# **i**CU3E

# TOWARDS CONNECTED FILTERING BASED ON COMPONENT-GRAPHS

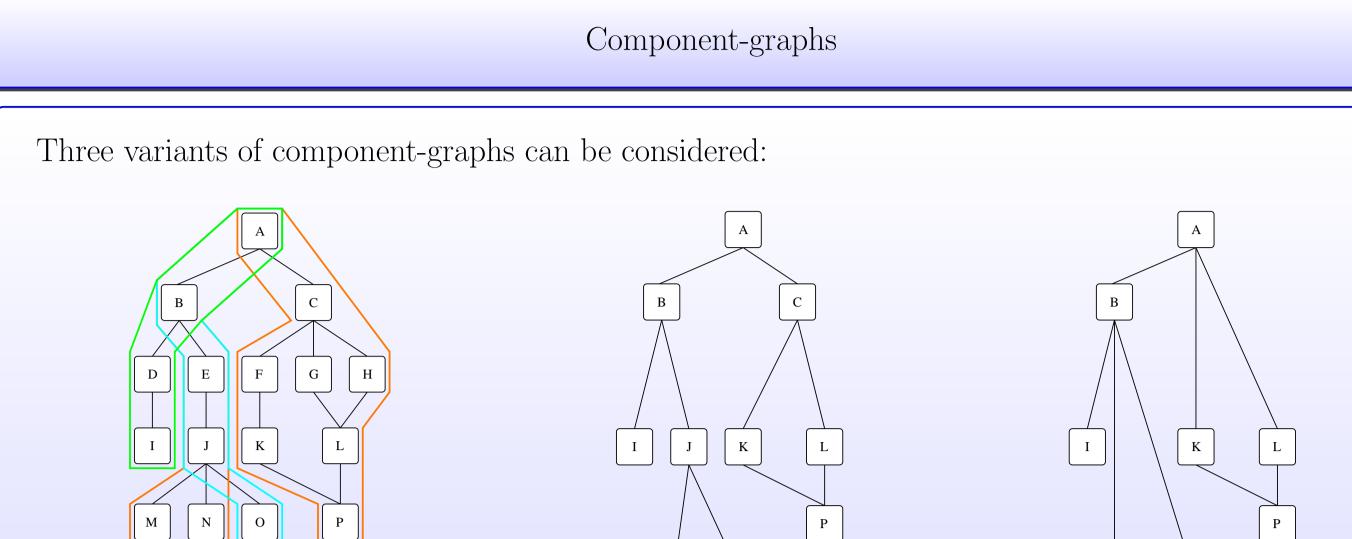
Benoît Naegel <sup>(a)</sup> and Nicolas Passat <sup>(b)</sup>

(a) ICube, UMR CNRS, Université de Strasbourg, France (b) CReSTIC, EA 3804, Université de Reims, France



In recent works, a new notion of component-graph has been introduced to extend the data structure of component-tree –and the induced antiextensive filtering methodologies– from grey-level images to multivalued ones. In this article, we briefly recall the main structural key-points of component-graphs, and we present the initial algorithmic results that open the way to the actual development of componentgraph-based antiextensive filtering procedures.





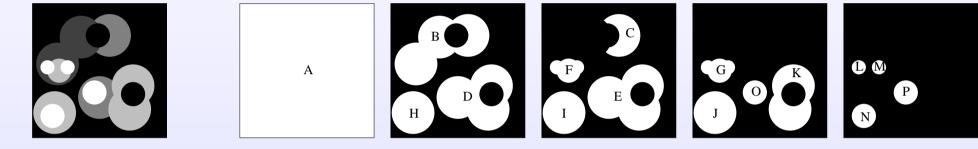


Let  $\Omega$  be a nonempty finite set. For any  $X \subseteq \Omega$ , the set of the connected components of X is noted  $\mathcal{C}[X]$ . Let V be a nonempty finite set equipped with an order relation  $\leq$ . Let I be an image defined by a function  $I: \Omega \to V$ . For any  $v \in V$ , let  $\lambda_v$  be the thresholding function at value v, defined for any image I, by  $\lambda_v(I) = \{x \in \Omega \mid v \leq I(x)\}.$ 

#### Component-trees

When the order relation  $\leq$  is total, I is a grey-level image and the component-tree [2] can then be defined as follows.

