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ABSTRACT

To deal with the issue of tubular object segmentation, we pro-
pose a new model involving a non-local fitting term, in the
Chan-Vese framework. This model aims at detecting objects
whose intensities are not necessarily piecewise constant, or
even composed of multiple piecewise constant regions. Our
problem formulation exploits object sparsity in the image do-
main and a local ordering relationship between foreground
and background. A continuous optimization scheme can then
be efficiently considered in this context. This approach is val-
idated on both synthetic and real retinal images. The non-
local data fitting term is shown to be superior to the classical
piecewise-constant model, robust to noise and to low contrast.

Index Terms— Variational image segmentation, non-
local data fidelity, tubular structures, angiographic imaging.

1. INTRODUCTION

In various kinds of images, some structures of interest appear
as thin, tubular objects, i.e., structures that are significantly
longer in one dimension compared to the others, and that may
be only a few pixel thick or less in places. Such structures
also tend to be sparse in the image domain and sensitive to
noise. Vascular structures are typical examples. Their reli-
able segmentation is indeed a challenging task, however cru-
cial for many (bio)medical applications, both in 2D (retinal)
[1] and 3D (MRA, CTA) images [2, 3, 4, 5]. In 3D, intensity
variations may result from various sources of noise and ac-
quisition artifacts. In 2D, intensity inhomogeneities generally
derive from illumination conditions during acquisition.

These difficulties have motivated many contributions,
among them extensions to the Chan-Vese model have re-
ceived specific attention. Chan and Vese proposed an active
contour model, dividing an image into two regions based on a
minimal variance criterion, such that each region is attributed
a single mean intensity value. In particular, the two-phase
Chan-Vese model, under the assumption that the two piece-
wise constant values are known, is a convex problem that can
be solved exactly [6, Th. 2].
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In the context of sparse, tubular structures with inhomo-
geneous signal, extensions of the Chan-Vese model have been
proposed for both the data fidelity and prior terms. The lat-
ter have led to the development of tubularity and connectivity
priors, e.g., superellipsoids [7], B-splines framelet [8], adap-
tive dictionaries [9] and elastic connectivity [10]. The need
to be robust to background variability led to the replacement
of the global data fidelity term, developed under the piece-
wise constant assumption, by a compound global-local term
[11, 12].

A simplified global model (Sec. 2) was introduced, e.g.,
in [13, 14, 15, 16, 8]. However, the associated global data
fidelity term is not well suited for non-uniform region seg-
mentation problems [17]. Hence, local information was addi-
tionnaly exploited, by computing local regional statistics. In
[18], a multiple piecewise constant active contour model aims
at clustering regions, assigning to each induced subregion a
single mean intensity value. The outcome depends on an ini-
tial k-means clustering, that requires well contrasted images.
In [19] a fuzzy non-local model is proposed, where a vector
field is attributed to each region, whose coefficients are cal-
culated as weighted NL-means. This leads to good results,
except for low-contrast, due to the sensitivity to the neigh-
bourhood choice. In [20], a data fidelity term built on vector
valued similarity between local histograms was introduced.
This method, designed for textured image segmentation, is
not well suited to the case of thin object segmentation, where
foreground signal can be quite sparse. For similar reasons,
other internal energy measures [17, 21] are not well suited
to the case of sparse objects. In [11], the global Chan-Vese
model is combined with a local term built on a local contrast
map. This strategy is sensitive to noise with small neighbour-
hood sizes, while at larger sizes it is less sensitive to noise but
loses the finest details.

To overcome these problems, we propose a new model
with a non-local fitting term for detecting thin, sparse tubu-
lar objects (Sec. 3). This model can detect objects that are
not necessarily piecewise constant, or composed of multiple
piecewise constant regions. Our problem formulation exploits
object sparsity in the image domain and a global ordering re-
lationship between foreground and background. More pre-
cisely, this new energy formulation – additionally to some
connectivity, regularity or tubularity priors – includes a spar-



sity prior term and a non-local data fidelity term, where each
region is attributed a vector field, whose coefficients are cal-
culated as a quantile of a random variable associated with a
patch centered in each image pixel. We propose to solve this
problem efficiently using a continuous optimization frame-
work (Sec. 4), through the use of convex relaxation tech-
niques [6, 22]. The performance of the proposed approach
is illustrated with a 3D synthetic image example containing
complex, curvilinear, objects with varying intensities, inho-
mogeneous background and Gaussian noise. It is also tested
on real 2D retinal images (Sec. 5).

