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ABSTRACT

Connected filters, and in particular those relying on com-

ponent trees, can be involved in vessel filtering and seg-

mentation tasks. We propose a new component tree-based

segmentation method that enables to easily obtain vascu-

lar volumes from 3D data, by simply providing 2D mark-

ers from MIP visualisations. This approach gathers the ad-

vantages of component trees (low algorithmic cost) and the

user-friendly (fuzzy) handling of 3D images via 2D repre-

sentations, leading to an ergonomic and fast tool. It has been

successfully used for segmenting a large dataset of MRAs

and CTAs visualizing Willis polygons, in the clinical con-

text of stenosis detection.

1. INTRODUCTION

Angiographic images, commonly obtained from magnetic

resonance angiography (MRA) and computed tomography

angiography (CTA), are useful data for several tasks, e.g.,

diagnosis, pathology follow-up, or surgery planning. How-

ever, due to low SNR (noise, artifacts), and complex se-

mantic content (sparseness, venous vs. artery networks),

angiographic image analysis [1] is a time consuming and

error-prone task.

These considerations have motivated the development

of numerous vessel filtering and segmentation techniques

[2]. Among the methodological fields considered for their

design, mathematical morphology has been involved for both

2D [3] and 3D [4] vessel segmentation. In this context,

the approaches based on connected filtering, and especially

those relying on the component tree [5], have been consid-

ered.

The component tree is a hierarchical data structure that

provides a spatial and spectral model for grey-level images.

It is composed by the connected components of the image,

obtained at each level-set, that form the nodes of a rooted
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tree. The support of the image is the root of this tree, while

the edges are derived from the inclusion relation between

these connected components, in a set-based formalism.

From a structural point of view, the component tree is

an adequate tool for representing and analyzing structures

of interest that correspond to (locally) extremal intensities.

This is the case for angiographic images, where the intensity

maxima correspond to the flowing blood. From an algorith-

mic point of view, component trees can be built with a low

computational cost [5, 6], and they also benefit from effi-

cient node selection strategies in well-chosen frameworks

[5, 7].

Based on these properties, several ways have been inves-

tigated to carry out vessel filtering and segmentation. In [8],

Wilkinson et al. proposed an antiextensive vessel enhance-

ment method, by removing the “noisy nodes”, via (scalar)

attribute selection. In [9], Caldairou et al. proposed to con-

sider vectorial attributes for node selection, leading a seg-

mentation method that requires a classification process to

discriminate the relevant nodes in a wide parameter space.

In [10], we investigated a different methodology, that no

longer uses a “local” description of each node. The main

idea is to come back to the definition of the component tree,

and to consider –more globally– the nodes as the generators

of the image. Vessel segmentation can then be performed in

an example-based fashion, by selecting the set of nodes that

“fit at best” a 3D vascular example (e.g., a vascular atlas [4])

which is registered on the image to be processed.

The main drawback of this last strategy is linked to the

definition and mapping of such a 3D example, which re-

mains a time-consuming task. In this article, we propose an

alternative solution to the use of a 3D example. To this end,

we first show (Sec. 2.1) that the energy-based formulation of

the method developed in [10] can be extended to fuzzy ex-

amples/markers. We then explain (Sec. 2.2) how a 3D fuzzy

marker can be conveniently generated from one (or several)

2D binary one(s), interactively defined from maximum in-

tensity projection (MIP) visualizations. A complementary

methodological discussion is provided in Sec. 3. Experi-

mental results –obtained in a clinical context– and perspec-



tive works, proposed in Secs. 4 and 5, conclude this article.

2. SEGMENTATION FRAMEWORK

2.1. Component tree-based segmentation: a fuzzy ver-

sion

Let I : Ω → V be a 3D angiographic image defined on

the volume Ω, and taking grey-level values in V = [0,m].
Let T be the component tree of I , which is composed, in

particular, by a set of nodes N ⊆ P(Ω), that is a set of

subsets of Ω.

Let M ⊆ Ω be a binary vascular marker defined on the

support Ω of the image I . In the method initially proposed

in [10], the vascular volume S ⊆ Ω segmented from I is

obtained by computing the subset N̂ ⊆ N of nodes of T

that “fit at best” the vascular marker M , which is assumed

to provide a first approximation of the sought vessels.

This can be formulated as a minimization problem, that

consists of solving the following equation

N̂ = arg min
N ′⊆N

{
dα

( ⋃

N∈N ′

N,M
)}

(1)

where dα is a distance on P(Ω), defined in terms of false

positives/negatives w.r.t. the marker, as

dα(S,M) = α|S \M |+ (1− α)|M \ S| (2)

where α ∈ [0, 1] controls the trade-off between the toler-

ance to false positives and false negatives.

The resolution strategy developed in [10] mainly relies

on a bottom-up exploration of the nodes N into the compo-

nent tree T, by considering an energy function intrinsically

linked to dα (see [10] for a whole description of the strat-

egy).