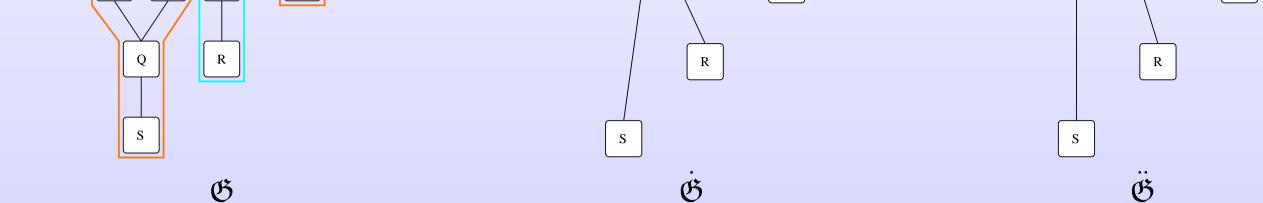
Denoting by  $\Psi = \bigcup_{v \in V} \mathcal{C}[\lambda_v(I)]$  the set of all the connected components obtained from all the thresholdings of I, the component-tree of I is the Hasse diagram  $\mathfrak{T}$  of the partially ordered set  $(\Psi, \subseteq)$ :



Grey-level image I $\lambda_4(I)$ Component-tree  $\mathfrak{T}$  of I $\lambda_0(I)$  $\lambda_2(I)$  $\lambda_3(I)$  $\lambda_1(I)$ Thresholded images  $\lambda_v(I) \subseteq \Omega$  for v varying from 0 to 4.

Antiextensive filtering framework based on component-trees [2]: 1. construction of the component-tree  $\mathfrak{T}$  associated to I; 2. pruning of  $\mathfrak{T}$ , based on an *ad hoc* criterion and a pruning policy; 3. reconstruction of the filtered image  $\widehat{I} \leq I$  induced by  $\widehat{\mathfrak{T}}$ .





•  $\mathfrak{G}$  gathers all the valued connected components from  $\Theta$ ;

•  $\mathfrak{G}$  gathers the valued connected components of maximal values for any connected components;

•  $\ddot{\mathfrak{G}}$  gathers the valued connected components associated to cylinders functions which are supgenerators of I.

### Pruning the component-graph

As for the component-tree, pruning the component-graph consists of defining a subset  $\widehat{\Theta} \subseteq \Theta$  based on a selection criterion  $\rho$  and a pruning policy which determines which parts of the component-graph should be preserved.

If  $\rho$  is a non-increasing criterion, several classical policies have been defined for the component-tree (for example min, direct, max, subtractive, Viterbi [2, 3]). In the case of component-graphs, the direct and max policies can be directly transposed, while the min one leads to two variants,  $\min_1$  and  $\min_2$ , that can be axiomatically (and recursively) defined by

$$\rho(K_1) \Longrightarrow \left( (\forall K_2 \triangleright K_1, K_2 \in \widehat{\Theta}_{\min_1}) \Rightarrow K_1 \in \widehat{\Theta}_{\min_1} \right)$$

$$\rho(K_1) \Longrightarrow \left( (\exists K_2 \triangleright K_1, K_2 \in \widehat{\Theta}_{\min_2}) \Rightarrow K_1 \in \widehat{\Theta}_{\min_2} \right)$$

$$(1)$$

where  $\blacktriangleleft$  denotes the cover relation associated to the order relation  $\trianglelefteq$  on  $\Theta$ .

Reconstructing an image from a pruned component-graph



#### From component-trees to component-graphs

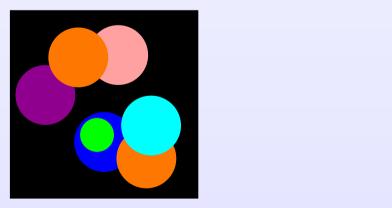
When the order relation  $\leq$  is total or partial, we propose to introduce the component-graph as an extension of the component-tree to multivalued images. The set  $\Theta$  of all the valued connected components (X, v) of I is defined as

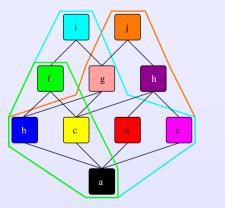
 $\Theta = \bigcup \, \mathcal{C}[\lambda_v(I)] \times \{v\}$ 

The order relation  $\leq$  on  $\Theta$  is defined as

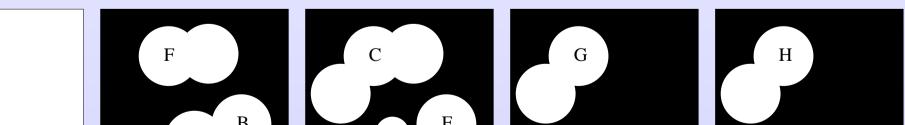
 $(X_1, v_1) \leq (X_2, v_2) \iff (X_1 \subset X_2) \lor ((X_1 = X_2) \land (v_2 \leq v_1))$ 

The component-graph [4]  $\mathfrak{G}$  of I is based on the Hasse diagram of the ordered set  $(\Theta, \trianglelefteq)$ .





A multivalued image  $I: \Omega \to V$ The Hasse diagram of with  $\Omega \subset \mathbb{R}^2$  and  $V = \{a, b, c, d, e, f, g, h, i, j\}$ . the ordered set  $(V, \leq)$ .