2. GENERAL PROBLEM FORMULATION

Let X, X0, X1 denote image, background and target signal
supports, respectively. We consider the two-phase image seg-
mentation problem, that consists of finding an optimal par-
tition (X0,X1) of X, based on the observation vector y ∈
Y = RN . Using the auxiliary variable x ∈ X = [0, 1]

N and
threshold τ ∈ [0, 1] related with sets X0 and X1 by

∀i ∈ X

{
i ∈ X0 if xi < τ

i ∈ X1 otherwise
(1)

the problem can be formulated as a minimization problem,
aiming at finding

argmin
x∈X

f(x) (2)

where
f(x) = Φ(x) + ρ(x) + ιX (x) (3)

The objective function f is defined as a sum of data fidelity
term

Φ(x) = ψ0(x) + ψ1(x) (4)

=
∑
i∈X

ϕ0(xi) φ(yi − u1i ) +
∑
i∈X

ϕ1(xi − 1) φ(yi − u0i )

hybrid regularization term

ρ(x) =

R∑
r=2

ψr(Vrx) + νϕ(x) (5)

and an indicator function of a convex set X

∀i ∈ X, ιX (xi) =

{
0 if xi ∈ [0, 1]

+∞ otherwise
(6)

where R ∈ N, R ≥ 2; ν ∈ R+; for all r = {2, . . . , R}, Vr :
X 7→ RPr is a linear operator; ψr, φ are distance measures;
u0, u1 ∈ RN are background and foreground intensities; and
ϕ is a µ-Lipschitz differentiable function. Special cases of the
problem (2) include:

• The Chan-Vese case with known constants [6, 22] :
ϕ0, ϕ1 are identity, ν = 0, u01 = u02 = . . . = u0N ,
u11 = u12 = . . . = u1N , φ takes a quadratic form,R = 2,
ψ2 is the total variation penalization [23] (i.e., P2 =

2N , V2 =
[
(∆h)> (∆v)>

]>
, where ∆h ∈ RN×N

(resp. ∆v ∈ RN×N ) corresponds to a horizontal (resp.
vertical) gradient operator, and, for every x ∈ RN ,
ψ2(V2x) =

∑N
n=1

(
([∆hx]n)2 + ([∆vx]n)2

)1/2
).

• The two phase case of wavelet frame image segmen-
tation [8]: ϕ0, ϕ1 are `1 norms, ν = 0, u01 = u02 =
. . . = u0N , u11 = u12 = . . . = u1N , φ takes a quadratic
form, ∀r = 2, . . . , R, ψr is `1 norm and Vr is a frame
operator.

• The two phase case of fuzzy segmentation [19]: ϕ0,
ϕ1 are `2 norms, ν = 0, for all i = 1, . . . , N u0i
(resp. u1i ) is given by non-local mean of φ(yi − ui0)
(resp. φ(yi − ui1)) with weights defined by current es-
timate of xi (resp. (1− xi)), φ takes a quadratic form,
R = 2, ψ2 is a non-convex regularization term given by∑N
i=1

∑
j∈Ni

xi(1− xj) whereNi denotes some local
neighbourhood around pixel i.

• The two phase case of multiple piecewise constant
model [18]: ϕ0, ϕ1 are identity, ν = 0, for all
i = 1, . . . , N u0i (resp. u1i ) is obtained as a result
of k-means region clustering, φ takes a quadratic form,
R = 2, ψ2 is the total variation penalization [23].

In the remainder of this paper, we assume, for all r ∈
{0, . . . , R} that1 ψr ∈ Γ0(RPr ) and ϕ ∈ Γ0(RPϕ).

3. PROPOSED NON-LOCAL MODEL

We consider an image x to be sparse if the foreground objects
cover only a small portion of its entire support, i.e. δ =
|X1|
|X| � 1. Images x and y are realizations of random variables
X and Y , respectively.

We propose to decompose an observed image y into a set
of overlapping regions centered on pixels i. Let Θ be a patch
selection operator with some predefined boundary conditions,
and let Θy = {Θy1, . . . ,ΘyN} be realizations of random
variables {Y1, . . . , YN}. The linear operator Θ needs to be
chosen such that there is a low probability that Θyi is associ-
ated only with foreground, i.e., in each column of Θ, there is
δN non zero coefficients. Under the following assumptions:

(i) δ is known;

(ii) the local ordering relationship between foreground and
background is known and unchanged within the whole
image;

1See for instance [24], that Γ0(RN ) is the class of lower-semicontinuous,
proper, convex functions from RN to (−∞,+∞].



