocks. Thus, the
K-MEANS algorithm has been run with ten clusters.

Classification results obtained have then been compared to the
ones obtained previously in [8]. To this end, all the results have been
compared to certified ground-truth maps provided by the expert
using the F-measure F , and the Kappa K indexes. Fig. 3(b) presents
the ground-truth map of the DATASET-1 at the urban blocks scale.
These comparisons enable to assess the advantages of using HSBD
instead of a classical bin-to-bin distance Dbin (used in [8]).

The results obtained are presented in Table II. From these
different results, one can see that the proposed distance outperforms
the classical bin-to-bin ones when comparing semantic nominal
histograms. For a visual comparison purpose, the classification map
obtained (initially) in [8] is presented in Fig. 3(c) while the one
obtained by using the HSBD distance is proposed in Fig. 3(d).

III-C. Perspectives
The HSBD distance enables to compare nominal histograms

equipped with a dissimilarity matrix modelling the semantic prox-
imity relations between the bins. Thanks to a hierarchical strategy,
this distance can consider the multilevel semantic correlations



(a) HSR image (© DigitalGlobe Inc.).

(b) Ground-truth map (urban blocks level, 9 classes).

(c) Classification result obtained with [8].

(d) Classification result obtained with HSBD.

Fig. 3. Illustration of the DATASET-1 and the associated results.

between the bins. Moreover, by opposition to cross-bin distances,
it inherits from the low computational cost of bin-to-bin distances,
while keeping the advantages of cross-bin ones, namely robustness
to histogram translation and histogram bin size issues.

Experiments on multiresolution satellite images were carried out
for validation purpose. The results have shown that HSBD can
enhance the comparison of semantic nominal histograms and thus,
the accuracy of classification results. Such validations emphasize
the relevance and usefulness of HSBD for image processing tasks.

This work opens up several perspectives. In particular, we plan
to study more formally the possible behaviors of the sub-distance
function dk and to integrate an approach enabling to help the user
for building the dissimilarity matrix.

Table II. Global evaluation results. F-measure and Kappa indexes.

F ± σ K± σ
Dataset Dbin [8] HSBD Dbin [8] HSBD

DATASET-1 0.65± 0.02 0.71± 0.01 0.76± 0.02 0.79± 0.01

DATASET-2 0.67± 0.02 0.72± 0.01 0.77± 0.02 0.86± 0.02

DATASET-3 0.63± 0.01 0.66± 0.01 0.73± 0.01 0.76± 0.01
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