We propose to generalize the formulation of this seg-

mentation problem in order to now consider fuzzy mark-

ers. Indeed, by defining –without loss of correctness– a bi-

nary segmentation S =
⋃

N∈N ′ N ⊆ Ω as a function S :
Ω → {0, 1}, and no longer as a set, and the newly consid-

ered (fuzzy) marker as a grey-level image M : E → [0, 1],
Eq. (1) remains valid when extending dα (Eq. (2)) into the

distance Dα (on the set of functions from Ω to [0, 1]) de-

fined by

Dα(S,M) =

∫ 1

0

dα(λv(S), λv(M)).dv (3)

where λv is the thresholding operation at value v, defined on

the functions from Ω to [0, 1]. In particular, this continuous

formulation is equivalent to the following discrete one

Dα(S,M) = α
∑

S(x)=1

(1−M)(x) + (1− α)
∑

S(x)=0

M(x)

(4)
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Fig. 1. (a) An image I : Ω → V . (b) The MIP image

IΠ : ΩΠ → V where Π is the vertical hyperplane associ-

ated to the horizontal line L. The points of I which gener-

ate IΠ are depicted in red in (a). (c) A binary marker. (d)

The fuzzy marker induced by (c): points of different (resp.

equal) values in I can lead to equal (resp. different) fuzzy

scores.

that authorizes an exact computation of Dα. The bottom-up

exploration strategy remains valid in this new fuzzy paradigm,

by simply substituting Dα to dα in the energy formulation.

Moreover, from Eq. (3), the new “fuzzy” energy inherits

from the additivity property of the former “binary” ones,

that guarantees that the solution N̂ can be found in linear

time [7], for any α ∈ [0, 1], but also that the (finite) set

of solutions can be found in (quasi-)linear time for all the

α ∈ [0, 1].

2.2. From 2D binary to 3D fuzzy markers

Let L be a vectorial line of R3 and Π be the vectorial (hy-

per)plane of R3, orthogonal to L. The MIP image of a 3D

image I , w.r.t. Π, is a 2D image IΠ : ΩΠ → V , where

ΩΠ is the orthogonal projection of Ω onto Π. For any point

x ∈ ΩΠ, the value IΠ(x) is defined as the maximal value of

the points of I projected on x (see Fig. 1(a,b), for a 2D/1D

example)

IΠ(x) = max{I(y) | y ∈ (x+ L) ∩ Ω} (5)

Let us consider a 2D binary marker MΠ : ΩΠ → {0, 1}
defined w.r.t. IΠ (see Fig. 1(c)). In particular, let us focus

on a point x ∈ ΩΠ such that MΠ(x) = 1, i.e., a point that

is labeled as “vascular” in IΠ, according to MΠ. This crisp

vascular score of 1 is directly linked to the value of x in

IΠ and, equivalently, to the value of the point(s) y within Ω
satisfying Eq. (5). Such points y of maximal intensity, are

then assumed as vascular according to the (3D extrusion of

the) marker MΠ.

Following that paradigm, any other points z in (x +
L)∩Ω which have a different (actually lower) intensity than

x, y may be considered as having a lower vascular score,

varying between 0 (for the points of null value) and 1 (for



the points of highest value). Such fuzzy vascular scores

can be conveniently obtained by defining a transfer func-

tion φk : [0, k] → [0, 1], which is monotonic, and verifies

φk(0) = 0 and φk(k) = 1, where k = IΠ(x), for any x in

Π (functions with similar properties have been pioneered in

[11]).

Based on such transfer functions, the crisp vascular hy-

potheses carried by the 2D marker MΠ defined on ΩΠ can

be extruded in Ω, in order to provide a 3D marker M : Ω →
[0, 1] that carries fuzzy vascular hypotheses (see Fig. 1(d)).

Practically, this marker can be defined, for any y ∈ Ω by

M(y) = MΠ(x).φIΠ(x)(y) (6)

where x is the orthogonal projection of y on ΩΠ. Such 3D

fuzzy markers can, in particular, be involved in the com-

ponent tree-based segmentation framework considered in

Sec. 2.1.

3. METHODOLOGICAL DISCUSSION

In this section, we propose complementary discussions in

order to ease the instantiation of the general segmentation

framework defined above.

Connectivity handling The definition of the (nodes of the)

component tree involved in the segmentation process, relies

on the chosen connectivity on Ω. Beyond standard connec-

tivities (induced by 6- and 26-adjacency models), alterna-

tive “vessel-oriented” ones may be considered. In particu-

lar, mask-based connectivities can be relevantly involved, in

an extensive way (for vessel reconnection) [12], but also in

an antiextensive one (for noise/artifact disconnection). This

can be done by simply parameterising the component-tree

T with the chosen adjacency, before its construction.