(iii) noise is described by some symmetric probability dis-
tribution, possibly spatially variant;

we determine local values of u1 and u0 at each point along
the image domain. More precisely, ∀i ∈ X, u0i and u1i are set
as 1− δ and δ quantiles of Yi if background is locally lighter
than foreground, and as δ and 1− δ quantiles of Yi otherwise.
For instance, in the latter case, we have

u0i = argmin
q∈R

Pr [Yi < q] ≤ δ (7)

u1i = argmin
q∈R

Pr [Yi < q] ≤ (1− δ) (8)

Note that if Θ is defined such that the target signal is dis-
tributed uniformly across the patches, all the values u0i and
u1i are likely to describe the local intensity of the background
and foreground, respectively. However, if the patch related to
Yi includes only the background (resp. the foreground) sig-
nal, the values u0i and u1i are chosen such that the data fidelity
penalty for assigning the given pixel i to the background or to
the foreground is the same. In such a case, the equal penal-
ization is a direct consequence of the noise distribution sym-
metry assumption.

We propose to combine the proposed data fidelity term
(Eq. (4)) with an image sparsity prior. In the context of convex
optimization framework, the sparsity is usually imposed by
the `1 norm. Thus we have R ≥ 2, V2 given by identity, and
ψ2(x) = λ2|x|, where λ2 ∈ R+ is a positive weight.

Thus, a pixel i associated with a patch including either
only the background or the foreground is more likely to be
assigned to the background (xi is close to 0). Note that if
the size of the patches is not well chosen, i.e., some patches
include only the foreground, the signal can only be found
by relying on some additional prior related to the nature of
searched object, e.g., regularity, connectivity or tubularity.

4. OPTIMISATION APPROACH

The optimisation problem of Eq. (2), where f takes the form
of Eq. (3), can be efficiently addressed using various convex
optimizations tools, as proximal splitting algorithms (see [25]
for a survey). In such framework, the solution is obtained
iteratively by incorporating the function either via a proxim-
ity operator or via its gradient. Incorporating a function via
proximity operator is computationally efficient provided that
the explicit form of this operator exists.

Definition 1 Let ψ ∈ Γ0(RN ). For every x ∈ RN , the mini-
mization problem consisting of finding

min
y∈RN

ψ(y) +
1

2
‖x− y‖2 (9)

admits a unique solution, which is denoted by proxψ(x). The
so-defined operator proxψ : RN → RN is the proximity op-
erator of ψ.

Hereafter, we present the general primal-dual splitting al-
gorithm, proposed in [26] and summarized in Alg. 1, where
V0 and V1 are identity matrices. The convergence of Alg. 1 is
guaranteed by the result presented in Prop. 1, deduced from
[26, Th. 4.2].

The generality of Alg. 1 stems from the fact that it allows
us to solve Eq. (2) for any Lipschitz differentiable function
ϕ and arbitrary linear operators (Vr)2≤r≤R. Consequently, a
wide range of penalization strategies are applicable, among
them some were already studied in the context of tubular seg-
mentation problem [23, 8, 9, 10].

Algorithm 1 Primal-dual algorithm for solving Eq. (2)
Let γ ∈ (0,+∞), u0 ∈ RN and u1 ∈ RN .
Set x0 ∈ RN , and ∀r ∈ {0, . . . , R} , vr,0 ∈ RPr .
For k = 0, . . .

y1,k = xk − γ
(
∇ϕ(xk) +

∑R
r=0 V

>
r vr,k

)
p1,k = proxγιX (y1,k)
For r = 0, . . . , R
y2,r,k = vr,k + γVrxk
p2,r,k = proxγψ∗r (y2,r,k)

q2,r,k = p2,r,k + γVrp1,k
vr,k+1 = vr,k − y2,r,k + q2,r,k

q1,k = p1,k − γ
(
∇ϕ(p1,k) +

∑R
r=0 V

>
r p2,r,k

)
xk+1 = xk − y1,k + q1,k

Proposition 1 Given the following three assumptions:

(i) f is coercive, i.e., lim‖x‖→+∞ f(x) = +∞;

(ii) for every r ∈ {0, . . . , R}, ψr is finite valued;

(iii) γ ∈ [ε, (1 − ε)/β] where ε ∈ (0, 1/(β + 1)) and β =

µ+
√∑R

r=0 ‖Vr‖2;

there exists a solution x of Eq. (2) such that the sequences
(xk)k∈N and (p1,k)k∈N converge to x.