The filtered image  $\widehat{I}: \Omega \to V$  should be obtained from the cylinder functions  $\{C_K \mid K \in \widehat{\Theta}\}$ . However, contrary to the component-tree case, the expression of  $\widehat{I}$  is not necessarily well-defined. Indeed, there is no guarantee that for any  $x \in \Omega$ , the set  $\{C_K(x) \mid K \in \widehat{\Theta}\} \subseteq V$  admits a maximum (or even a supremum) for  $\leq$ . Therefore, specific strategies should be used to recover a well-defined image.





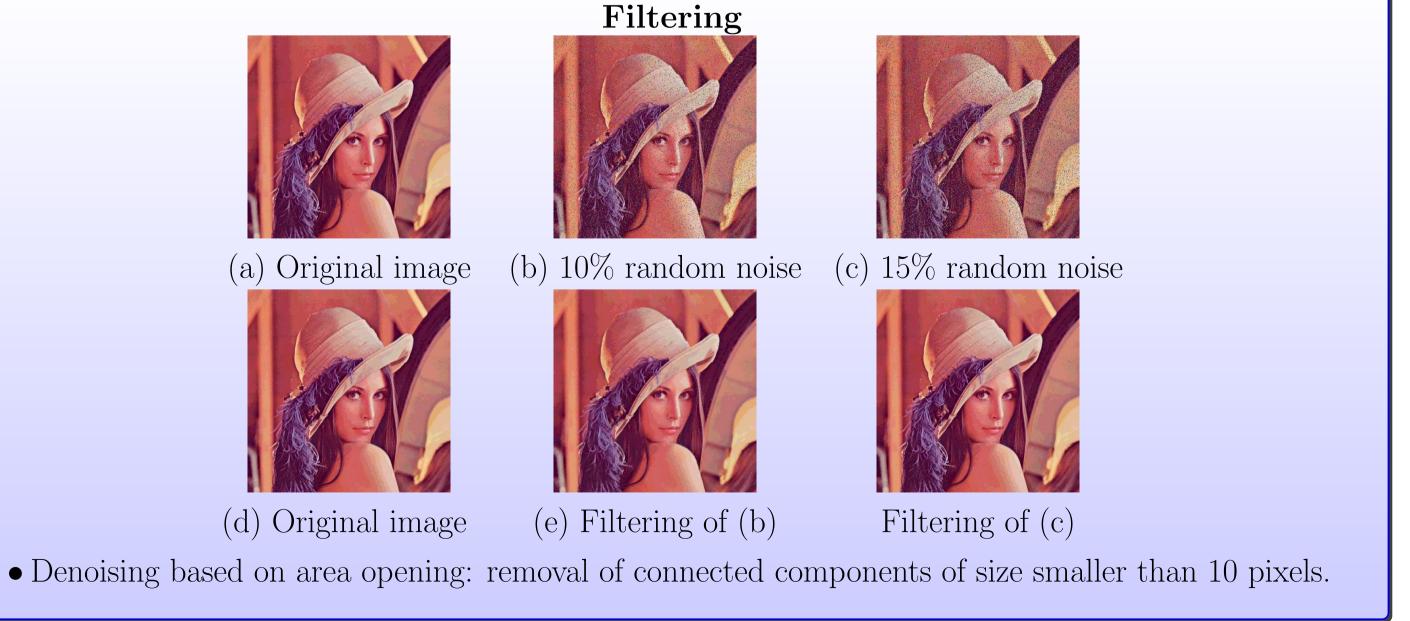




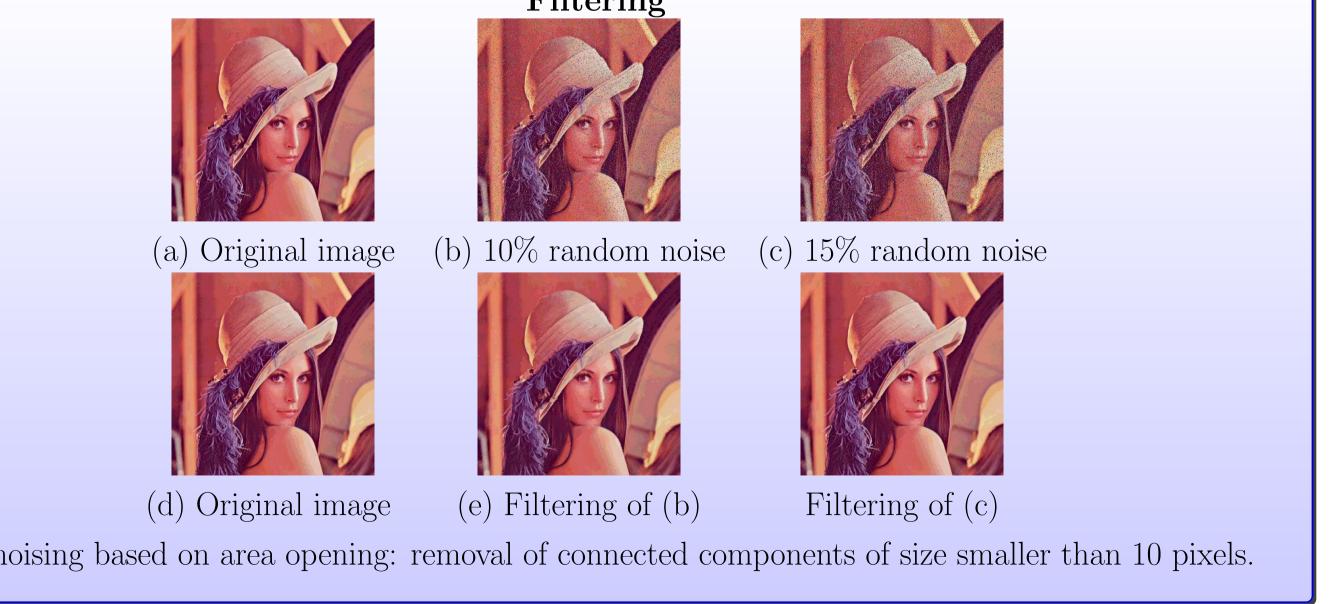
(a) CT image. (b) PET image. (c) Detected components. (Image courtesy of D. Papathanassiou, Institut Jean-Godinot, France.)

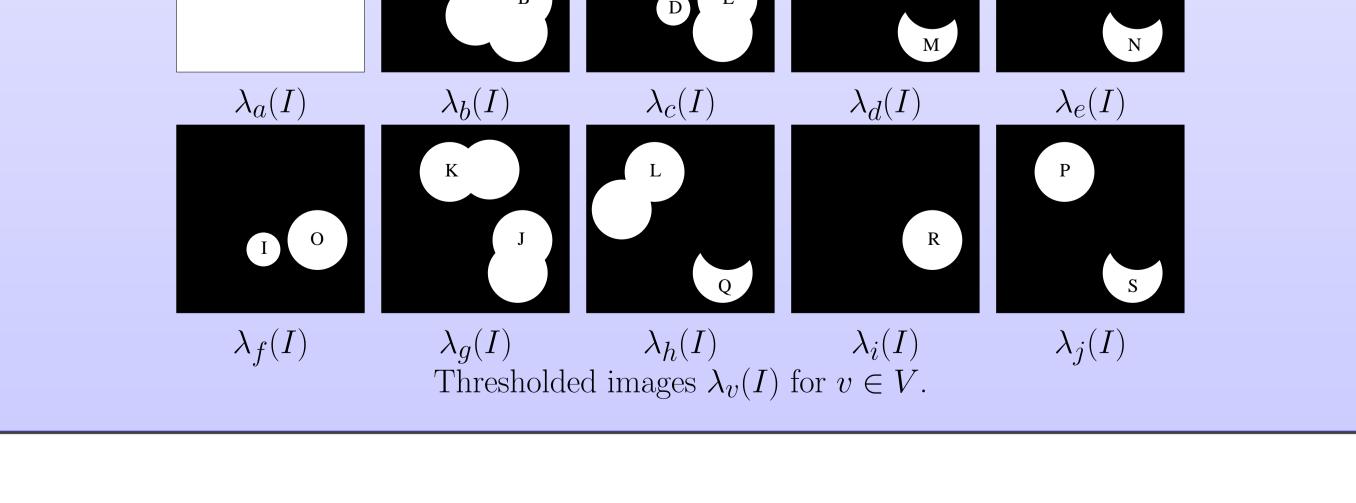
• PET (Positron Emission Tomography) and standard CT (Computed Tomography) X-ray data. • CT image provides homogeneous zones corresponding to specific tissues.

• PET image provides local intensity minima where tumours are active, but with lower spatial accuracy. • Computation of the component-graph  $\dot{\mathfrak{G}}$  and detection of tumors based on non-increasing criterion using attributes "area" and "height".









## References

[1] L. Najman and M. Couprie. Building the component tree in quasi-linear time. *IEEE Transactions on Image Processing*, 15(11):3531– 3539, 2006.

[2] P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and sequence processing. *IEEE Transactions* 

on Image Processing, 7(4):555–570, 1998.

[3] M. H. F. Wilkinson, H. Gao, W. H. Hesselink, J. -E. Jonker, A. Meijster. Concurrent computation of attribute filters on shared memory parallel machines. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(10):1800–1813, 2008.

[4] N. Passat and B. Naegel. Component-trees and multivalued images: structural properties. Journal of Mathematical Imaging and Vision, Online, 2013.