Hierarchical segmentation map As stated in Sec. 2.1, we

can compute the segmentation result S associated to a given

α, but more generally, all the segmentations Sα over the

whole α-space [0, 1]. The set of the (distinct) Sα segmenta-

tions is actually finite. Moreover, the segmentation process

inherits the decreasing property from the thresholding op-

erator. Indeed, for any α1 < α2, we have Sα2
⊆ Sα1

. In

particular, it is possible to stack all the (binary) Sα results

into a single (grey-level) α-map, from which any segmenta-

tion Sα can be retrieved in real-time, by a thresholding over

α.

Transfer function In Sec. 2.2, the only prerequisites for

the transfer functions φk are related to their boundary val-

ues and their increasingness. While a simple linear defini-

tion can be considered (see the toy-example of Fig. 1), more

sophisticated ones can also be involved (e.g., exponential,

polynomial, logarithmic, sigmoid). In particular, this choice

can be guided by information about the formation of vascu-

lar signal, depending on the acquisition device. In this work,

we have considered a linear definition. However, we have

enriched this simple intensity-based profile by a supplemen-

tary spatial term. Indeed, it is possible to weight the fuzzy

score of a voxel according to its distance with the voxel(s)

that provide(s) the MIP value. Such a spatial term has been

defined by considering Gaussian profiles centered on such

“maximal” voxels, thus providing a spatial regularisation.

Multiple 2D markers The 2D binary-to-3D fuzzy marker

generation, developed in Sec. 2.2, can by extended to deal

with any arbitrary number of MIP visualisations and asso-

ciated 2D markers. Such extensions rely either on linear or

non-linear strategies. Indeed, this can be done by consider-

ing arithmetic or geometric mean values of the fuzzy maps

provided by each single 2D marker, or by considering min

or max compositions of such maps. Prior to this fusion op-

eration, the 3D extrusions can also be constrained, e.g., by

only considering the subspaces provided by their intersec-

tion.

4. EXPERIMENTS AND RESULTS

The proposed methodology has been involved in the analy-

sis of a dataset of 43 time of flight (TOF) MRAs (Fig. 2(a))

(see [13] for acquisition parameters details) visualising the

cerebral arterial network, with a specific focus on the Willis

polygons. These images have been acquired for the analysis

(and follow up) of acute ischemic stroke, among 48 patients

younger that 45 years, with the purpose to identify monoar-

terial or multifocal intracranial stenoses, and the potential

clinical causes of such pathological phenomena [13].

On one hand, due to the high number of images to con-

sider in this study, a manual procedure would be hardly

tractable. On the other hand, an automated segmentation

would not guarantee to avoid false negatives. These con-

siderations have motivated the use of a weakly-interactive

segmentation methodology such as the proposed one.

In our experiments, the clinician user firstly provided a

rough presegmentation as a 2D marker in a MIP visualisa-

tion (Fig. 2(b)); this –interactive– task could be performed

in 15 ± 5 seconds, with standard interactive drawing tools.

Secondly, the method computed the component-tree of the

image, and processed from it and from the 3D fuzzy marker

generated by the MIP 2D one, the α-map (Fig. 2(c)) gather-

ing all the potential segmentation results; this –automatic–

step required 180 ± 20 seconds. Finally, the user chose a

segmentation result (Fig. 2(d)) within this α-map, by a sim-

ple thresholding; this last –interactive– task required less

than 5 seconds.

In these experiments, the methodology was applied with

(i) the connectivity induced by the standard 26-adjacency



(a) MRA (b) Marker (c) α-map (d) Segmentation

Fig. 2. (a) TOF MRA of a Willis polygon (axial MIP visualisation). (b) 2D binary markers defined on (a). (c) Segmentation

result gathered into an α-map, automatically obtained from the component-tree segmentation of (a) w.r.t. the fuzzy marker

induced from (b). (d) Binary segmentation obtained by thresholding the α-map (c) at α = 0.97.

model; (ii) two markers defined from axial and coronal MIP

visualisations with a “max” policy; and (iii) a mixed intensity-

linear/spatially-Gaussian transfer function (σ = 4 voxels).

The obtained segmentations, visualised by 3D surface ren-

dering (Fig. 3) led to the localisation of the stenoses. In

particular, the observation and handling of actual 3D vas-

cular volumes provided to the clinician user the possibility

to detect stenoses with a same accuracy, compared to MIP

handling, but in a more ergonomic fashion.

5. CONCLUSION AND PERSPECTIVES

This work emphasises the possibility to develop user-friendly

weakly interactive segmentation procedures, in the challeng-

ing context of 3D vessel segmentation. This has been demon-

strated in the framework of mathematical morphology, that

can be conveniently interfaced with fuzzy approaches.

In further works, the efficiency of the component tree-

based segmentation approach could be improved by also

considering the connectivity as a variable that –similarly to

α– may be tuned by the expert user. This may be considered

by extending component-trees into data structures of higher

dimensions (component-hypertrees) [14], and by upgrading

the energy-based segmentation procedure accordingly.
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