Note that, for r ≥ 2, and z ∈ RN , the required proxγψ∗r (z)
is given by

proxγψ∗r (z) = z − γproxγ−1ψr
(γ−1z) (10)

while the proximity operators of the function ψ0 (resp. ψ1)
involved in the data fidelity term can be computed easily us-
ing the property of decomposition into orthogonal basis [25].
More precisely, for r ∈ {0, 1} and z ∈ RN , we have

proxγψ∗r (z) = [p1, p2, . . . , pN ]
> (11)

where

pi = zi − γφi,r
(

prox(γφi,r)
−1ϕr

((γφi,r)
−1
zi − r) + r

)
(12)

with φi,r equal to φ(yi − u1i ) and φ(yi − u0i ) for r = 0 and
r = 1, respectively.



(a) Original (max. projection view) (b) Ground truth

(c) Piecewise const. (0.753, 0.984) (d) Ours (0.835, 1.000)

Fig. 1. Inhomogeneous VascuSynth results (TPR, SPC).

5. EXPERIMENTS AND RESULTS

We now illustrate the practical performances of our method.
The segmentation involves the minimization of

f = Φ + ιX + λ2| · |+ λ3 TV + λ4 H (13)

where ϕ0, ϕ1, φ are defined as `1 norm, λi > 0 are the reg-
ularization parameters, TV and H denote the total variation
and the Hessian [27, Sec. III-A] semi-norm, respectively. The
quality of the results is evaluated in terms of sensitivity (TPR)
and specificity (SPC). First, a study of the influence of the
data fidelity choice in terms of segmentation quality is pre-
sented, i.e., we compare our non-local with classical piece-
wise constant model using synthetic data. Next, our method is
compared to several methods from the DRIVE database [28].

In our first experiment, we use an image of size 100 ×
100 × 100 generated by VascuSynth [29, 30]. To generate
the observed image y (Fig. 1(a)), we have introduced inho-
mogeneity of foreground, i.e., intensity of target signal is a
function of diameter of the associated tubular structure. The
image of average intensity 0.1 was further corrupted with a bi-
ased additive Gaussian random field of mean 0.2 and spatial
variance 0.025, to reproduce significant background inhomo-
geneities and zero-mean additive Gaussian noise with σ2 =
0.05. One can observe (Fig. 1(c), u0 = 0.085, u1 = 0.18,
u0 = 0.165, λ2 = 0.5, λ3 = 0.025, λ4 = 0.025) that many
poorly contrasted structures are lost using a piecewise con-
stant model, while our method (Fig. 1(d), δ = 0.1, patch size
7 × 7, λ2 = 0.0125, λ3 = 0.025, λ4 = 0.025) preserves

(a) Original (b) Ground truth

(c) Human (0.797, 0.972) (d) Ours (0.800, 0.936)

Fig. 2. DRIVE database visual result (TPR, SPC).

all structures. This is confirmed by inspecting the associated
TPR and SPC values of 0.835 and 1.000, respectively.

For real data, we use images from the DRIVE database
(mono channel version). The algorithm is defined by y ∈
[0, 1]

N , δ = 0.15, patch size 19 × 19, λ2 = 0.003, λ3 =
0.0125, λ4 = 0.0012. The results (Fig. 2(d)) indicate that TV
and H priors do not promote the solutions with the tubular
structures of 1 pixel diameter. There are also some isolated
structures close to the image boundary. Our method remains
however competitive with respect to [31, 32] (Tab. 1). Note
finally, that in contrast to [28, 33], it is unsupervised.

Human [28] [33] [31] [32] Ours
TPR 0.780 0.719 0.679 0.709 0.715 0.725
SPC 0.972 0.977 0.980 0.949 0.976 0.925

Table 1. DRIVE database results averaged over 20 images.

6. CONCLUSION

We have proposed a variational approach for tubular segmen-
tation problem in the presence of inhomogeneity and noise.
Taking advantage of the signal sparsity in the image domain
we have developed a new non-local data fidelity term. While
only TV-based segmentation was presented, the proposed
framework offers significant versatility. Hence, since our
results were observed to produce results with some discon-
nected structures (Fig. 2), as future work we plan to add to
formulation (13) connectivity and tubularity priors .
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